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Alzheimer’s disease (AD) is the leading cause of dementia in the elderly, affecting over
27 million people worldwide. AD represents a complex neurological disorder which
is best understood as the consequence of a number of interconnected genetic and
lifestyle variables, which culminate in multiple changes to brain structure and function.
These can be observed on a gross anatomical level in brain atrophy, microscopically
in extracellular amyloid plaque and neurofibrillary tangle formation, and at a functional
level as alterations of metabolic activity. At a molecular level, metal dyshomeostasis is
frequently observed in AD due to anomalous binding of metals such as Iron (Fe), Copper
(Cu), and Zinc (Zn), or impaired regulation of redox-active metals which can induce the
formation of cytotoxic reactive oxygen species and neuronal damage. Metal chelators
have been administered therapeutically in transgenic mice models for AD and in clinical
human AD studies, with positive outcomes. As a result, neuroimaging of metals in a
variety of intact brain cells and tissues is emerging as an important tool for increasing
our understanding of the role of metal dysregulation in AD. Several imaging techniques
have been used to study the cerebral metallo-architecture in biological specimens to
obtain spatially resolved data on chemical elements present in a sample. Hyperspectral
techniques, such as particle-induced X-ray emission (PIXE), energy dispersive X-ray
spectroscopy (EDS), X-ray fluorescence microscopy (XFM), synchrotron X-ray fluorescence
(SXRF), secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled
mass spectrometry (LA-ICPMS) can reveal relative intensities and even semi-quantitative
concentrations of a large set of elements with differing spatial resolution and detection
sensitivities. Other mass spectrometric and spectroscopy imaging techniques such as
laser ablation electrospray ionization mass spectrometry (LA ESI-MS), MALDI imaging
mass spectrometry (MALDI-IMS), and Fourier transform infrared spectroscopy (FTIR) can
be used to correlate changes in elemental distribution with the underlying pathology in
AD brain specimens. Taken together, these techniques provide new techniques to probe
the pathobiology of AD and pave the way for identifying new therapeutic targets. The
current review aims to discuss the advantages and challenges of using these emerging
elemental and molecular imaging techniques, and highlight clinical achievements in AD
research using bioimaging techniques.
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INTRODUCTION
Alzheimer’s disease (AD) is the most common progressive
age-related neurodegenerative disorder, affecting about 2% of the
population in the developed world (Mattson, 2004). Clinically,
AD is characterized by devastating effects such as memory
loss and decline in other cognitive abilities resulting in loss
of independent functioning (Teri et al., 1989; Baddeley et al.,
1991; Terry et al., 1991). Pathologically, AD is characterized by

two main pathological hallmarks. These include extracellular
amyloid plaques composed of insoluble amyloid beta (Aβ)
protein produced by irregular cleavage of the amyloid precursor
protein (APP), and intra-neuronal neurofibrillary tangles (NFTs)
containing hyperphosphorylated tau protein (Khachaturian,
1985; Joachim et al., 1987; Selkoe et al., 1987; Mirra et al., 1991;
Brun and Englund, 2002). Although the exact function of Aβ

and APP remains unclear, recent studies suggest that APP may
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play a crucial role in modulating neuronal survival, neurite
outgrowth, synaptic plasticity and cell adhesion (Mattson, 1997).
NFTs are not restricted to AD, and are also present in other
neurodegenerative diseases such as fronto-temporal dementia
(Filley et al., 1994).

AD is a complex multifactorial disorder associated with irreg-
ular protein aggregation (Pimplikar et al., 2010). Interestingly,
accumulation of Aβ protein has been observed in cognitively
normal brain, and sometimes an absence of Aβ deposits has
been noted in some postmortem in patients who had been
clinically diagnosed with AD (Edison et al., 2007). Moreover,
various pathobiological mechanisms that are un-related to
amyloid accumulation have been associated with the devel-
opment and progression of AD. For instance, familial muta-
tions in APP and presenilin-1 have been shown to induce
autophagic dysfunction and impaired lysosomal proteolysis, cere-
bral hypoperfusion, and AD (Lee et al., 2010; Pimplikar et al.,
2010; Wong and Cuervo, 2010). Furthermore, excess or defi-
ciency in several nutritional, environmental or genetic factors
may also potentiate AD-like pathology, making the etiology
of this debilitating disorder difficult to elucidate (Russ et al.,
2012).

Metals have a diversity of roles in medical biology encompass-
ing both health and disease states (Olanow and Arendash, 1994;
Oteiza et al., 2004; Farina et al., 2013; Jellinger, 2013; Grubman
et al., 2014). Metals such as lead and mercury cause well estab-
lished neuropathologies. By contrast several types of metal ions,
such as potassium, sodium and calcium are vital for normal
nerve cell function. Several other metals (copper, zinc, iron, mag-
nesium, manganese, cobalt) have functional roles in enzymes
and proteins (Yokel, 2006; Molina-Holgado et al., 2007; Farina
et al., 2013). For example, brain iron is used by lipid and choles-
terol synthesizing enzymes (Bartzokis, 2004) and up to 70% of
brain iron is found in association with myelin (de los Monteros
et al., 2000; Bartzokis, 2004). However, the careful control of
metal ion compartmentalization and usage in the brain is crit-
ical, so that metal associated toxicity is avoided. The etiology
of several neuropathologies includes a dysfunctional association
between otherwise important trace elements and particular pro-
teins or peptides (Table 1). Consequently the pathophysiology of
metal-protein interactions in neurodegenerative diseases gener-
ally and in AD specifically is an area of growing interest. Divalent
metal cations accumulate in plaque deposits and the inflamma-
tory and oxidative processes which are well documented in AD
may be mediated through chemistries involving metals (Table 2).
However, the biochemistry of metal-protein interactions, sources
of accumulating metals and chelation mechanisms are yet to be
fully explored in AD.

The toxicity of Aβ is linked to changes in its structure from the
soluble α-helical form to the insoluble β-pleated sheet form with
consequent plaque formation, in which metals such as copper,
zinc and iron are sequestered (Lovell et al., 1998a). It is not clear
what molecular events trigger plaque formation, a process which
may begin much earlier in life than the clinical symptoms of AD
(Almkvist and Winblad, 1999). However, dissolution of plaque
with metal chelating agents such as clioquinol is a potential new
treatment (Cherny et al., 2000, 2001), highlighting the significant

role that metals play in the etiology of this disease (Richardson,
2004).

Metal ions, such as those sequestered in plaques, also par-
ticipate in oxidation and free radical production (Figure 1)
(Multhaup et al., 1996). These processes are well documented
in AD as are inflammatory processes, mediated by the presence
of activated microglia and astrocytes, which generate high lev-
els of Aβ (Busciglio et al., 1993). Metals such as copper, zinc,
iron and aluminum have been implicated as possible contribu-
tors to neurodegenerative processes. In a few cases, well estab-
lished links between metals and the function of specific proteins
have been demonstrated (Table 1). However, as a subset of all
the proteins studied in neuropathology, the metalloproteins are
under-represented (Dobson, 2001). Since metal containing active
sites of proteins are often involved in oxidation reactions and/or
free radical generation, alterations to their biochemistry may
be of particular interest in neurodegenerative conditions. Links
between protein dysfunction and the role of metals in AD are
emerging; (i) divalent metal cations are sequestered in Aβ plaques,
(ii) oxidative processes are well documented in AD and metal
cations, particularly iron, are a potential source of reactive species.
Though metals are likely to play a significant role in AD and
other inflammatory diseases, relatively little is known about their
sources, mechanisms of transport and chelation, biochemistry
and interactions with proteins.

Apart from redox active metals associated with the pathologi-
cal hallmarks of AD, the presence of other trace metals may also
be related to impaired cognitive function in AD. Several toxic
heavy metals, including arsenic, lead, mercury, and cadmium are
present in the environment due to their high industrial demand
(Park et al., 2014). These metals serve no biological function, and
their accumulation in the brain is attributed to contact between
humans and the environment (Chowdhury and Chandra, 1987).
Exposure to arsenic induces neuropathological and behavioral
abnormalities similar to clinical features reported in AD and other
related neurodegenerative disorders (Gong and O’Bryant, 2010).
Lead, which is a well-established neurotoxic pollutant, can induce
tau hyperphosphorylation, white matter degeneration, cellular
apoptosis, and changes in cellular morphology, and impaired
neuronal function (Yun and Hoyer, 2000; Rahman et al., 2012).
While cadmium can induce hepatic and renal toxicity, cadmium
and lead can also disrupt cholinergic transmission by reducing the
turnover of the essential neurotransmitter, acetylcholine (Webster
and Valois, 1981; Costa and Fox, 1983; Patra et al., 1999; Singh
et al., 2012b). Inorganic mercury can mimic all the pathologi-
cal hallmarks of AD in animal models (Saxe et al., 1999; Rusina
et al., 2006; Mutter et al., 2010). Under normal physiological con-
ditions, sequestration of arsenic, lead, cadmium, and mercury
by the lateral choroid plexus represents a protective mechanism
to prevent the influx of heavy metals from the blood and into
the brain. However, elevated levels of cadmium and mercury can
directly damage the choroid plexus, thus limiting the function of
this endogenous defense mechanism (Gerhardsson et al., 2011).
The toxicity of these metals in human neurodegenerative dis-
orders is dependent on the concentration of the environmental
contaminant, and chronic exposure to heavy metals can induce
toxicity at relatively low levels (Llobett et al., 2003).
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Table 1 | Metal Protein Interactions in Neurodegenerative Diseases.

Neurodegenerative disease Metal/s Metal binding protein with a link to

neurodegeneration

References

AD Zn2+, Cu2+, Fe2+, Al3+ Zn2+, Cu2+, Fe2+ are sequestered by Aβ

fibrils and oligomers leading to oxidative
stress.
Al3+ is potentially involved in the formation
of NFTs

Rodella et al., 2008; Thinnes, 2010;
Savelieff et al., 2013; Watt et al., 2013

Down’s syndrome Zn2+, Cu2+, Fe2+ Aβ fragment of the amyloid precursor
protein associates with a number of divalent
metals resulting in amyloid plaque formation

Kedziora et al., 1978; Prasher et al., 1998;
Savelieff et al., 2013

Amyotrophic lateral sclerosis
(Motor Neuron Disease)

Cu2+, Zn2+ Mutations in the metalloprotein superoxide
dismutase (SOD) are associated with MND

Ince et al., 1994; Divers et al., 2006

Spongiform encephalopathies Cu2+ Prion Protein (Sc) Basu et al., 2007; Singh et al., 2009,
2012a; Singh and Singh, 2010

Wilson’s disease Cu2+ Mutations in ATP7B, a putative Cu2+
transporting gene product, leads to
decrease in ceruloplasmin and consequent
Cu2+ accumulation

Peng et al., 2012; Walshe, 2012; Liggi
et al., 2013; Ni et al., 2013

Friedreich’s ataxia Fe2+ Deficiency of mitochondrial protein frataxin
is linked to altered Fe2+ homeostasis

Michael et al., 2006; Koeppen et al., 2007;
Popescu et al., 2007; Lim et al., 2008

NBIA1
(Hallerverden-Spatz
Syndrome)

Fe2+ Brain Fe2+ deposition possibly in
association with the protein synuclein

Valentin et al., 2006

Parkinson’s disease Fe2+Zn2+ Aggregates of α-synuclein form and release
H2O2 in the presence of Fe2+
Increased localized brain Ferritin levels

Dashdorj et al., 2012; Lucas, 2012; Binolfi
and Fernandez, 2013; Björkblom et al.,
2013

Aceruloplasminemia Cu2+, Fe2+ Mutations in the Cu2+ binding
metalloprotein ceruloplasmin gene result in
accumulation of Fe2+ in neurons

Dunaief et al., 2005; Kono et al., 2006;
Oide et al., 2006; Gonzalez-Cuyar et al.,
2008

Effects of Mn2+ in other
neurodegenerative diseases

Mn2+ Manganism can lead to Huntington’s
disease and Parkinsonian-like symptoms.
The precise mechanism how manganese
can damage the CNS is unclear

Bowman et al., 2011

The presence of sequestered biometals such as copper, zinc,
and iron in β-amyloid plaques of AD-affected brain tissue, and
the presence of toxicological metals as potential pathological
cofactors in AD, has led to a focus on metal imaging (Hutchinson
et al., 2005; Lelie et al., 2011; Pithadia and Lim, 2012; Stavitski
et al., 2013). We should note that not only metals, but a wide
range of elements may be imaged, down to ultratrace levels, and
at length scales from micron to tens of nanometers. In certain
cases isotopes, and even oxidation state and the coordination
environment around specific elements can be imaged, potentially
increasing the scope of trace element research in neurologi-
cal disease beyond what has been studied to date. Visualizing
changes in element concentration and matching them to anatom-
ical and pathological features enhances our traditional approach
to exploring the role of metal ions in neurological disease. Reviews

on metal imaging in neurobiology have been presented recently
(Bourassa and Miller, 2012) and a comprehensive range of instru-
mental techniques is available from McRae et al. (2009). However,
the field continues to expand rapidly as spatially resolved ele-
mental analysis is now a well-recognized method to investigate
chemical changes associated with pathology in biological tissues.
The experimental techniques used to obtain elemental informa-
tion from tissues are quite diverse, with a range of different
capabilities in spatial resolution, sensitivity and quantification.
This review provides an overview of common instrumental tech-
niques and examples of biological imaging with an emphasis on
Alzheimer’s studies. Elemental imaging is the main topic of this
review; although a selection of molecular imaging examples are
presented to demonstrate how these techniques can supplement
the elemental bioimaging. Selective colorimetric and fluorescent
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Table 2 | Processes in the Alzheimer’s Disease Brain linked with metals.

Process Chemistry Mechanism Products or outcome References

O
xi

da
tiv

e
st

re
ss

Fenton reaction H2O2 + Fe2+ → OH• + Fe3+ + OH− Oxidized amino acids
(e.g., o/m-tyrosine,
DOPA, methionine
sulfoxide), side-chain and
peptide bond cleavage,
carbonyls

Novellino et al., 1999; Tangkosakul
et al., 2009; Thomas et al., 2009

Haber-Weiss reaction O•−
2 + Fe3+ → Fe2+ + O2 → Fenton

reaction
Oxidized amino acids,
side-chain and peptide
bond cleavage, carbonyls

Winterbourn, 1987; Burkitt and
Gilbert, 1990; Egan et al., 1992;
Khan and Kasha, 1994

Metal catalyzed oxidation
(MCO)

2e− (metal e− donor) + O2 + 2H+ →
H2O2

And

H2O2 + protein(lys) ligated Fe2+ →
protein alkyl radical/s

Protein carbonyls Chan and Newby, 1980; Litwin,
1982; Ahmed et al., 1993; Wang
et al., 2004

Pr
ot

ei
n

ag
gr

eg
at

io
n

Protein unfolding and metal
binding

α-helical ➯ β-pleated sheet Aβ

β-pleated sheet Aβ + redox-active metals
➯ Aβ oligomers

Aβ oligomers + metals (Cu2+, Zn2+, Fe2+)
➯ plaque

Tau may also have adverse interactions
with metal ions in AD

Aβ oligomers

Aβ plaque

Giese et al., 2004; Fu et al., 2005;
Ricchelli et al., 2006; Long et al.,
2008; Salgado et al., 2008;
Torosantucci et al., 2013

N
eu

ro
na

l
to

xi
ci

ty
an

d/
or

C
el

l
de

at
h

Direct toxicity to brain cells

Dysregulation of Calcium ion
homeostasis

Altered permeability of cation channels
(ionotropic glutamate receptors)

Cell Death by apoptosis
or necrosis

Yoshida et al., 1987; Salanki et al.,
1996; Xing et al., 2009; Gu and
Lin, 2010

E
ffe

ct
s

on
m

ye
lin

at
io

n Iron is needed for myelination Features of AD include white matter
hyperintensity, axonal, neurite and
synaptic changes

Impaired
neurotransmission

Ortiz et al., 2004; Bartzokis et al.,
2007; Baeten et al., 2010; Romero
et al., 2010; Paling et al., 2012

staining is not covered here, but has been recently reviewed with
a focus on neurobiology (Que et al., 2008).

GENERAL OVERVIEW OF ELEMENTAL IMAGING
TECHNIQUES FOR BIOLOGICAL TISSUES
A significant challenge in this field is measuring a specific area
on a sample that is small enough to remain biologically relevant,
but large enough to enable the elements to be detected. When
visual imaging is required to match anatomical features with the
elemental distribution, the measurement needs to be carefully
planned to leave any destructive analysis as the last step. Most of
these techniques will damage the sample to an extent, for example
radiation damage in the case of synchrotron techniques, or abla-
tion of the sample surface into gas or ions in the case of laser and
ion beam sampling.

It can be instructive to present the most common methods for
elemental imaging by their sampling modes, as this will influence
the achievable spatial resolution and detection limit. The most
common techniques can be classified as (a) ablation of material
off the surface that is then directed into an elemental analyzer,

(b) ion generation within the sample, and (c) ion generation
and ablation from the sample surface. Most of these techniques
create spatially resolved elemental data by moving a flat speci-
men on a stage in precise intervals under the incident beam, and
recording the change in analyte flux (ion, electron, photon) that
is associated with a specific element.

ABLATION TECHNIQUES
A pulsed laser can be used to ablate material from a selected
area of the sample surface and the gaseous plume swept into
another instrument for elemental analysis. A laser ablation (LA)
sampling accessory can be integrated with a more traditional
atomic spectroscopy system for sensitive multi-elemental analy-
sis. These are usually inductively coupled plasma (ICP) systems
using mass spectrometry (LA-ICPMS), or optical emission spec-
troscopy (LA-ICPOES) for detection of the elements (Qin et al.,
2011). Mass spectrometry has the advantage of higher detec-
tion limits than optical emission spectroscopy, however there are
drawbacks with mass interferences, and the time taken to sweep
through the selected ion set, resulting in fewer available ions
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FIGURE 1 | Involvement of metal dyshomeostasis in AD pathology.

Aggregation of Aβ can bind redox active metals such as copper,
iron, and zinc in amyloid plaques. Sequestration of these biometals
on Aβ fibrils and oligomers can potentiate synaptic dysfunction.
Redox cycling of Cu2+/Cu+ and Fe3+/Fe2+ in the amyloid plaques

are capable of producing hydrogen peroxide (H2O2), which can enter
the cell. Through Fenton chemistry this can lead to the production
of hydroxyl radical (OH•) capable of inducing oxidative modifications
to both extracellular (i.e., proteins and lipids) as well as intracellular
(DNA) macromolecules.

in order to create an image within a practical length of time.
For example, imaging 6 metals across a 4 × 4 mm tissue sec-
tion with a step size of 30 micron might take 12–24 h (Ketola
and Mauriala, 2012). Nevertheless, LA-ICPMS is by far the more
common technique for elemental imaging of biometals and tox-
icological metals in tissues than LA-ICPOES. Another variation
on laser sampling is to detect the atomic excitation spectrum
directly from the ablated plume, a technique known as laser
induced breakdown spectroscopy (LIBS) (Pareja et al., 2013). LA
techniques provide excellent analytical sensitivity in atmospheric
or relatively low vacuum conditions. However, it is a destruc-
tive technique, and delivering sufficient energy to the sample to
allow detection tends to limit the spatial resolution. As a result,
LA techniques are well suited for analysis of whole tissue sec-
tions, but individual cells or pathological features such as amyloid
plaques ∼20 micron are represented in an image as a single mea-
sured point (Hare et al., 2010, 2011; Lear et al., 2012; Chou et al.,
2014). Metal imaging of an individual cell or plaque requires the
higher resolution available from some of the techniques described
below.

SAMPLE IONIZATION TECHNIQUES
Highly focused X-rays, electrons, or proton ion beams in a high-
vacuum chamber can be used to eject an electron from the core
shell of an atom in the sample (Fahrni, 2007). The energy of
the ejected electron can be measured using X-ray photoelectron
spectroscopy (XPS) to determine the element from which it orig-
inated. In certain cases, XPS is able to provide information on
oxidation states and the chemical environment around an ele-
ment, although spatial resolution is limited to 5–50 micron, and
detection limits are relatively poor (around 0.1 atomic%), virtu-
ally ruling out the technique for trace metal studies (Paunesku
et al., 2006). The majority of sample ionization techniques uti-
lize the secondary process where outer shell electrons fill the core
shell hole in the ion fluorescing X-rays with a characteristic wave-
length for each element in the sample. When atoms are ionized
using an electron beam, usually in an electron microscope, the
technique is known as energy dispersive X-ray spectroscopy (EDX
or EDS), sometimes referred to as electron photon micro analysis
(EPMA). If ionization is achieved using an X-ray beam, the tech-
nique is X-ray fluorescence microscopy (XFM) or synchrotron
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radiation micro-X-ray fluorescence (SR-μXRF) (Paunesku et al.,
2006; Ralle and Lutsenko, 2009). Ionization can also be per-
formed using a focused beam of protons in a technique called
particle induced X-ray emission (PIXE). All of these techniques
are performed in high-vacuum environments, so steps such as
cryopreservation or careful drying must be taken to protect
biological samples or specimen degassing that can reduce the per-
formance of the instrument (de Silva et al., 2006; George et al.,
2011; Ramsay et al., 2011; Weekley et al., 2013).

SECONDARY IONIZATION TECHNIQUES
Ablation-ionization directs a highly focused beam of ions, such as
oxygen or cesium in the case of secondary ionization mass spec-
trometry (SIMS), onto a tissue surface under vacuum (Altelaar
and Piersma, 2010). This is a destructive process that results
in ions being ejected from the surface. The ions are usually
detected with a magnetic sector (NanoSIMS) or time-of-flight
(TOF SIMS) mass spectrometer (Pacholski and Winograd, 1999;
Eller et al., 2013; Fernandez-Lima et al., 2013). A recent review is
available detailing the general capabilities of mass spectrometry-
ablation techniques such as SIMS (Amstalden van Hove et al.,
2010). The ability to focus ion beams down to very small spot sizes
enables excellent spatial resolution, with features of 50 nanome-
ters having been reported in the case of the NanoSIMS. However,
micron to submicron imaging is more common since, in order to
generate sufficient secondary ions for detection with a very small
spot size, the ablation depth needs to increase. Submicron imag-
ing at hundreds of nanometers is more common, and is sufficient
for cellular differentiation or observing small pathological fea-
tures (Quintana et al., 2007; Musat et al., 2012). It is notable that
the mass spectrometry techniques also enable more specialized
imaging of isotopes across a surface, as well as providing more
general elemental imaging.

OTHER TECHNIQUES
Electron energy loss spectroscopy (EELS) measures the energy
loss due to scattering processes when a low energy, monoen-
ergetic electron beam interacts with a sample. When used in
a transmission electron microscope, EELS can provide atomic-
scale resolution with excellent detection limits although biological
applications are limited (Quintana et al., 2000; Terada et al.,
2002). There are a variety of X-ray techniques that have evolved as
a result of the high-intensity X-ray sources available at numerous
synchrotron facilities around the world. X-ray Absorption Near
Edge Structure (XANES), also known as Near edge X-ray absorp-
tion fine structure (NEXAFS), is a technique where the element
composition change the absorption spectrum of the X-ray beam,
providing information on elemental oxidation state and coordi-
nation geometry around metal ions (Bourassa and Miller, 2012).
Although potentially powerful, imaging of biological materials
using this technique is still in development.

Magnetic resonance imaging (MRI) remains the most widely
used metal imaging technique in the clinical setting (Helpern
et al., 2004). Although recent advances in MRI have made it
possible to detect the levels of iron at physiological concentra-
tions, copper and manganese are still not widely detectable, since
they are present in low concentrations in the brain (Schenck

and Zimmerman, 2004). Current MRI techniques exhibit lower
spatial resolution compared to elemental imaging techniques
mentioned above, but demonstrate the advantage of imaging
live patients rather than cryo-cut postmortem tissue sections
(Schenck and Zimmerman, 2004).

Positron emission tomography (PET) is another technique
which facilitates in vivo medical imaging, usually of small
molecules including glucose and more recently Aβ plaques using
Pittsburg Compound B (PiB PET). More recently a novel metal
imaging PET approach has been developed, using radioactive
coordination bis(thiosemicarbazonato)copper complex of 64Cu.
This targets copper homeostasis and has been designed to bind
selectively to amyloid plaques (Hickey et al., 2013). Copper radi-
olabels are essential for increasing our understanding on of the
mechanisms of copper dyshomeostasis in AD.

COMBINED BIOIMAGING TECHNIQUES IN TISSUE
SECTIONS
Complementary information regarding the role, uptake, trans-
port, and storage of redox active metals associated with irregular
protein abnormalities can be obtained using a combination of
elemental imaging techniques, such as LA-ICPMS, and other
biomolecular mass spectrometry imaging techniques such as
laser ablation coupled with electrospray ionization mass spec-
trometry (LA-ESI-MS) or MALDI-IMS. While LA-ICPMS can
be employed to identify the specific protein-bound metals, ESI-
MS/MALDI enables the identification of the structure, dynamics
and biological function of metal-protein complexes (Becker et al.,
2008; Dobrowolska et al., 2008; Jakubowski et al., 2008; Wu et al.,
2009).

ESI-MS is an ionization technique that is employed to detect
polar compounds within a biological specimen (Fenn et al.,
1989). This method is used to identify molecules that do not con-
tain an intrinsic ionizable site through formation of adduct ions.
Molecules which exhibit sufficient dipole potential to interact
with a small anion or cation can be readily ionized and detected
using ESI-MS. It is useful for the detection of triacylglycerols
(TAGs) which contain long chain fatty acids. These molecules
can be ionized and quantified with sensitivity in the low pico-
mole range due to the formation of lithiated adducts which are
formed when chelated lithium ions non-covalently bond with
the carbonyl structures that are present in the infused solution
(Han et al., 2000; Han and Gross, 2001). The benefits of using
ESI-MS include more accurate quantification of lipid classes and
subclasses, a greater signal-to-noise ratio in comparison to other
mass spectrometry techniques, and an almost linear relationship
between the relative intensities of molecular ions and the mass of
individual lipids (Han and Gross, 1994).

MALDI-IMS allows the analysis of a diversity of biopolymers
with a variety of mass ranges. This approach has a lower spa-
tial resolution but much higher mass range than TOF-SIMS,
which is limited to identification of analytes with a molecu-
lar mass of less than 1 kDa (McArthur et al., 2004). A vari-
ety of analytes can be examined using MALDI-IMS, including
metabolites, lipids, proteins, peptides, carbohydrates, and drugs.
However, this method is limited by signal suppression effects.
For instance, some analytes are more efficiently ionized during
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MALDI-IMS. These artifacts are not only due to their unique
chemical structure, but also to relative amounts present in the
biological tissue (Knochenmuss et al., 1998). Alternatively, pro-
teins can be extracted from the tissue section using hydropho-
bic materials, while preserving their specific location (Chaurand
et al., 2004). Adaptation of MALDI-TOF to 2D and even 3D
tissue imaging applications has necessitated use of rapid fire
long lived lasers, such as the 2 kHz Nd-YAG, to accommodate
the need to acquire 1000s of spectra across a tissue section.
High end MALDI imaging mass spectrometers currently com-
bine high mass resolution of 40,000 (1 ppm mass accuracy), wider
mass range (50–300,000 Da), spatial resolution down to 10 μm,
and TOFTOF capabilities for peptide sequencing. This combi-
nation of features allows detailed characterization of a diversity
of tissue constituents, top-down sequencing of proteins as well
as the more commonly used bottom-up techniques involving
enzymatic/tryptic digestion and peptide sequencing, analysis of
posttranslational modifications such as glycosylation. A grow-
ing body of literature recognizes the power of this approach
(Cornett et al., 2007; Schuerenberg et al., 2007). A combina-
tion of mass spectrometry imaging techniques using LA-ICPMS
and detailed proteomics analysis can be performed using thin
cryo-cut sections of brain. MALDI-IMS is a relatively non-
destructive technique so the tissue remaining after initial pro-
teomic, metabolomic or lipidomic analysis can then be analyzed
for elemental composition using LA-ICPMS.

Fourier transform infrared spectroscopy (FTIR) is another
molecular imaging tool that can be combined with LA-ICPMS.
These tools have been used to image the secondary structure of
metal-protein complexes (Haris and Severcan, 1999). FTIR is a
non-destructive technique, allowing further analyses to provide
complementary information and to show spatial relationships
between diverse analytes and/or functional groups, which may
provide insight into biological/functional relatedness. The pro-
tein’s FTIR consists of two main features: the Amide I band
(∼1650 cm−1) which arises from the C=O stretching vibra-
tion, and the Amide II band (∼1540 cm−1) which is due to
the N-H bending and C-N stretching vibrations of the peptide
backbone. The vibrational frequency of an aggregated protein is
about 1620–1625 cm−1, owing to its hydrophobic environment
(Goormaghtigh et al., 2006; Miller et al., 2006). Apart from exam-
ining the protein structure in vitro, FTIR can also be used to
directly investigate irregular protein misfolding and aggregation
both in vitro and in vivo. Protein aggregates are generally small,
ranging from nanometers, to 20–30 μm for larger aggregates. As
well, the spectral differences related to changes to protein confor-
mation are subtle, requiring spectra with high signal to noise ratio
(Choo et al., 1996; Miller et al., 2006). These difficulties have been
resolved using the greater brightness of a synchrotron infrared
source to directly assess protein aggregation and misfolding in AD
tissue.

RECENT APPLICATIONS OF BIOIMAGING IN ALZHEIMER’S
RESEARCH
Metals have been shown to be associated with the pathogenesis
of AD for over 50 years since the discovery of significant iron
deposition in postmortem AD brain tissue using Prussian blue

stain (Goodman, 1953). Since then, other redox active metals have
been implicated in AD, including copper, zinc, and aluminum.
Several metal bioimaging strategies have been utilized to examine
the distribution of metals in human clinical AD brain tissue and
AD mouse models to better understand the relationship between
metal dyshomeostasis and the etiology and progression of AD.

METALS AND Aβ PLAQUES
It has been well established that Aβ plaques are rich in metal ions
(Opazo et al., 2002). These relatively high concentrations of met-
als within the plaques compared to adjacent tissue have been reaf-
firmed using a variety of bioimaging techniques. PIXE and XFM
has been used to show that both the outer and central regions of
the Aβ plaques contain elevated levels of iron, copper and zinc
in human AD brain specimens (Lovell et al., 1998a,b). Although
copper and zinc binding sites are present on the Aβ peptide,
iron does not appear to directly interact with Aβ (Atwood et al.,
2000; Bush, 2003; Roberts et al., 2012). Recently, synchrotron
X-ray absorption, diffraction, and tomography techniques have
been used to identify the presence of biogenic magnetite and/or
maghematite in the plaque cores, implicating the likely role of a
novel biomineralization process to account for the accumulation
of iron in Aβ plaques (Collingwood et al., 2005, 2008).

Transgenic mouse models have provided additional advan-
tages over postmortem human clinical AD specimens in the con-
trol of both genetics and onset of AD-like symptoms. Using XFM,
no abnormal increase in copper or iron were reported in with dis-
ease progression in the PSAPP double transgenic mouse which
expresses a chimeric mouse/human amyloid precursor protein
(Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-
dE9) both directed to CNS neurons. This mouse model develops
amyloid pathology as well as learning and memory deficits by
6 months of age, independent of signs of neurodegeneration
(Leskovjan et al., 2011). Moreover, only a slight upregulation in
zinc concentrations was reported at the late stages of the dis-
ease. By contrast, the CRND mouse which expresses two familial
mutations in the human Swedish (K595N/M596L) and Indiana
(V717F) APP gene exhibited a 2–3-fold increase in the concen-
tration of iron, copper, and zinc in the plaques after 6 months
of age using PIXE. This unique mouse model develops diffuse
and compact plaques by 10 weeks of age and Aβ deposition
continues with advanced age (Rajendran et al., 2009). Similar
findings have been reported using LA-ICPMS analysis of plaques
present in the brains of TASTPM mice, which carry both the APP
K670N/M671L and PS1M146V mutation and develop plaques by
4 months of age (Hutchinson et al., 2005).

METAL DYSHOMEOSTASIS IN AGING AND AD
Since ageing is a major risk factor for the development of AD,
examining the age-related changes in metal distribution is critical
for understanding the role that metals play during pathologi-
cal and physiological conditions. Using LA-ICPMS, one study
showed that iron levels were increased in the “physiologically”
aged brain of a non-transgenic mice (14 months) compared to a
young (2 month) mice (Becker et al., 2010). These increases were
observed in the substantia nigra, thalamus, and the CA1 region
of the hippocampus which are associated with development of
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neuropathologies. Remarkably, zinc levels remained unchanged
and zinc-enrichment in the CA3 of the hippocampus was already
detected in young mice. This may be associated with the impor-
tant role of zinc as an essential neuro-co-transmitter that is
released from synaptic vesicles (Becker et al., 2010).

Evidence of metal dyshomeostasis has also been reported in
AD. Studies using PIXE have shown increased levels of zinc in
the amygdala, hippocampus and neuropils of human AD brains
(Danscher et al., 1997; Lovell et al., 1998a,b). This is likely to be
associated with the increased distribution of zinc enriched neu-
rons (ZEN) which are located in these regions. ZENs maintain
intracellular pools of zinc which is necessary as a neuromod-
ulator and neuro-co-transmitter. One hypothesis suggests that
zinc released from these neurons can interact with Aβ and pro-
mote aggregation (Bush et al., 1994; Frederickson et al., 2005).
Zinc deficiency can also lead to excitotoxicity and neurodegener-
ation (Sensi et al., 2009). Moreover, zinc reuptake is an energy
dependent process, and mitochondrial dysfunction can lead to
increased free zinc which can interact with Aβ and lead to further
neurotoxicity (Mony et al., 2009).

Altered iron levels have also been suggested to play a promi-
nent role in ageing and AD. Iron levels have been shown to
increase in the substantia nigra, motor rotex, hippocampus, basal
ganglia, putamen, cerebellum and cortex of human normal sub-
jects during ageing (Connor et al., 1992; Deibel et al., 1996;
Bartzokis et al., 2000). A similar increase was also reported
iron, copper and zinc content was also reported in the PSAPP
mouse model in the cortex and hippocampus, and coincided with
increased plaque formation using XFM (Leskovjan et al., 2011).
Ferritin, the main protein responsible for iron storage, has been
shown to increase in the coronal region of human AD plaques
using TEM and NanoSIMS (Quintana et al., 2006). It is likely that
ferritin, which stores inactive iron (III) under normal physiolog-
ical conditions may bind redox active iron (II) in the AD brain
leading to cell death via oxidative stress.

METALS AND NFTs
Metal dyshomeostasis may also play a role in the formation of
NFTs. A 10-fold increase in iron and a 6-fold increase in cop-
per, with a smaller increase in zinc, have been previously reported
in NFTs (Morawski et al., 2005). Furthermore, hyperphospho-
rylated tau, which forms paired helical filaments (PHFs) that
lead to NFTs, contains several binding domains which demon-
strate some affinity to copper, and the presence of copper can
enhance the formation of NFTs (Ma et al., 2006). Iron (III) can
also induce NFT formation similar to copper (Yamamoto et al.,
2003). Apart from copper, iron and zinc, aluminum has also been
associated with the development of AD since it was first identified
in neurons with NFTs (Perl and Brody, 1980). However, increased
aluminum is also present in non-diseased brain tissue fixed with
osmium tetroxide, which contains aluminum (Tokutake et al.,
1995; Makjanic et al., 1997). Further work is warranted to validate
the involvement of aluminum in AD.

LIPIDOMIC STUDIES USING ESI/MS
ESI-MS techniques have been used to investigate the lipidome
in patients with dementia. These studies have demonstrated

specific changes to the lipidome in the postmortem gray and
white matter in the frontal, temporal and parietal cortex at the
earliest clinically-recognizable stage of AD compared to cogni-
tively normal control (Han et al., 2001, 2002). Specifically, plas-
menylethanolamine (PlsEtn) mass was reduced by up to 40 mol%
of total plasmalogens, in white matter in early AD subjects com-
pared to age-matched controls. PlsEtn mass levels were depleted
by 10% in the gray matter in patients with severe AD. Sulfatides,
which form specialized components in the myelin sheath which
encapsulate neurons, were depleted by 93 and 58 mol% in gray
and white matter, respectively, in AD patients in all brain regions
that were investigated (Han et al., 2001, 2002). Additionally, a sig-
nificant increase (>3 fold) in ceramide content was observed in
the white matter of all investigated brain regions during early AD.
No significant changes have been observed in the levels of other
lipid classes, including phosphatidylglycerols, phosphatidylinos-
itols, phosphatidylserines, and phosphatidic acids in early stages
of AD although significant reduction (∼15 mol%) of these lipids
occurred in severe AD cases (Han et al., 2001, 2002). Taken
together, these results suggest that changes to the lipidome may
play a vital role in the pathogenesis of AD and may be asso-
ciated with early molecular and cellular events which occur in
the development of AD, such as neurodegeneration and synaptic
dysfunction.

MALDI-MS IMAGING IN AD
Recently, MALDI-MS has been used to examine the spatial distri-
bution and molecular contents of Aβ plaques. One study showed
that Aβ-(1–40) and Aβ-(1–42) are the most abundant amy-
loid peptides in APP23 transgenic mice encoding the hAPP751
with Swedish mutation (Rohner et al., 2005). In support of this
work, other studies have shown that vascular amyloid is primar-
ily composed of Aβ-(1–40) and Aβ-(1–42) (Miller et al., 1993).
Additionally, Aβ-(1–40) is the major peptide that is found in
aqueous cerebral cortical extracts from AD brains. By contrast,
the insoluble amyloid Aβ-(1–42) peptide is primarily localized in
the senile plaque cores. Therefore, MALDI-MS can not only be
used to identify known targets, but also facilitates mapping of the
different peptide targets with high precision and accuracy, that
is otherwise not possible when examining whole-brain extracts
(Rohner et al., 2005).

FTIR SPECTROSCOPIC IMAGING IN AD
In AD, Aβ plaques are formed by the transformation of Aβ from
a soluble form through to an oligomeric intermediate, culmi-
nating in the formation of an aggregated, fibrillary structure (Ii,
1995). The molecular mechanism which mediates the structural
changes and cytotoxicity of Aβ during the aggregative process
has been previously investigated in several in vitro studies using
dichroism (CD) and nuclear magnetic resonance (NMR) to show
the structural conversion of Aβ from a soluble α-helical protein
to a fibrillar β-sheet protein (Barrow et al., 1992; Zhang and
Rich, 1997). FTIR spectroscopy has been essential to examine the
specific alignment of β-sheet strands within Aβ fibrils. A study
by Petty and Decatur (2005) showed that β-sheets are antipar-
allel and in alignment across all strands (Petty and Decatur,
2005). Recently, it has been suggested that oligomeric Aβ is more
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neurotoxic than Aβ fibrils and can form pore-like structures in
lipid membranes that can disrupt ion homeostasis, culminating
in cell death. FTIR spectroscopy has shown that Aβ oligomers
exhibit an antiparallel β-sheet structure, which is closely related to
that of bacterial outer membrane porins (Komatsu et al., 2007).

Apart from the Aβ protein, FTIR spectroscopy has also been
used to gain a greater understanding of the structural confor-
mation of the tau protein, which is hyperphosphorylated in AD,
leading to the formation of NFTs. In vitro FTIR analysis pro-
vided confirmatory evidence that soluble tau protein is natively
unfolded and composed of random coil structures, whilst PHFs
which are present in the AD brain have a greater level of β-
structure (Berriman et al., 2003). These results provide evidence
to support the hypothesis that the repeat domain of tau (which
is located within the core of PHFs) displays an enhanced level
of β-structure during aggregation, while the N- and C-terminal
domains which venture away from the central PHF core are
largely random coils (Barghorn et al., 2004).

CONCLUSION
Metal imaging techniques are currently primed to facilitate an
understanding of the pathobiology of AD, as well as identify-
ing novel diagnostics and therapeutics. Bioimaging techniques
are important for elucidating the role of metals in neurodegen-
erative diseases generally and AD in particular. Advancements
in methodology and improved spatial resolution and detection
sensitivities are essential for greater insight into the localiza-
tion and distribution of metal ions at the cellular and tissue
level, and their role in disease development and progression.
A combination of other imaging techniques such as ESI- and
MALDI-IMS, FTIR spectroscopy, and clinical techniques allow-
ing in vivo analysis, such as MRI and PET, are invaluable in
obtaining further understanding on the molecular mechanisms
involved in the pathogenesis of AD and to confirm the diagno-
sis of AD through the identification of unique biomarkers present
in the metabolome, lipidome and/or proteome. Additionally, the
techniques described in this review have the potential to follow
disease progression in AD patients from early to severe stages and
assess the effect of novel therapeutic interventions which may
retard, stop or reverse progressive neurodegeneration, the ulti-
mate goal being a cure for this debilitating neurodegenerative
disorder.
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