
ORIGINAL RESEARCH ARTICLE
published: 26 June 2014

doi: 10.3389/fnagi.2014.00135

Slow gait speed – an indicator of lower cerebral
vasoreactivity in type 2 diabetes mellitus
Azizah J. Jor’dan1*, Brad Manor 1,2 and Vera Novak 3

1 Syncope and Falls in the Elderly Laboratory, Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center,
Harvard Medical School, Boston, MA, USA

2 Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
3 Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

Edited by:

Philip P. Foster, The University of Texas
Health Science Center at Houston,
USA

Reviewed by:

Richard Camicioli, McGill University,
Canada
Franziska Matthäus, University of
Heidelberg, Germany

*Correspondence:

Azizah J. Jor’dan, Syncope and Falls in
the Elderly Laboratory, Division of
Gerontology, Department of
Medicine, Beth Israel Deaconess
Medical Center, Harvard Medical
School, 185 Pilgrim Road, Palmer 117,
Boston, MA 02215, USA
e-mail: ajjordan@bidmc.harvard.edu

Objective: Gait speed is an important predictor of health that is negatively affected by
aging and type 2 diabetes. Diabetes has been linked to reduced vasoreactivity, i.e., the
capacity to regulate cerebral blood flow in response to CO2 challenges. This study aimed
to determine the relationship between cerebral vasoreactivity and gait speed in older adults
with and without diabetes.

Research design and methods: We studied 61 adults with diabetes (65 ± 8 years) and 67
without diabetes (67 ± 9 years) but with similar distribution of cardiovascular risk factors.
Preferred gait speed was calculated from a 75 m walk. Global and regional perfusion,
vasoreactivity and vasodilation reserve were measured using 3-D continuous arterial spin
labeling MRI at 3 Tesla during normo-, hyper- and hypocapnia and normalized for end-tidal
CO2.

Results: Diabetic participants had slower gait speed as compared to non-diabetic par-
ticipants (1.05 ± 0.15 m/s vs. 1.14 ± 0.14 m/s, p < 0.001). Lower global vasoreactivity
(r 2

adj = 0.13, p = 0.007), or lower global vasodilation reserve (r 2
adj = 0.33, p < 0.001),

was associated with slower walking in the diabetic group independently of age, BMI
and hematocrit concentration. For every 1 mL/100 g/min/mmHg less vasodilation reserve,
for example, gait speed was 0.05 m/s slower. Similar relationships between vasodilation
reserve and gait speed were also observed regionally within the cerebellum, frontal, tempo-
ral, parietal, and occipital lobes (r 2

adj = 0.27–0.33, p < 0.0001). In contrast, vasoreactivity
outcomes were not associated with walking speed in non-diabetic participants, despite
similar vasoreactivity ranges across groups.

Conclusion: In the diabetic group only, lower global vasoreactivity was associated with
slower walking speed. Slower walking in older diabetic adults may thus hallmark reduced
vasomotor reserve and thus the inability to increase perfusion in response to greater
metabolic demands during walking.
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INTRODUCTION
Gait speed is predictive of mobility, morbidity, and mortality in
older adults (Guralnik et al., 1995; Studenski et al., 2011). Vasore-
activity is an important cerebrovascular control mechanism used
to maintain brain perfusion during increased metabolic demands
(Bullock et al., 1985; Schroeder, 1988) such as walking, and can
be clinically quantified by the vasodilation responses to hypercap-
nia (Low et al., 1999; Lavi et al., 2006). In healthy older adults,
blood flow velocities in the middle cerebral artery territory, which
supplies numerous brain regions involved in locomotor control,
increased proportionally to walking speed (Novak et al., 2007). In
a population-based study comprising community-dwelling older
adults both with and without risk factors for falls (e.g., diabetes,
stroke, use of walking aids, etc.), slower walkers exhibited lower
vasoreactivity within the middle cerebral artery territory as mea-
sured by Transcranial Doppler ultrasound (Sorond et al., 2010).

Slowing of gait may thus reflect an early manifestation of underly-
ing abnormalities in vasoreactivity and perfusion adaptation to the
metabolic demands of walking. However, the relationship between
brain vascular health and walking has not yet been established.

Type 2 diabetes accelerates brain aging (Biessels et al., 2002;
Last et al., 2007) and has also been linked with microvascular dis-
ease and altered cerebral blood flow regulation (Allet et al., 2008;
Várkuti et al., 2011) and vasoreactivity (Novak et al., 2011). Dia-
betes is associated with reduced gait speed and related functional
decline (Volpato et al., 2010). In older adults, gait characteristics
have been linked to gray matter atrophy and white matter hyperin-
tensities (Rosano et al., 2007a,b; Callisaya et al., 2013). Moreover,
gray matter atrophy appears to have a stronger effect on locomotor
control in those with type 2 diabetes as compared those without,
suggesting that the control of walking may be more dependent
upon supraspinal control within this population (Manor et al.,
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2012). This study therefore aimed to determine the relationship
between vasoreactivity and gait speed in older adults with and
without type 2 diabetes. We hypothesized that lower global and
regional vasoreactivity would be associated with slower gait speed
in older adults, particularly in those with type 2 diabetes.

MATERIALS AND METHODS
PARTICIPANTS
This secondary analysis was completed on prospectively col-
lected data from community-dwelling older adults originally
recruited via local advertisement. We analyzed records from three
completed projects spanning March 2003–July 2012: Cerebral
vasoregulation in the elderly with stroke (March 2003–April 2005);
Cerebral perfusion and cognitive decline in type 2 diabetes (Jan-
uary 2006–December 2009); and Cerebromicrovascular disease in
elderly with diabetes (August 2009–July 2012). Grant numbers are
provided in the study funding section.

Collectively, these three studies recruited 447 participants who
signed informed consent (212 non-diabetics, 151 diabetics, 84
stroke). 213 participants (103 non-diabetics, 69 diabetics, 41
stroke) were excluded at that time for the following reasons:
(1) ineligible after the screening visit (n = 117); (2) withdrew
consent (n = 31); (3) lost to follow-up (n = 13); (4) study termi-
nated (n = 52) for reasons related to exclusion criteria or other
reasons such as lack of permission from primary care provider,
no transcranial Doppler insonation window, unstable/untreated
hypertension, high BMI, cerebral palsy, claustrophobia, atrial fib-
rillation, inappropriate behavior during screening, metal implant,
abdominal pain due to kidney stone, or entered a nursing home.

For the present analysis, we excluded an additional 43 stroke
records that met the exclusion criteria for the current analyses, 34
records that did not have complete datasets, and 29 records from
subjects who completed more than one of the above-mentioned
studies. In each of the latter cases, the most recent record was kept.
Thus, records from a total of 128 subjects were included in the
present analysis.

Participants were originally screened by medical history and
physical, neurological, and laboratory examinations. Research
protocols were conducted in accordance with the ethical standards
of the Beth Israel Deaconess Medical Center (BIDMC) Clinical
Research Center and all participants signed an informed consent,
as approved by the Institutional Review board at BIDMC.

The diabetic group included men and women aged 50–85 years
with a physician diagnosis and treatment of type 2 diabetes mel-
litus with oral agents and/or combinations with insulin for at
least one year. Diabetes treatments included insulin, oral glucose-
control agents (sulfonylurea, second generation agents), their
combinations and diet. Non-diabetic participants had no history
of metabolic disorder and were recruited to match the age and
gender characteristics of the diabetic group (Table 1).

Exclusion criteria for the current analysis were history of stroke,
myocardial infarction, clinically significant arrhythmia or other
cardiac disease, nephropathy, severe hypertension (i.e., systolic
BP > 200, diastolic BP > 110 mm Hg or the use of three or more
antihypertensive medications), seizure disorder, kidney or liver
transplant, renal disease, any other neurological or systemic disor-
der (aside from peripheral neuropathy), and current recreational

drug or alcohol abuse. MRI exclusion criteria were incompatible
metal implants, pacemakers, arterial stents, claustrophobia and
morbid obesity (i.e., BMI > 40).

PROTOCOL
Participants completed medical history, autonomic symptoms,
and physical activity questionnaires. A study physician completed
physical, neurological, and ophthalmologic examinations. None
of the study participants had active foot ulcers during the study.
A study nurse completed a fasting blood draw and recorded vital
signs, anthropometric and adiposity measures. Participants also
completed a comprehensive cognitive exam, autonomic testing,
perfusion MRI of the brain and a gait assessment. For this study,
we focused analyses on gait and MRI-based measures of cerebral
perfusion and vasoreactivity.

Walking test
A 12-min walk was completed along a 75 m course on an
80 m × 4 m indoor hallway. Participants were instructed to walk
at preferred speed (i.e., a pace they deemed as comfortable or nor-
mal), which has excellent test–retest reliability, even in those with
severe diabetic complications (Steffen et al., 2002; Manor et al.,
2008). The time taken to complete each 75 m length and total
distance were recorded. For the present analysis, we only exam-
ined data from the first hallway length (i.e., the first 75 m of the
trial) in order to minimize potential confounders of turning and
fatigue. Assistive devices were not used for ambulation. A rat-
ing of perceived exertion was asked of the participant before the
start of the walk and once the walk was completed. Rating of per-
ceived exertion ranged from 0 (no exertion) to 10 (very, very strong
exertion).

Magnetic resonance imaging (MRI)
Brain imaging was completed in a 3T GE HDx MRI scan-
ner (GE Medical Systems, Milwaukee, WI, USA) within the
Center for Advanced MR Imaging at the BIDMC. 3D spi-
ral continuous arterial spin labeling (CASL) MRI was used
to quantify cerebral perfusion (Alsop and Detre, 1998; Detre
et al., 1998; Floyd et al., 2003) during normocapnia, hypocap-
nia, and hypercapnia. Vasoreactivity was assessed as perfusion
responses to vasodilation during hypercapnia and vasocon-
striction to hypocapnia (Kety and Schmidt, 1948), as a non-
invasive reliable method of assessing the integrity of cerebral
vasculature (Fujishima et al., 1971; Yen et al., 2002). Specifi-
cally, two-minute scans were acquired during normal breath-
ing (i.e., baseline normocapnia; end tidal CO2 concentration
33–38 mmHg), hyperventilation (i.e., hypocapnia; participants
hyperventilated to reduce CO2 to a target of 25 mmHg), and
rebreathing (i.e., hypercapnia; participants breathed a mix-
ture of 5% CO2 and 95% air to increase CO2 to a target of
45 mmHg).

Respiratory rate, tidal volume and end-tidal CO2 values were
measured during each scan using an infrared end-tidal volume gas
monitor (Capnomac Ultima, General Electric, Fairfield, CT, USA)
attached to a face-mask. Blood pressure and heart rate were also
recorded at one-minute intervals using an upper-arm automatic
blood pressure cuff and finger photoplethysmogram.
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Table 1 | Demographic characteristics of the non-diabetic and diabetic groups.

Non-diabetic group Diabetic group p

N 67 61

Age (years) 67 ± 9 65 ± 8 NS

Sex (women, %) 59 49 NS

Body Mass Index (kg/m2) 25.6 ± 4 29.1 ± 5 < 0.0001

Mini-Mental State Exam (1–30) 28.2 ± 1.8 28.2 ± 1.8 NS

Diabetes duration (years) – 12.7 ± 9 –

Systolic blood pressure (mmHg) 130.6 ± 10.8 133.5 ± 8.5 NS

Diastolic blood pressure (mmHg) 68.5 ± 8.4 71 ± 7.6 NS

Hypertension (yes/no) 20/47 38/23 0.0003

Peripheral neuropathy (%) 18 51 0.001

Hyperlipidemia (yes/no) 7/60 34/27 < 0.0001

Gait speed (m/s) 1.14 ± 0.14 1.05 ± 0.15 0.0004

Rating of perceived exertion (1–10) 1.49 ± 1.43 2.17 ± 2.13 0.0386

Global gray matter (cm3) 639 ± 82 620 ± 62 NS

Global white matter (cm3) 436 ± 56 424 ± 52 NS

Global white matter hyperintensities (cm3) 11 ± 7 13 ± 7 NS

Global vasoreactivity (mL/100g/min/mmHg) 0.98 ± 0.09 1.10 ± 0.09 NS

Global vasodilation reserve (mL/100g/min/mmHg) 0.35 ± 1.7 0.44 ± 1.7 NS

Global vasoconstriction reserve (mL/100g/min/mmHg) 1.5 ± 3.2 1.4 ± 2.5 NS

Hemoglobin A1c (%) 5.7 ± 0.3 7.3 ± 1.3 < 0.0001

Hematocrit (%) 40.4 ± 3.7 39.3 ± 3.7 NS

Fasting glucose (mg/dL) 84.7 ± 12.3 121.7 ± 43.1 < 0.0001

Total cholesterol (mg/dl) 194 ± 36 166 ± 38.8 < 0.0001

Cholesterol-to-HDL ratio 3.4 ± 0.9 3.4 ± 1.2 NS

Triglycerides (mg/dl) 130.2 ± 70 146 ± 94.6 NS

Data = means ± SD unless otherwise indicated. p = between-group comparisons. NS = non-significant.

Perfusion images were acquired using a custom 3D CASL
sequence (TR/TE = 10.476/2.46 ms, Label duration = 1.45 s, post-
label delay = 1.525 s, with 64 × 64 matrix in the axial plane and
40 slices with thickness = 4.5 mm, seven spiral interleaves and the
bandwidth = 125 kHz). Images were averaged over each condition
to maximize signal-to-noise ratio.

A T1-weighted MP-RAGE structural imaging sequence was
completed and used for registration of CASL images. Imaging
parameters were: TE/TR = 3.3/8.1 ms, flip angle of 10◦, 1–3 mm
slice thickness, 24 cm × 19 cm field of view (FOV), 256 × 192
matrix size.

DATA ANALYSIS
Gait speed
Average gait speed (m/s) was computed from the first 75 m of walk-
ing by dividing distance by time. This valid and reliable outcome
predicts future health status and functional decline in numerous
older adult populations (Quach et al., 2011; Studenski et al., 2011).

Image analysis
A rigid-body model (Collignon et al., 1995; Wells et al., 1996) was
used for registration of the MP-RAGE image on CASL images

using the Statistical Parametric Mapping software package (SPM,
Wellcome Department of Imaging Neuroscience, University Col-
lege, London, UK). This “normalization” module was employed
to stereotactically normalize structural images to a standard space
defined by ideal template image(s). The registered perfusion image
was then overlaid on the segmented anatomical regions to obtain
regional perfusion measurements. Generated maps of gray mat-
ter and white matter were segmented based upon the LONI
Probabilistic Brain Atlas (Shattuck et al., 2008) and was used to
calculate global volumes. All image segmentations were completed
using Interactive Data Language (IDL, Research Systems, Boul-
der, CO, USA) and MATLAB (MathWorks, Natick, MA, USA)
software.

Perfusion analyses
Perfusion and vasoreactivity were calculated in five regions-
of-interest: the cerebellum, frontal, temporal, parietal, and
occipital lobe. Within each region, perfusion was normal-
ized for tissue volume and thus expressed in mL/100 g/min.
Four perfusion measures were calculated for each region: base-
line perfusion during normal breathing, cerebral vasoreactivity,
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vasodilation reserve, and vasoconstriction reserve. Each out-
come was computed globally and within each brain region-of-
interest.

Perfusion values were normalized to each subject’s average
CO2 level during this condition. Vasoreactivity measures were
calculated as previously described (Last et al., 2007; Hajjar et al.,
2010; Novak et al., 2011). Briefly, vasoreactivity was defined as
the slope of the best-fit line produced by linear regression of per-
fusion and CO2 values across the three conditions (i.e., normal
breathing, CO2 rebreathing, and hyperventilation). Vasodilation
reserve was defined as the increase in perfusion from baseline to the
rebreathing condition, normalized to the change in CO2 between
these two conditions. Vasoconstriction reserve was defined as
the decrease in perfusion from baseline to the hyperventilation
condition, normalized to the change in CO2 between these two
conditions.

STATISTICAL ANALYSIS
All analyses were performed using JMP software (SAS Institute,
Cary, NC, USA). Descriptive statistics were used to summa-
rize all variables. Outcomes have been expressed as either the
mean ± SD or categorical (yes/no) for each group. Student’s t,
Fisher’s Exact and Chi-squared tests were used to compare group
demographics.

We examined the effects of diabetes on both perfusion measures
and gait speed using ANCOVA. For perfusion measures, the model
effect was group and covariates included age, hematocrit (Hct)
concentration and hypertension. Hct was included because it is
inversely correlated with blood viscosity and is higher in men than
women (Wells and Merrill, 1962; Kameneva et al., 1999; Zeng et al.,
2000). Hypertension was included as a covariate because it affects
small blood vessels of the body and may therefore alter cerebral
blood flow regulation (Alexander, 1995; Hajjar et al., 2010). For
gait speed, the model effect was group and covariates included
age, gender and BMI.

Linear least-square regression analyses were used to test the
hypotheses that (1) those with lower vasoreactivity demon-
strate slower preferred gait speed, and (2) this association
between vasoreactivity and gait speed is stronger (as reflected
in the correlation coefficient, r2

adj) in older adults with dia-
betes as compared to those without diabetes. The dependent
variable was gait speed. Model effects included perfusion out-
come, group (non-diabetic, diabetic), and their interaction.
Separate models were performed for each global and regional
perfusion and vasoreactivity outcome. Age, BMI, and Hct con-
centration were included as covariates. Significance level was
set to p = 0.05 for each global perfusion and vasoreactivity
outcome. The Bonferroni-adjusted significance level for multi-
ple comparisons (p = 0.01) was used to determine significance
of models examining outcomes within each of the five brain
regions-of-interest.

RESULTS
PARTICIPANTS
Groups were matched by age and gender and had a similar
cardiovascular risk factors (e.g., blood pressure, triglycerides, car-
diovascular disease history), yet the diabetic group had higher BMI

(p < 0.0001). The prevalence of hypertension and peripheral neu-
ropathy was also higher in the diabetic group as compared to the
non-diabetic group (62% vs. 30%, p < 0.001 and 51% vs. 18%,
p < 0.001, respectively). Participants with diabetes had greater
HbA1c and serum glucose levels, but lower total cholesterol as
compared to the non-diabetic group. Blood Hct concentration
was similar between groups, but overall, higher in males as com-
pared to females (42% vs. 38%, p < 0.001). Groups did not differ
in global gray matter, white matter or white matter hyperintensity
volumes (see Table 1).

THE EFFECTS OF DIABETES ON PERFUSION AND CEREBRAL
VASOREACTIVITY
Baseline perfusion and cerebral vasoreactivity
The diabetic and non-diabetic groups had similar global and
regional perfusion at baseline after normalizing for baseline CO2

levels and adjusting for age, Hct concentration and the presence of
hypertension. Global and regional vasoreactivity, as well as vasodi-
lation and vasoconstriction reserve, were also similar between
groups (Table 1).

THE EFFECTS OF DIABETES ON GAIT SPEED
The diabetic group had slower preferred gait speed as compared
to the non-diabetic group (1.05 ± 0.15 m/s vs. 1.14 ± 0.14 m/s,
p < 0.001; Table 1). This group difference remained significant
(p = 0.007) after adjusting for age, gender, and BMI.

Across all participants, those with higher BMI had slower gait
speed (r2

adj = 0.04, p = 0.01). Specifically, within the diabetic
group, those with higher fasting glucose had slower gait speed
(r2

adj = 0.13, p = 0.003). Gait speed was not correlated with the
participant’s rating of perceived exertion, HbA1c levels or diabetes
diagnosis duration. The diabetic group had a higher change in
rating of perceived exertion (i.e., difference from the start of walk
from the end of the walk) compared to the non-diabetic group
(2.17 ± 2.13 vs. 1.49 ± 1.43, p = 0.039).

RELATIONSHIPS BETWEEN CEREBRAL VASOREACTIVITY AND GAIT
SPEED
Cerebral vasoreactivity
Least square models revealed that global vasoreactivity was related
to gait speed, but that this relationship was dependent upon group
(F1,96 = 5.48, p = 0.024). This group by vasoreactivity inter-
action was independent of age, BMI, and Hct levels. Post hoc
testing indicated that within the diabetic group, those with lower
global vasoreactivity walked more slowly (r2

adj = 0.13, p = 0.007;
Figures 1A,B). In the non-diabetic group, however, global vasore-
activity was not correlated with gait speed (Figure 1C). A trend
towards a similar interaction was also observed between frontal
lobe vasoreactivity and group (F1,95 = 4.32, p = 0.04); that is, in
the diabetic group only, those with lower frontal lobe vasoreactivity
tended to walk slower (r2

adj = 0.13, p = 0.007). Yet, this inter-
action was not significant based upon the Bonferroni-adjusted
significance level (p = 0.01).

Vasodilation reserve
Least square models revealed a significant relationship between
global vasodilation reserve and gait speed, but that this
relationship was also dependent upon group (F1,97 = 12,
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FIGURE 1 | (A) Reconstructed anatomical (i.e., MP-RAGE) and perfusion
maps for two participants with type 2 diabetes mellitus. The top row
represents a participant with diabetes that has high global vasoreactivity
and fast gait speed (see Diabetic Participant 1 in A). The bottom row
represents a participant with diabetes that has low global vasoreactivity
and slow gait speed (see Diabetic Participant 2 in A). (B) The relationship
between global vasoreactivity and gait speed in the diabetic group. (C) The
relationship between global vasoreactivity and gait speed in the
non-diabetic group. Vasoreactivity was calculated as the change in
perfusion from hypocapnia (hyperventilation) to hypercapnia (CO2
rebreathing) conditions, normalized to the change in CO2 values. Best fit –
red solid line; Confidence Intervals – red dotted lines; Gait speed
mean – blue dotted line; *unit – mL/100g/min/mmHg.

p < 0.001). This significant interaction between group
and vasodilation reserve was independent of age, BMI,
and Hct levels. Post-hoc testing revealed that within the
diabetic group only, those with lower global vasodilation
reserve walked more slowly (r2

adj = 0.33, p < 0.0001;
Figure 2A).

Similar interactions were present between group and vasodi-
lation reserve within each brain region-of-interest (cerebellum:
F1,94 = 13, p < 0.001; frontal lobe: F1,96 = 8.49, p = 0.005; tem-
poral lobe: F1,96 = 17.1, p < 0.001; parietal lobe: F1,95 = 8.72,
p = 0.004; occipital lobe: F1,95 = 8.99, p = 0.004). In each
case, within the diabetic group only, those with lower vasodi-
lation reserve walked slower (Least square: r2

adj = 0.27–0.33,
p ≤ 0.001; Table 2). In the non-diabetic group, neither global
nor regional vasodilation reserve was correlated with gait speed
(Figure 2B).

FIGURE 2 | Relationship between global vasodilation reserve and gait

speed. (A) Diabetic group (B) Non-diabetic group. Best fit – red solid line;
Confidence bounds – red dotted lines; Gait speed mean – blue dotted line.
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Table 2 | Vasodilation reserve and gait speed relationship in the diabetic group.

M r2
adj p

Gait speed (m/s) Vasodilation reserve (mL/100g/min/mmHg) 1.05 ± 0.02

Global 0.42 ± 0.2 0.33 <0.0001

Cerebellum 0.62 ± 0.2 0.33 <0.0001

Frontal 0.31 ± 0.3 0.27 <0.0001

Temporal 0.48 ± 0.2 0.33 <0.0001

Parietal 0.32 ± 0.3 0.30 <0.0001

Occipital 0.42 ± 0.3 0.29 <0.0001

Data are least square means (M) ± SE, r2adj and p value adjusted for age, BMI, and Hct.

Vasoconstriction reserve
Global and regional vasoconstriction was not related to gait speed
in either group.

Baseline perfusion
Global or regional baseline perfusion was not related to gait speed
within either group.

Additional covariates
Secondary analyses were performed to determine if within the
diabetic group, the observed relationships between cerebral blood
flow regulation outcomes and gait speed were influenced by the
participant’s height, weight, rating of perceived exertion, the
burden of white matter hyperintensities, or the prevalence of
hypertension or peripheral neuropathy. In each case, relationships
between cerebral blood flow regulation and gait speed remained
significant after adjusting for potential covariance associated with
these factors.

DISCUSSION
This study has shown that within the diabetic group, those with
lower global vasoreactivity walked more slowly. Our results fur-
ther indicate that within this group, vasodilation reserve, or the
capacity to increase cerebral perfusion specifically in response
to hypercapnia, was linked to gait speed, which is an over-
all measure of health in older adults. This relationship was
observed both globally and within each brain region-of-interest
(i.e., cerebellum, frontal lobe, temporal lobe, parietal lobe, and
occipital lobe). Specifically, for every 1 mL/100 g/min/mmHg
less global vasodilation reserve, gait speed was 0.05 m/s slower
in the diabetic group. These relationships were independent
of age, BMI, Hct, and additional covariates (i.e., height,
weight, rating of perceived exertion, white matter hyperin-
tensities, and the prevalence of hypertension or peripheral
neuropathy).

Both groups presented with average walking speeds that were
slower than published norms; i.e., 1.2–1.4 m/s for healthy adults
over 50 years of age (Bohannon, 1997). Diabetic participants
walked 0.09 ± 0.15 m/s more slowly than those without diabetes,
which reflects a clinically significant difference between groups
(Kwon et al., 2009). In the diabetic group, walking speed was cor-
related with fasting glucose levels, but not with diabetes duration

or HbA1c. Furthermore, as can be observed in Figure 2A, sev-
eral participants with diabetes that walked the slowest appeared
to have abnormal responses to the hypercapnia condition (i.e.,
no change or decreased perfusion). For these individuals, this
response may function as a compensatory response to ensure
adequate perfusion even during resting conditions (Novak et al.,
2006).

Previous research in older adults has linked slow gait speed
to impaired “neurovascular coupling,” or the change in cerebral
blood flow in response to the performance of a cognitive task
(Girouard and Iadecola, 2006; Iadecola and Nedergaard, 2007;
Sorond et al., 2011). For example, Sorond et al. (2011) investigated
the association between gait speed and neurovascular coupling as
quantified by the change in blood flow velocity within the mid-
dle cerebral artery (using Transcranial Doppler Ultrasonography)
in response to performance of the n-back cognitive task. Those
with impaired neurovascular coupling walked more slowly. They
also reported an interaction between neurovascular coupling and
white matter hyperintensity burden, such that the presence of
white matter hyperintensities was associated with reduced gait
speed, except in those individuals with relatively strong neurovas-
cular coupling. Previous work by Novak et al. (2007, 2011) further
demonstrated that lower vasoreactivity is linked to reduced gait
speed independently of white matter hyperintensities specifically
within older adults with type 2 diabetes. Therefore, neurovascular
coupling appears to one mechanism that links vascular changes
to neuronal activity, and is therefore essential for the preserva-
tion of functional outcomes. This notion is in line with the “brain
reserve” hypothesis (Bullock et al., 1985; Stern, 2002) and may
help explain the results of the current study. In other words,
while diabetes was associated with reduced gait speed overall,
those diabetic participants with greater vasoreactivity (or vasodi-
lation reserve) tended to walk at similar speeds as non-diabetic
controls.

Walking is a complex act that requires the coordination of
locomotor, cardiovascular, and autonomic systems. The lack of
relationship between cerebral vasoreactivity and gait speed in
those without diabetes is supported by the notion that gait is
largely autonomous and governed primarily by supraspinal ele-
ments of the motor control system under normal or healthy
conditions (Stoffregen et al., 2000; Manor et al., 2010; Kloter
et al., 2011). In those with diabetes, however, the capacity to
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modulate cerebral perfusion between conditions of hyper- and
hypocapnia (i.e., vasoreactivity, a widely used prognosis of
metabolic cerebral blood flow regulation) was associated with
gait speed. These results suggest that in diabetic patients, the
regulation of walking speed is dependent upon cerebral ele-
ments related to the locomotor control system. This notion is
supported by research demonstrating that walking requires adjust-
ments of the cardiovascular and cerebrovascular systems that
are coordinated to increase blood pressure and cerebral blood
flow velocities in order to meet metabolic demands (Novak et al.,
2007; Perrey, 2013). Therefore, those diabetic participants with
reduced vasoreactivity may have a diminished ability to increase
perfusion in response to the metabolic demand associated with
walking.

The relationship between vasoreactivity and gait speed that
was observed in the diabetic group, but not in the non-diabetic
group might also be explained by the complex effects of dia-
betes on cerebral vasculature and metabolism. Diabetes accelerates
aging in the brain (Launer, 2006) and alters vascular reactiv-
ity through the combined effects of central insulin resistance
on microvasculature, brain metabolism, glucose utilization, and
neuronal survival. Central insulin plays an important role as a
neuromodulator in key processes such as cognition (Shemesh
et al., 2012; Freiherr et al., 2013), energy homeostasis, and glu-
cose utilization during activity (e.g., walking). Cerebral insulin
may directly modulate neuron–astrocyte signaling through neu-
rovascular coupling and autonomic control of vascular tone and
thus enable better regulation of local and regional perfusion (Lok
et al., 2007) and neuronal activity in response to various stim-
uli (Amir and Shechter, 1987; Cranston et al., 1998; Kim et al.,
2006; Muniyappa et al., 2007) including walking. Type 2 dia-
betes decreases insulin sensitivity in the brain, insulin transport
through the blood–brain barrier, and insulin receptor’s sensi-
tivity, and it alters glucose metabolism and energy utilization
(Plum et al., 2005, 2006; Hallschmid et al., 2007; Freiherr et al.,
2013). Glucotoxicity and endothelial dysfunction associated with
chronic hyperglycemia further affect perfusion, vasoreactivity, and
metabolism (Makimattila and Yki-Jarvinen, 2002; Brownlee, 2005;
Kilpatrick et al., 2010) and contribute to neuronal loss (Manschot
et al., 2006, 2007; Last et al., 2007). Therefore, inadequate insulin
delivery to brain tissue combined with altered energy metabolism
may affect neuronal activity in multiple regions, but in partic-
ular the motor and cognitive networks that have high demands
on energy (Gunning-Dixon and Raz, 2000). Diabetes may there-
fore especially alter neuronal activity and energy utilization during
complex tasks like walking which require coordination of neu-
ronal activity in numerous brain regions. As such, even if the same
amount of blood flow is delivered to the neurons, energy utiliza-
tion may be reduced in diabetic as compared to non-diabetic brain,
leading to reduced neuronal activity and function, such as walking
speed.

While our study controlled for numerous variables associated
with gait speed, it did not control for other associated variables,
such as muscular strength or fear of falling (Bendall et al., 1989;
Chamberlin et al., 2005). The current study has the advantage of
investigating regional perfusion in response to CO2 challenges
using 3-D CASL MRI; however, the measures were recorded

while participants were lying supine and not during walking.
Although these regional perfusion measures may be lost, future
studies are warranted to utilize wireless cerebral blood flow mea-
surement tools (e.g., portable TCD or functional near-infrared
spectroscopy) to examine the effects of diabetes on cerebral per-
fusion when walking at different speeds. Moreover, this is a
cross-sectional study and thus, observed relationships between
low vasoreactivity and slow gait speed does not necessarily imply
a causal link between the two. As such, prospective studies
are needed to determine potential mechanisms underlying the
observed relationship between vasoreactivity and gait speed in
those with diabetes, the predictive value of vasoreactivity as a clin-
ical tool, and the potential for therapies targeting cerebral blood
flow regulation to improve functional outcome in this vulnerable
population.
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