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Alzheimer’s disease (AD) is the most common form of dementia, which is characterized
by the neuropathological accumulation of extracellular amyloid plaques and intracellular
neurofibrillary tangles (NFTs). Clinically, patients will endure a gradual erosion of memory
and other higher order cognitive functions. Whilst the underlying etiology of the disease
remains to be definitively identified, a body of work has developed over the last
two decades demonstrating that AD plasma/serum and brain are characterized by a
dyshomeostasis in a number of metal ions. Furthermore, these metals (such as zinc,
copper and iron) play roles in the regulation of the levels of AD-related proteins, including
the amyloid precursor protein (APP) and tau. It is becoming apparent that metals also
interact with other proteins, including apolipoprotein E (ApoE). The Apolipoprotein E gene
(APOE) is critically associated with AD, with APOE4 representing the strongest genetic
risk factor for the development of late-onset AD. In this review we will summarize the
evidence supporting a role for metals in the function of ApoE and its consequent role in
the pathogenesis of AD.
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INTRODUCTION
Apolipoprotein E (ApoE) is the predominant apolipoprotein
in the brain where it is synthesized and secreted primarily by
astrocytes in high-density lipoprotein (HDL)-like particle (Bu,
2009). A primary function of ApoE is to serve as a ligand for
the low-density lipoprotein (LDL) receptor family of proteins,
which mediate delivery of cholesterol to neurons. That function
is essential for axonal growth, synaptic formation and remodeling
and all of those events are important for learning, memory for-
mation and neuronal repair (Mauch et al., 2001; Pfrieger, 2003).
Decreases in the levels of ApoE or LDL receptors lead to synaptic
remodeling impairment and a progressive loss of synapses in
the cortex and hippocampus (Mulder et al., 2004; Liu et al.,
2010).

ApoE is also a polymorphic protein with three common allele
variants: APOE2, APOE3 and APOE4. The APOE4 gene is the
strongest and only confirmed genetic risk factor for the develop-
ment of late onset Alzheimer’s disease (LOAD), which enhances
the risk level by three times in heterozygous individuals and by
twelve times in homozygous individuals (Bertram, 2009). The
least frequent APOE2 allele (found in 5–10% of individuals)
seems to have a protective effect against the development of AD
while the most frequent APOE3 allele (found in 70–80% of the
population) represents intermediate risk (Corder et al., 1994;
Mahley and Huang, 2006). The structural differences between the
three ApoE isoforms is limited to amino acid residues 112 and
158, where either cysteine or arginine is present: ApoE2 (Cys112,
Cys158), ApoE3 (Cys112, Arg158) and ApoE4 (Arg112, Arg158;
Mahley and Rall, 2000). The single amino acid difference at these

two positions affects the structure of ApoE isoforms and their
ability to bind lipids, receptors and amyloid beta (Aβ), the latter
which is the main constituent of the extracellular plaques found
in the AD brain (Zhong and Weisgraber, 2009; Chen et al., 2011;
Frieden and Garai, 2012).

The connection between metals, Aβ and abnormal forms of
tau (as found in the neurofibrillary tangles (NFT) present in the
AD brain) has been investigated extensively in the pathogenesis
of AD (Grasso et al., 2012; Greenough et al., 2013; Wärmländer
et al., 2013). However, the effects of metallation on ApoE are less
well known. In this review, evidence supporting the hypothesis
that zinc and copper play a role in the function of ApoE will be
covered, along with the key points on the current understand-
ing of the influence of ApoE and metals on the pathogenesis
of AD.

APOE AND ITS ROLE IN AD PATHOGENESIS
APOE4 has been found to be associated with an increased preva-
lence of AD and a lower age of onset. Clinical data shows the
frequency of AD and mean onset age are 91% and 68 years old
in APOE4 homozygous carriers, 47% and 76 years old in APOE4
heterozygous carriers, and 20% and 84 years old in APOE4 non-
carriers (Corder et al., 1993; Rebeck et al., 1993); suggesting that
APOE4 genotype confers a significantly higher risk of develop-
ment of AD with an earlier age of onset in a gene dose-dependent
manner. It has also been reported that the prevalence of an
E4 allele is considerably higher in mild cognitive impairment
(MCI) than in control individuals (Pa et al., 2009); with APOE4
MCI individuals showing poorer memory performance at an
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earlier stage in AD compared with non-carriers (Smith et al.,
1998). APOE4 can also influence cognition in healthy people.
Healthy APOE4 carriers show an accelerated longitudinal decline
in memory tests (Caselli et al., 2004, 2007). In the brain, ApoE
mediates delivery of cholesterol to neurons, which is essential
for axonal growth, synaptic formation and remodeling and all of
those events are important for learning, memory formation and
neuronal repair (Mauch et al., 2001; Pfrieger, 2003). Astrocytes
preferentially degrade ApoE4, leading to reduced ApoE4 secretion
and ultimately to reduced brain ApoE levels (Riddell et al., 2008).
Taken together therefore, the lack of functional ApoE present in
AD is likely to directly contribute to the cognitive impairment
seen in this disease.

One of the first pieces of evidence linking ApoE to AD
pathology was the observation of ApoE immunoreactivity in
extracellular amyloid plaques and NFTs (Namba et al., 1991).
It has since been shown that ApoE forms complexes with Aβ

and these complexes are thought to influence Aβ deposition and
clearance (Wildsmith et al., 2013). Aβ deposition detected by
Pittsburgh Compound B positron emission tomography (PIB-
PET) follows a strong APOE allele-dependent pattern (E4 > E3
> E2) (Kok et al., 2009; Morris et al., 2010; Castellano et al.,
2011). An ApoE isoform-specific effect on the amount of Aβ

accumulation as well as in the number of amyloid plaques was
also found in amyloid precursor protein (APP) transgenic mice
expressing different human ApoE isoforms (E4 > E3 > E2; Fagan
et al., 2000, 2002; Fryer et al., 2005b). The mechanisms underlying
isoform-specific influences on Aβ aggregation and accumulation
in the brains are not fully understood, but it’s likely due to their
different abilities to clear Aβ (Wildsmith et al., 2013). In vitro
and in vivo studies show that many ApoE receptors are involved
in ApoE-mediated Aβ clearance from the brain (Bu, 2009; Kim
et al., 2009; Holtzman et al., 2012). A recent study demonstrated
that ApoE loses its ability to clear Aβ when ApoE is cleaved at
the hinge region of ApoE (Jones et al., 2011). After cleavage,
the ApoE-Aβ complex cannot bind to ApoE receptors due to
the lack of N-terminal ApoE which contains the binding sites
of ApoE receptors. It also has been demonstrated that ApoE4
is more susceptible to the cleavage at hinge region (Jones et al.,
2011), increasing the likelihood of the ApoE receptor binding
region (N-terminal ApoE) being cleaved, which supports the
idea that ApoE4 has the least ability to clear Aβ compared to
ApoE2 and ApoE3. Another supportive finding is that ApoE4
clears Aβ at blood brain barrier (BBB) via the very low-density
lipoprotein receptor (VLDLR) whereas Aβ is cleared at a higher
rate in the presence of ApoE2 and ApoE3 by both VLDLR
and lipoprotein related protein 1 (LRP1; Deane and Zlokovic,
2007).

It has also been proposed that the poor stability, clearance
and poor lipidation status of ApoE4 accounts for its contribution
to an elevated risk for the development of AD. ApoE4 is the
least stable of all three ApoE isoforms (Morrow et al., 2002) and
has been reported to be preferentially susceptible to proteolytic
degradation into cytotoxic fragments (Huang et al., 2001). Much
higher levels of ApoE fragments are detected in the brains of AD
patients (Huang et al., 2001; Harris et al., 2003; Jones et al., 2011)
and these fragments have been shown to damage hippocampal

neurons and result in memory impairment (Harris et al., 2003;
Andrews-Zwilling et al., 2010).

ApoE4 is a less effective lipid carrier under physiological con-
ditions than ApoE3 or ApoE2 (Michikawa et al., 2000; Hara et al.,
2003). Lipidation of ApoE is mediated primarily by ATP-binding
cassette A1 (ABCA1) and the lipidation status of ApoE is related
to its Aβ-binding properties (Tokuda et al., 2000). Reducing ApoE
lipidation status by ablating ABCA1 in APP transgenic mice
markedly enhances brain amyloid plaque levels, and conversely,
enhancing ApoE lipidation status by the up-regulation of ABCA1
significantly reduced amyloid load (Kim et al., 2009). These
results are consistent with the hypothesis that non-lipidated ApoE
in the brain can stimulate Aβ aggregation and deposition (Hatters
et al., 2006) while lipidated ApoE facilitates the clearance of Aβ

and it is much less susceptible to proteolysis than lipid-free ApoE
(Weisgraber et al., 1994; Narayanaswami et al., 2004). Some ApoE
receptors and ABCA1 appear to influence ApoE expression and
lipidation (Hirsch-Reinshagen et al., 2004; Wahrle et al., 2004;
Fryer et al., 2005a; Liu et al., 2007; Wahrle et al., 2008).

Based on the pathological definition of the disease, AD is
associated not only with the abnormal accumulation of amyloid
plaques, but also with the accumulation of NFTs which form
intracellularly and are composed primarily of aggregated phos-
phorylated and acetylated tau (Iqbal et al., 2010). Tau primarily
stabilizes microtubules, and its aggregation in AD causes deficits
through a loss-of-function mechanism. Recently, evidence has
also shown that when it is abnormally modified, tau becomes
enriched in dendritic spines where it can interfere with neuro-
transmission (Morris et al., 2011). Evidence from in vivo and in
vitro studies indicates that ApoE3 and ApoE4 function differently
with respect to the phosphorylation and aggregation of tau.
ApoE3 binds to the microtubule-binding repeat regions of tau
with its N-terminal domain (Strittmatter et al., 1994), however,
this interaction can be impeded by the phosphorylation of tau. On
the other hand, whilst ApoE4 has been shown to not significantly
interact with tau (Strittmatter et al., 1994), it does increase tau
phosphorylation and accumulation in the neuronal soma and
dendrites, facilitating the formation of NFTs during aging and
AD progression (Harris et al., 2003; Brecht et al., 2004; Andrews-
Zwilling et al., 2010). One proposed mechanism is that ApoE4 can
activate the extracellular signal-regulated kinases (ERK) pathway
in AD brains and lead to tau phosphorylation, which is likely
modulated by zinc (Harris et al., 2004).

THE INVOLVEMENT OF METALS IN AD PATHOGENESIS
The formation of the classical neuropathological features of AD
are not only influenced by APOE genotype, but also mediated or
triggered by an imbalance of metal ions. Altered metal homeosta-
sis has been demonstrated in the brain and plasma/serum in AD
patients. Compared with age-matched control, AD patients show
elevated zinc and copper in cerebrospinal fluid (CSF; Hozumi
et al., 2011), whereas plasma and serum zinc was found to be
lower (Vural et al., 2010). Free copper in the blood of AD patients
is substantially higher than controls (Squitti et al., 2014). In
addition, the concentration of zinc, copper, and iron in brain
parenchyma (350 µM, 70µM, and 340 µM, respectively) are
further elevated in AD patients (800 µM, 300 µM, and 700 µM,
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respectively; Lovell et al., 1998). These metals are also enriched in
both senile plaques and NFTs (Ayton et al., 2013). Zinc, along with
copper and iron (released during neural transmission), directly
bind to Aβ and accelerate its aggregation and accumulation into
amyloid plaques (Morante, 2008; Altamura and Muckenthaler,
2009). Therefore, the zinc, copper and iron sequestration into
amyloid deposits is thought to result in a loss of cellular and
synaptic metals. The loss of synaptic zinc is particularly relevant
to the maintenance of normal cognition. An important regulator
of synaptic zinc is the zinc transporter-3 (ZnT3) protein which
is essential for loading zinc into synaptic vesicles (Linkous et al.,
2008). It has been shown that ZnT3 levels decrease with aging
in the brains of both mice and humans and are reduced even
further in the brains of AD patients (Adlard et al., 2010). ZnT3
KO mice display defects in learning and memory at 6 months of
age, and the authors suggest that these mice provide a phenocopy
for the synaptic and memory deficits of AD (Adlard et al., 2010).
In addition, copper is another important metal involved in the
cognitive decline in AD. Free copper in blood is potentially toxic,
particularly if the free copper pool expands, as it does in Wilson’s
disease (Brewer et al., 1998). More importantly, there’s a strong
positive correlation between the level of free copper and the
severity of cognitive loss in AD (Squitti et al., 2006), which can
be observed over a given period of time (Squitti et al., 2009).

Although we still do not know if the metal ion dyshome-
ostasis present in AD is a cause or consequence of the disease,
there is a growing body of evidence showing a direct corre-
lation between metal ions and key AD-related key proteins.
Both zinc and copper facilitate Aβ aggregation. Aβ tends to
form fibrils in the presence of zinc, whereas in the presence
of copper it prefers to form oligomers (Tõugu et al., 2009).
The copper-Aβ oligomer complex has been shown to be more
toxic than the zinc Aβ fibrils, which in some conditions actually
confer protection (Rosenblum, 2014). Metal dyshomeostasis is
also involved in the regulation of other AD-related proteins,
like APP and tau. Zinc, for example, regulates the activity of
some of the secretases involved in the processing and function
of APP, with α-secretase activity up-regulated by zinc indirectly
through a disintegrin and metalloproteinase (ADAM; Lammich
et al., 1999); however, the activity of the γ-secretase complex
is inhibited by zinc (Hoke et al., 2005). The copper binding
domain of APP (histidine residues 149 and 151) is crucial for
APP stability and metabolism (Spoerri et al., 2012) and copper
enhances APP dimerization and promotes Aβ production (Noda
et al., 2013). Consistent with this concept, APP knockout mice
have elevated copper levels in the cerebral corte (White et al.,
1999). These studies show that APP may directly influence copper
homeostasis, and its interactions with copper may be also neuro-
toxic.

Metals are also involved in tau pathology, and are enriched
in tangle-bearing neurons (Sayre et al., 2000). Synaptically
released zinc induces tau hyper-phosphorylation through path-
ways including Src-dependent, glycogen synthase kinase 3β

(GSK3β) and ERK pathways (Lei et al., 2011; Xiong et al., 2013).
Copper directly binds to tau (Martic et al., 2013) and regulates its
aggregation and phosphorylation (Squitti et al., 2006; Zhou et al.,
2007). Aberrant activation of cyclin-dependent kinase 5 (CDK5)

was found to be correlated with the tau pathology after chronic
copper exposure in a mouse model of AD (Kitazawa et al., 2009).
Iron binding to the hyper-phosphorylated tau protein also facil-
itates the formation of the NFTs (Altamura and Muckenthaler,
2009) and the iron chelator, deferoxamine (DFO), decreases iron-
induced activities of CDK5 and GSK3β and tau phosphorylation
(Guo et al., 2013). Thus, the development of the two most
prominent pathological features of the AD brain, plaques and
tangles, are likely to be mediated by metal ions. This area has been
extensively reviewed in the past (Adlard and Bush, 2006; Bush
and Tanzi, 2008; Duce and Bush, 2010; Hung et al., 2010; Ayton
et al., 2013), and supports the notion of the regulation of metal
homeostasis as a promising area of investigation for future AD
therapeutics.

EVIDENCE SUPPORTING THE LINK BETWEEN METALS
AND ApoE
The mechanism by which ApoE4 is associated with AD is still
unknown; however, an emerging linkage between metals and
ApoE might give a clue. Evidence shows that ApoE isoforms bind
to metals such as zinc, copper and iron (that are also involved
in the pathogenesis of AD), with the affinity for copper being
greater than for iron and zinc (Miyata and Smith, 1996). The
precise binding sites for metals on ApoE have yet to be deter-
mined, but the four-helix bundle of the N-terminus may allow
a coordination of metals (Miyata and Smith, 1996). The metal
sequestration properties of ApoE might present metals to Aβ

peptides, leading to amyloid deposition or it might account for the
antioxidant function of ApoE in AD development. Furthermore,
studies support the notion that ApoE2 has the highest affinity
for zinc and ApoE4 has the lowest. This is likely a result of
structural differences amongst the three isoforms. Cysteine is a
strong ligand for zinc, arginine is not (Karlin and Zhu, 1997), so
the affinity for zinc is predicted to be greatest for ApoE2 which
has cysteine residues at amino acid position 112 and 158 and
weakest for ApoE4 which lacks cysteine residues. This likelihood
is supported by the results showing that ApoE protects Aβ from
zinc-induced precipitation in the order of ApoE2 > ApoE3 >

ApoE4 (Moir et al., 1999). It is also speculated that ApoE4 has
a reduced copper binding capacity because of its lack of cysteine
residues (Hung et al., 2013). Although direct evidence for the
metal:ApoE interaction needs to be demonstrated, these data
clearly provide a potentially important avenue of investigation
for understanding the mechanism underlying the higher risk
of AD in APOE4 carriers. Metal ions, such as zinc, play an
essential role in stabilizing protein structures and contributing
to protein function (Wang et al., 2010). We further speculate
that metal binding might help to stabilize ApoE in an order
of E2 > E3 > E4 in the proteolytic process, which leads to
less ApoE4 and more ApoE4 fragments. This is consistent with
the previous findings that APOE4 carriers have less full-length
ApoE but more ApoE fragments in brain parenchyma and plasma
than APOE2 carriers (Riddell et al., 2008; Gupta et al., 2011);
with decreased ApoE levels in APOE4 carriers considered an
important factor for AD onset/development (Verghese et al.,
2011; Holtzman et al., 2012). Therefore, the stability of ApoE
may be affected by metals, and this may help account for the
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differential effect of the three ApoE alleles on the development
of AD.

There are also a number of studies that have investigated the
effect of metals on the expression levels of apolipoproteins. The
gene expression of apolipoprotein A and apolipoprotein B has
been found to be regulated by zinc and copper (Zhang et al.,
1995; Reaves et al., 2000; Cui et al., 2002) and more importantly,
another AD-related apolipoprotein, clusterin (apolipoprotein J;
Jones, 2010), is increased after zinc exposure (Trougakos et al.,
2006). It is possible that altered metal levels in AD patients might
affect the expression/transportation of apolipoproteins, including

ApoE. Alternatively, metals might have different effects on the
expression/transportation of the three ApoE isoforms, account-
ing for the different risk levels for AD among the three allele
carriers.

Finally, studies have shown that ApoE can regulate synaptic
zinc and glutamate levels in the hippocampus. The depletion of
ApoE leads to a reduced expression of ZnT3, in parallel with
a reduction in synaptic zinc content in APOE knockout mice,
suggesting the ApoE modulates zinc homeostasis in the brain
(Lee et al., 2010). The synaptic zinc is required for long-time
potentiation (LTP) and is critical for the proper functioning of

FIGURE 1 | The potential role of metals on ApoE in the pathogenesis of
AD. ApoE4 is a risk factor for the onset and development of AD, but the
mechanisms are not fully understood. We have provided evidence for several
points of interaction between metals and ApoE in AD, as shown here. (i) It
has been demonstrated that both metals (zinc, copper and iron) and ApoE
accumulate in the amyloid plaques, which could cause metal dyshomeostasis
(less functional metals available) and decreased ApoE levels in the brain. (ii)
Metal dyshomeostasis in AD patients might influence the expression of ApoE
in astrocytes which are the main source of brain ApoE, resulting in decreased
ApoE levels. ApoE levels can be affected by transcriptional level in nucleus
and/or within rough endoplasmic reticulum (ER) where ApoE is synthesized.
Reduced ApoE levels would contribute to AD pathogenesis as ApoE can
mediate Aβ clearance through LRP1/LDLR and helps to maintain the vesicular

zinc and glutamate levels at synapse. (iii) In response to aging, Oxidative
stress and amyloid formation, neurons turn on or increase their expression of
ApoE. However, neuron-ApoE is cleaved and generate C-terminal truncated
fragments. ApoE4 is much more susceptible than ApoE2 and ApoE3. In the
proteolysis of ApoE, metals bind to ApoE2 and stabilize its intact structure
whereas ApoE4, which has a decreased affinity for metals, tends to be
degraded to fragments. ApoE4 fragments can induce severe impairments to
mitochondrial function and to the cytoskeleton, leading to neurodegeneration.
Additionally, more ApoE2 is secreted in the brain compared with ApoE4,
which will then impact various brain functions such as maintaining the normal
levels of synaptic zinc and glutamate. In contrast, decreased levels of ApoE4
would reduce their levels and impair hippocampal LTP and then cause
cognitive damage.
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hippocampal circuitry in health and disease (Pan et al., 2011).
So decreased ApoE levels would lead to synaptic zinc deficiency
and cognitive impairments. Studies with human APOE Targeted
Replacement (TR) mice demonstrated that compared to APOE2
and APOE3 TR mice, APOE4 TR mice have decreased levels of
glutamate (Dumanis et al., 2013), which is an excitatory neuro-
transmitter co-released with zinc at the synapse during neuronal
activity, and which is important to maintain normal hippocampal
LTP and cognitive function (Paoletti et al., 2009). Thus, this may
contribute to the increased risk of neurodegeneration associated
with APOE4 carriers.

Taken together, these findings support an interaction between
metals and ApoE that may be important in the pathogenesis of AD
(Figure 1). In this review we summarized the evidence showing
that metals bind to ApoE in an isoform-specific way, and that
ApoE modulates metal homeostasis in the brain. There is also
the possibility that metals may regulate ApoE levels. However,
some key issues need to be directly addressed to provide definitive
evidence for a metal:ApoE interaction, including the following:
(1) Do metals (apart from zinc) have differential affinities for
the three ApoE isoforms?; (2) Is the stability or degradation of
ApoE isoforms affected by metal binding?; (3) Are changes in
neuron- and astrocyte-specific ApoE expression/transportation
caused by altered metal levels in AD? If so, what’s the underlying
mechanism? Thus, further study is required for an integrated
understanding of the interactions between metals and ApoE,
and how they act together in the development and progression
of AD.
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