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In this work, we propose a novel subclass-based multi-task learning method for feature
selection in computer-aided Alzheimer’s Disease (AD) or Mild Cognitive Impairment (MCI)
diagnosis. Unlike the previous methods that often assumed a unimodal data distribution,
we take into account the underlying multipeak1 distribution of classes. The rationale for
our approach is that it is highly likely for neuroimaging data to have multiple peaks or
modes in distribution, e.g., mixture of Gaussians, due to the inter-subject variability. In this
regard, we use a clustering method to discover the multipeak distributional characteristics
and define subclasses based on the clustering results, in which each cluster covers
a peak in the underlying multipeak distribution. Specifically, after performing clustering
for each class, we encode the respective subclasses, i.e., clusters, with their unique
codes. In encoding, we impose the subclasses of the same original class close to each
other and those of different original classes distinct from each other. By setting the
codes as new label vectors of our training samples, we formulate a multi-task learning
problem in a �2,1-penalized regression framework, through which we finally select features
for classification. In our experimental results on the ADNI dataset, we validated the
effectiveness of the proposed method by improving the classification accuracies by 1%
(AD vs. Normal Control: NC), 3.25% (MCI vs. NC), 5.34% (AD vs. MCI), and 7.4%
(MCI Converter: MCI-C vs. MCI Non-Converter: MCI-NC) compared to the competing
single-task learning method. It is remarkable for the performance improvement in MCI-C
vs. MCI-NC classification, which is the most important for early diagnosis and treatment.
It is also noteworthy that with the strategy of modality-adaptive weights by means of a
multi-kernel support vector machine, we maximally achieved the classification accuracies
of 96.18% (AD vs. NC), 81.45% (MCI vs. NC), 73.21% (AD vs. MCI), and 74.04% (MCI-C
vs. MCI-NC), respectively.
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1. INTRODUCTION
As the population is aging, the brain disorders under the
broad category of dementia such as Alzheimer’s Disease (AD),
Parkinson’s disease, etc. have been becoming great concerns
around the world. In particular, AD, characterized by progres-
sive impairment of cognitive and memory functions, is the most
prevalent cause of dementia in elderly people. According to a
recent report by Alzheimer’s Association, the number of AD
patients is significantly increasing every year, and 10–20 per-
cent of people aged 65 or older have Mild Cognitive Impairment
(MCI), a prodromal stage of AD (Alzheimer’s Association, 2012).
While there is no cure for AD to halt or reverse its progression,
it has been of great importance for early diagnosis and prognosis

1Even though the term of “multimodal distribution” is generally used in
the literature, in order to avoid the confusion with the “multimodal” neu-
roimaging, we use the term of “multipeak distribution” throughout the
paper.

of AD/MCI in the clinic, due to the symptomatic treatments
available for a limited period in the spectrum of AD.

To this end, there have been a lot of studies to discover
biomarkers and to develop a computer-aided diagnosis system
with the help of neuroimaging such as Magnetic Resonance
Imaging (MRI) (Cuingnet et al., 2011; Davatzikos et al., 2011; Wee
et al., 2011; Zhou et al., 2011; Li et al., 2012; Zhang et al., 2012),
Positron Emission Tomography (PET) (Nordberg et al., 2010),
functional MRI (fMRI) (Greicius et al., 2004; Suk et al., 2013b).
It has been also shown that fusing the complementary informa-
tion from multiple modalities, e.g., MRI+PET, helps enhance
the diagnostic accuracy (Fan et al., 2007; Perrin et al., 2009;
Kohannim et al., 2010; Walhovd et al., 2010; Cui et al., 2011;
Hinrichs et al., 2011; Zhang et al., 2011; Wee et al., 2012; Westman
et al., 2012; Yuan et al., 2012; Zhang and Shen, 2012; Suk and
Shen, 2013).

However, from a computational modeling perspective, while
the feature dimension of those neuroimaging is high in nature,
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we have a very limited number of observations/samples available.
This so-called “small-n-large-p” problem (Fort and Lambert-
Lacroix, 2005) has been of a great challenge in the field to build
a robust model that can correctly identify a clinical label of a
subject, e.g., AD, MCI, Normal Control (NC). For this reason,
reducing the feature dimensionality, by which we can mitigate the
overfitting problem and improve a model’s generalizability, has
been considered as a prevalent step in building a computer-aided
AD diagnosis system as well as neuroimaging analysis (Mwangi
et al., 2013).

In general, we can broadly categorize the approaches in the
literature that aimed at lowering the feature dimensionality into
feature-dimension reduction and feature selection. The meth-
ods of feature-dimension reduction find a mapping function
that transforms the original feature space into a new low-
dimensional space. Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) (Martinez and Kak, 2001)
are the representative methods of this category and to date, thanks
to their computational efficiency, they have been the most widely
used in various fields. The PCA finds a mapping function through
which it still includes a large portion of the information in sam-
ples. Meanwhile, the LDA finds a transformation function that
maps the original high-dimensional samples into the dimension-
reduced ones by jointly maximizing the variance between classes
and minimizing the variance within classes using a Fisher’s crite-
rion. However, since the learned projective functions in PCA or
LDA are linear combinations of all the original features, it is often
difficult to interpret the transformed features (Qiao et al., 2010).
Clinically, it is unfavorable for the interpretational difficulty in
neuroimaging analysis or classification.

Meanwhile, the feature selection approach that includes filter,
wrapper, and embedded methods selects target-related features
in the original feature space based on some criteria (Guyon and
Elisseeff, 2003). Among these, the embedded methods, e.g., a
�1-penalized linear regression model (Tibshirani, 1994) and its
variants (Roth, 2004), have recently attracted researchers due to
their theoretical strengths and effectiveness in neuroimage anal-
ysis (Varoquaux et al., 2010; Fazli et al., 2011; de Brecht and
Yamagishi, 2012; Suk et al., 2013a). In the �1-penalized regression
model, with a sparsity constraint using �1-norm, many elements
in the weighting coefficient vector become zero, thus the cor-
responding features can be removed. From a machine learning
point of view, since the �1-penalized linear regression model finds
one weight coefficient vector that best regresses a target response
vector, it is considered as a single-task learning. Hereafter, we use
the terms of a �1-penalized regression model and a single-task
learning interchangeably.

The main limitation of the previous methods of PCA, LDA,
and �1-penalized regression model is that they consider a sin-
gle mapping or a single weight coefficient vector in reducing
the dimensionality. Here, if the underlying data distribution is
not unimodal, e.g., mixture of Gaussians, then these methods
would fail to find the proper mapping or weighting functions,
and thus result in performance degradation. In this regard, Zhu
and Martinez proposed a Subclass Discriminant Analysis (SDA)
method (Zhu and Martinez, 2006) that first clustered samples
of each class and then reformulated the conventional LDA by
regarding clusters as subclasses. Recently, Liao and Shen applied

the SDA method to segment prostate MR images and showed the
effectiveness of the subclasses-based approach (Liao et al., 2013).

With respect to neuroimaging data, it is highly likely for the
underlying data distribution to have multiple peaks due to the
inter-subject variability (Fotenos et al., 2005; Noppeney et al.,
2006; DiFrancesco et al., 2008). Here, it should be noted that
although SDA was successfully applied to computer vision (Zhu
and Martinez, 2006; Kim, 2010; Gkalelis et al., 2013) or medi-
cal image segmentation (Liao et al., 2013), as a variant of LDA,
it still has an interpretational limitation. In this paper, we pro-
pose a novel method of feature selection for AD/MCI diagnosis
by integrating the embedded method with the subclass-based
approach. Specifically, we first divide each class into multiple
subclasses by means of clustering, with which we can approxi-
mate the inherent multipeak data distribution of a class. Note
that we regard each cluster as a subclass following Zhu and
Martinez’s work (Zhu and Martinez, 2006). Based on the cluster-
ing results, we encode the respective subclasses with their unique
codes, for which we impose the subclasses of the same original
class close to each other and those of different original classes
distinct from each other. By setting the codes as new labels of
our training samples, we finally formulate a multi-task learning
problem in a �2,1-penalized regression framework that takes into
account the multipeak data distributions, and thus help enhance
the diagnostic performances.

2. MATERIALS AND IMAGE PROCESSING
2.1. SUBJECTS
In this work, we use the ADNI dataset publicly available on the
web2. Specifically, we consider only the baseline MRI, 18-Fluoro-
DeoxyGlucose (FDG) PET, and CerebroSpinal Fluid (CSF) data
acquired from 51 AD, 99 MCI, and 52 NC subjects3. For the
MCI subjects, they were further clinically subdivided into 43 MCI
Converters (MCI-C), who progressed to AD in 18 months, and 56
MCI Non-Converters (MCI-NC), who did not progress to AD in
18 months. The demographics of the subjects are summarized in
Table 1.

With regard to the general eligibility criteria in ADNI, subjects
were in the age of between 55 and 90 with a study partner, who
could provide an independent evaluation of functioning. General
inclusion/exclusion criteria4 are as follows: (1) healthy normal
subjects: Mini Mental State Examination (MMSE) scores between
24 and 30 (inclusive), a Clinical Dementia Rating (CDR) of 0,
non-depressed, non-MCI, and non-demented; (2) MCI subjects:
MMSE scores between 24 and 30 (inclusive), a memory com-
plaint, objective memory loss measured by education adjusted
scores on Wechsler Memory Scale Logical Memory II, a CDR
of 0.5, absence of significant levels of impairment in other cog-
nitive domains, essentially preserved activities of daily living,
and an absence of dementia; and (3) mild AD: MMSE scores
between 20 and 26 (inclusive), CDR of 0.5 or 1.0, and meets the
National Institute of Neurological and Communicative Disorders

2Available online at “http://adni.loni.usc.edu/”
3Although there exist in total more than 800 subjects in ADNI database, only
202 subjects have the baseline data including all the modalities of MRI, FDG-
PET, and CSF.
4Refer to “http://www.adni-info.org/Home.aspx” for more details.
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Table 1 | Demographic and clinical information of the subjects.

AD MCI MCI non- NC

converter converter

(N = 51) (N = 43) (N = 56) (N = 52)

Female/male 18/33 15/28 17/39 18/34

Age (Mean ± SD)
75.2 ± 7.4 75.7 ± 6.9 75.0 ± 7.1 75.3 ± 5.2

[59–88] [58–88] [55–89] [62–85]

Education (Mean ± SD)
14.7 ± 3.6 15.4 ± 2.7 14.9 ± 3.3 15.8 ± 3.2

[4–20] [10–20] [8–20] [8–20]

MMSE (Mean ± SD)
23.8 ± 2.0 26.9 ± 2.7 27.0 ± 3.2 29 ± 1.2

[20–26] [20–30] [18–30] [25–30]

CDR (Mean ± SD)
0.7 ± 0.3 0.5 ± 0 0.5 ± 0 0 ± 0

[0.5–1] [0.5–0.5] [0.5–0.5] [0–0]

(MMSE, Mini Mental State Examination, CDR, Clinical Dementia Rating, N, num-

ber of subjects, SD, Standard Deviation, [min-max]).

and Stroke and the Alzheimer’s Disease and Related Disorders
Association (NINCDS/ADRDA) criteria for probable AD.

2.2. MRI AND PET SCANNING
The structural MR images were acquired from 1.5T scanners.
We downloaded data in Neuroimaging Informatics Technology
Initiative (NIfTI) format, which had been pre-processed for spa-
tial distortion correction caused by gradient non-linearity and
B1 field inhomogeneity. The FDG-PET images were acquired
30–60 min post-injection, averaged, spatially aligned, interpo-
lated to a standard voxel size, normalized in intensity, and
smoothed to a common resolution of 8 mm full width at half max-
imum. CSF data were collected in the morning after an overnight
fast using a 20- or 24-gauge spinal needle, frozen within 1 h of col-
lection, and transported on dry ice to the ADNI Biomarker Core
laboratory at the University of Pennsylvania Medical Center.

2.3. IMAGE PROCESSING AND FEATURE EXTRACTION
The MR images were preprocessed by applying the typical proce-
dures of Anterior Commissure (AC)-Posterior Commissure (PC)
correction, skull-stripping, and cerebellum removal. Specifically,
we used MIPAV software5 for AC-PC correction, resampled
images to 256 × 256 × 256, and applied N3 algorithm (Sled
et al., 1998) to correct intensity inhomogeneity. An accurate and
robust skull stripping (Wang et al., 2013) was performed, fol-
lowed by cerebellum removal. We further manually reviewed
the skull-stripped images to ensure clean removal. Then, FAST
in FSL package6 (Zhang et al., 2001) was used for structural
MR image segmentation into three tissue types of Gray Matter
(GM), White Matter (WM) and CSF. We finally pacellated them
into 93 Regions Of Interests (ROIs) by warping Kabani et al.’s
atlas (Kabani et al., 1998) to each subject’s space via HAMMER
(Shen and Davatzikos, 2002), although other advanced registra-
tion methods can also be applied for this process (Friston et al.,

5Available online at “http://mipav.cit.nih.gov/clickwrap.php”
6Available online at “http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/”

1995; Xue et al., 2006; Yang et al., 2008; Tang et al., 2009; Jia et al.,
2010). In this work, we considered only GM for classification,
because of its relatively high relatedness to AD/MCI compared
to WM and CSF (Liu et al., 2012). Regarding FDG-PET images,
they were rigidly aligned to the respective MR images, and then
applied parcellation propagated from the atlas by registration.

For each ROI, we used the GM tissue volume from MRI, and
the mean intensity from FDG-PET as features7, which are most
widely used in the field for AD/MCI diagnosis (Davatzikos et al.,
2011; Hinrichs et al., 2011; Zhang and Shen, 2012; Suk et al.,
2013a). Therefore, we have 93 features from a MR image and
the same dimensional features from a FDG-PET image. Here, we
should note that although it is known that the regions of medial
temporal and superior parietal lobes are mainly affected by the
disease, we assume that other brain regions, although their relat-
edness to AD is not clearly investigated yet, may also contribute
to the diagnosis of AD/MCI and thus we consider 93 ROIs in our
study. In addition, we have three CSF biomarkers of Aβ42, t-tau,
and p-tau as features.

3. METHODS
In this section, we first briefly introduce the mathematical back-
ground of single-task and multi-task learning, and then describe
a novel subclass-based multi-task learning method for feature
selection in AD/MCI diagnosis.

3.1. NOTATIONS
Throughout the paper, we denote matrices as boldface uppercase
letters, vectors as boldface lowercase letters, and scalars as
normal italic letters, respectively. For a matrix X = [xij], its

i-th row and j-th column are denoted as xi and xj, respec-
tively. We further denote the Frobenius norm and �2,1-norm

of a matrix X as ‖X‖F =
√∑

i ‖xi‖2
2 =

√∑
j ‖xj‖2

2 and

‖X‖2,1 = ∑
i ‖xi‖2 = ∑

i

√∑
j x2

ij, respectively, and the �1-norm

of a vector as ‖w‖1 = ∑
i |wi|.

3.2. BACKGROUND
Let X ∈ RN×D and y ∈ RN denote, respectively, the D neuroimag-
ing features and a clinical label of N samples8. Assuming that the
clinical label can be represented by a linear combination of the
neuroimaging features, many research groups have utilized a least
square regression model with various regularization terms, which
can be mathematically simplified as follows:

min
w

‖y − Xw‖2
F + R(w) (1)

where w ∈ RD is a weight coefficient vector and R(w) denotes a
set of regularization terms. Regarding feature selection, despite its

7While the most intuitive feature should be the voxel in MRI and FDG-PET,
due to their extremely high dimensionality, in this paper, we take a ROI-based
approach and consider the GM tissue volumes and the mean intensity for each
ROI from MRI and FDG-PET, respectively, as the features. Furthermore, by
using the ROI-based features for our classification, the performances can be
less affected by the partial volume effect in PET imaging (Aston et al., 2002).
8In this work, we have one sample per subject and consider a binary
classification.
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simple form, the �1-penalized linear regression model has been
widely and successfully used in the literature (Varoquaux et al.,
2010; Fazli et al., 2011; de Brecht and Yamagishi, 2012; Suk et al.,
2013a), formulated as follows:

min
w

‖y − Xw‖2
F + λ1‖w‖1 (2)

where λ1 denotes a sparsity control parameter. Since the method
finds a single optimal weight coefficient vector w that regresses
the target response vector y, it is classified into a single-task
learning Figure 1A in machine learning. In this framework, after
finding an optimal weight coefficient vector of w by means of con-
vex optimization, the features corresponding to zero (or close to
zero) weight coefficients are discarded and the remaining ones are
considered for the following steps.

If there exists additional class-related information, then we can
further extend the �1-penalized linear regression model into a
more generalized �2,1-penalized one Figure 1B (Nie et al., 2010;
Cai et al., 2011; Wang et al., 2011) as follows:

min
W

‖Y − XW‖2
F + λ2‖W‖2,1 (3)

where Y ∈ RN×S is a target response matrix, W ∈ RD×S is a
weight coefficient matrix, S is the number of response vari-
ables, and λ2 denotes a group sparsity control parameter. In
machine learning, this framework is classified into a multi-
task learning since it needs to find a set of weight coefficient
vectors {w1, · · · , wS} by regressing multiple response values of
y1, · · · , yS, simultaneously9.

3.3. SUBCLASS-BASED MULTI-TASK LEARNING
We illustrate the proposed framework in Figure 2. In our frame-
work, we first concatenate the multi-modal features into a long
vector and then divide each class into a number of subclasses by
means of clustering. Based on the clustering results, we encode
new class-labels for subclasses and assign them to our training
samples. Utilizing the new encoding, a multi-task learning is per-
formed for feature selection. Finally, we train a linear Support
Vector Machine (SVM) for classification.

As stated in section 1, it is likely for neuroimaging data to have
multiple peaks in distribution due to the inter-subject variability

9To regress each response value is considered as a task.

FIGURE 1 | In the response vector/matrix, the colors of blue, red, and

white represent 1,−1, and 0, respectively. In multi-task learning, each row of
the response matrix represents a newly defined sparse code for each sample
by the proposed method. (A) Single-task learning, (B) multi-task learning.

(Fotenos et al., 2005; Noppeney et al., 2006; DiFrancesco et al.,
2008). In this paper, we argue that it is necessary to consider the
underlying multipeak data distribution in feature selection. To
this end, we propose to divide classes into subclasses and to utilize
the resulting subclass information in feature selection by means of
a multi-task learning.

To divide the training samples in each class to subclasses, we
use a clustering technique. Specifically, thanks to its simplicity
and computational efficiency, especially in a high dimensional
space, we apply a K-mean algorithm (Duda et al., 2001). Let
C = {ck}K

k = 1 denote a set of K clusters and {µk}K
k = 1 be the centers

of the clusters (represented by row vectors). Given a set of training
samples, the goal of K-means algorithm is to minimize the sum
of the squared error over all K clusters:

J(C) =
K∑

k = 1

∑
xi∈ck

‖xi − µk‖2. (4)

The main steps of K-means algorithm can be summarized as
follows (Jain and Dubes, 1988):

1. Initialize a set of K cluster means µ
(0)
1 , · · · ,µ

(0)
K .

2. Assignment step: for each of the training samples {xi}N
i = 1, find

a cluster γ
(t)
i whose mean yields the least Euclidean distance to

the sample as follows:

γ
(t)
i = min

ck
‖xi − µ

(t − 1)
k ‖2 (5)

where t denotes an index of iteration.
3. Update step: for every clusters {ck}K

k = 1, compute the new mean
with the samples assigned to the cluster as follows:

µ
(t)
k = 1

|ck|
∑

i,γ (t)
i =ck

xi (6)

where |ck| denotes the number of samples assigned to the
cluster ck at the iteration t.

4. Repeat (2) and (3) until convergence.

After clustering the samples in each class independently, we divide
the original classes into their respective subclasses by regarding
each cluster as a subclass. We then encode the subclasses with their
unique labels, for which we use “discriminative” sparse codes to

FIGURE 2 | A framework for AD/MCI diagnosis with the proposed

subclass-based multi-task learning.
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enhance classification performance. Let K(+) and K(−) denote,
respectively, the number of clusters/subclasses for the original
classes of “+” and “−.” Without loss of generality, we define
sparse codes for the subclasses of the original classes of “+” and
“−” as follows:

s(+)
l =

[
+1 z(+)

l 0K(−)

]
(7)

s(−)
m =

[
−1 0K(+) z(−)

m

]
(8)

where l ∈ {1, · · · , K(+)}, m ∈ {1, · · · , K(−)}, 0K(+) and 0K(−)

denote, respectively, zero row vectors with K(+) and K(−)

elements, and z(+)
l ∈ {0, 1}K(+) and z(−)

m ∈ {0,−1}K(−) denote,
respectively, indicator row vectors in which only the l/m-th ele-
ment is set to 1/−1 and the others are 0. Thus, the full code set
becomes:

S = {s(+)
1 , · · · , s(+)

l , · · · , s(+)
K(+)

, s(−)
1 , · · · , s(−)

m , · · · , s(−)
K(−)

}. (9)

For example, assume that we have three and two clusters for
“+” and “−” classes, respectively. Then the code set is defined
as follows:

S =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s(+)
1 = [+1 +1 0 0 0 0],

s(+)
2 = [+1 0 +1 0 0 0],

s(+)
3 = [+1 0 0 +1 0 0],

s(−)
1 = [−1 0 0 0 −1 0],

s(−)
2 = [−1 0 0 0 0 −1]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (10)

It is noteworthy that in our sparse code set, we reflect the origi-
nal label information to our new codes by setting the first element
of the sparse codes with their original label. Furthermore, by set-

ting the indicator vectors {z(−)
m }K(−)

m = 1 to be negative, the distances
become close among the subclasses of the same original class and
distant among the subclasses of the different original classes. That
is, in the code set of Equation (10), the squared Euclidean dis-
tance between subclasses of the same original class is 2, but that
between subclasses of different original classes is 6.

Using the newly defined sparse codes, we assign a new label
vector yi to a training sample xi as follows:

yi = s
(yi)
γi (11)

where yi ∈ {+,−} is the original label of the sample xi, and γi

denotes the cluster to which the sample xi was assigned in the
K-means algorithm. In this way, we extend the original scalar
labels of +1 or −1 into sparse code vectors in S.

Thanks to our new sparse codes, it becomes natural to convert
a single-task learning in Equation (2) into a multi-task learning in
Equation (3) by replacing the original label vector y in Equation

(2) with a matrix Y = [
yi

]N
i = 1 ∈ {−1, 0, 1}N×(1+K(+)+K(−)) where

K(+) and K(−) denote the number of clusters in the original classes
of “+” and “−,” respectively. Figure 1B illustrates the concep-
tual meaning of our subclass-based multi-task learning, in which
the regression of each column vector of y is considered as a task.

Therefore, we have now (1 + K(+) + K(−)) tasks. Note that the
task of regressing the first column response vector y1 corresponds
to our binary classification problem between the original classes
of “+” and “−.” Meanwhile, the tasks of regressing the remaining

column vectors {yi}1+K(+)+K(−)

i = 2 formulate new binary classifica-
tion problems between one subclass and all the other subclasses.
It should be noted that unlike the single-task learning that finds
a single mapping w between regressors X and the response y,
the subclass-based multi-task learning finds multiple mappings
{w1, · · · , w(1+K(+)+K(−))}, and thus allows us to efficiently use the
underlying multipeak data distribution in feature selection.

3.4. FEATURE SELECTION AND CLASSIFIER LEARNING
Because of the �2,1-norm regularizer in our objective function
of Equation (3), after finding the optimal solution, we have
some zero row-vectors in W. In terms of the linear regression,
the corresponding features are not informative in regressing
the response values. In this regard, we finally select the features
whose weight coefficient vector is non-zero, i.e., ‖wi‖2 > 0. With
the selected features, we then train a linear SVM, which have
been successfully used in many applications (Zhang and Shen,
2012; Suk and Lee, 2013).

4. EXPERIMENTAL RESULTS
4.1. EXPERIMENTAL SETTING
We considered four binary classification problems: AD vs. NC,
MCI vs. NC, AD vs. MCI, and MCI-C vs. MCI-NC. In the classi-
fications of MCI vs. NC and AD vs. MCI, we labeled both MCI-C
and MCI-NC as MCI. Due to the limited number of samples,
we applied a 10-fold cross-validation technique in each binary
classification problem. Specifically, we randomly partitioned the
samples of each class into 10 subsets with approximately equal
size without replacement. We then used 9 out of 10 subsets
for training and the remaining one for testing. We reported the
performances by averaging the results of 10 cross-validations.

For model selection, i.e., number of clusters K in Equation
(4), sparsity control parameters of λ1 in Equation (2) and λ2

in Equation (3), and the soft margin parameter C in SVM, we
further split the training samples into 5 subsets for nested cross-
validation. To be more specific, we defined the spaces of the model
parameters as follows: K ∈ {1, 2, 3, 4, 5}, C ∈ {2−10, . . . , 25},
λ1 ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5}, and λ2 ∈
{0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5}. The parameters
that achieved the best classification accuracy in the inner cross-
validation were finally used in testing. In our implementation,
we used a SLEP toolbox10 for feature selection and a LIBSVM
toolbox11 for SVM classifier learning.

To validate the effectiveness of the proposed Subclass-based
Multi-Task Learning (SMTL) method, we compared it to the
Single-Task Learning (STL) method that used only the origi-
nal class label as the target response vector in Equation (2). For
each set of experiments, we used 93 MRI features, 93 PET fea-
tures, and/or 3 CSF features as regressors in the respective least

10Available online at “http://www.public.asu.edu/∼jye02/Software/SLEP/
index.htm.”
11Available online at “http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.”
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square regression models. Regarding the multimodal neuroimag-
ing fusion, e.g., MRI+PET (MP) and MRI+PET+CSF (MPC), we
constructed a long feature vector by concatenating features of the
modalities. It should be noted that the only difference between
the proposed SMTL method and the competing STL method lies
in the way of selecting features.

4.2. DATA DISTRIBUTIONS
We visualized the data distributions of our dataset in Figure 3.
Due to the high dimensionality of the original feature vectors, we
first transformed them into their respective 2D eigenspace, whose
bases were obtained via principal component analysis (Duda
et al., 2001). From the scatter plots, we can see that most of the
data distributions look more like having multiple peaks rather
than a single peak. For a quantitative evaluation, we also per-
formed Henze-Zirkler’s multivariate normality test (Henze and
Zirkler, 1990) and summarized the results in Table 2. In our test,
the null hypothesis was that the samples could come from a mul-
tivariate normal distribution. Regarding MRI, the null hypothesis
was rejected for both AD and MCI. With respect to PET, the
test rejected the hypothesis for MCI. In the meantime, it turned
out that the CSF samples of all the disease labels didn’t follow

a multivariate Gaussian distribution. Based on these qualitative
and quantitative evaluations, we could confirm the multipeak
data distributions and justify the necessity of the subclass-based
approach, which can sufficiently handle such multipeak distribu-
tion problem.

4.3. PERFORMANCE MEASUREMENTS
Let TP, TN, FP, and FN denote, respectively, True
Positive, True Negative, False Positive, and False Negative.

Table 2 | A summary of Henze-Zirkler’s multivariate normality test on

our dataset.

Modality AD MCI NC

MRI 0.0005 (R) 0.0004 (R) 0.6967 (A)

PET 0.4273 (A) 0.0239 (R) 0.3150 (A)

CSF 0.0049 (R) <0.0001 (R) <0.0001 (R)

“R” or “A” in parentheses denotes whether the null hypothesis (that the samples

could come from a multivariate normal distribution) is rejected or accepted at the

5% significance level.

FIGURE 3 | Data distributions of three modalities over different disease labels. For visualization, we transformed the original features in an ambient space
into their respective 2D eigenspace, whose bases (PC-1 and PC-2) were obtained via principal component analysis.

Frontiers in Aging Neuroscience www.frontiersin.org August 2014 | Volume 6 | Article 168 | 6

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Suk et al. Subclass-based multi-task learning

In our experiments, we considered the following five
metrics:

• ACCuracy (ACC) = (TP+TN) / (TP+TN+FP+FN).
• SENsitivity (SEN) = TP / (TP+FN).
• SPECificity (SPEC) = TN / (TN+FP).
• Balanced ACcuracy (BAC) = (SEN+SPEC) / 2.
• Area Under the receiver operating characteristic Curve (AUC).

The accuracy that counts the number of correctly classified sam-
ples in a test set is the most direct metric for comparison between
methods. Regarding the sensitivity and specificity, the higher the
values of these metrics, the lower the chance of mis-diagnosing.
Note that in our dataset, in terms of the number of samples
available for each class, they are highly imbalanced, i.e., AD(51),
MCI(99), and NC(52). Therefore, it is likely to have an inflated
performance estimates for the classifications of MCI vs. NC and
AD vs. MCI. For this reason, we also consider a balanced accuracy
that considers the imbalance of a test set. Lastly, one of the most
effective measurements of evaluating the performance of diag-
nostic tests in brain disease as well as other medical areas is the
Area Under the receiver operating characteristic Curve12 (AUC).
The AUC can be thought as a measure of the overall performance
of a diagnostic test. The larger the AUC, the better the overall
performance of the diagnostic test.

4.4. CLASSIFICATION RESULTS
We summarized the performances of the competing methods
with various modalities for AD and NC classification in Table 3.
The proposed method showed the mean ACCs of 93.27% (MRI),
89.27% (PET), 95.18% (MP), and 95.27% (MPC). Compared
to the STL method that showed the ACCs of 90.45% (MRI),
86.27% (PET), 92.27% (MP), and 94.27% (MPC), the proposed
method improved by 2.82% (MRI), 3% (PET), 2.91% (MP), and
1% (MPC) in accuracy. The proposed SMTL method achieved
higher AUC values than the STL method for all the cases. It is
also remarkable that, except for the metric of specificity with PET,

12The receiver operating characteristic curve is defined as a plot of test true
positive rate vs. its false positive rate.

Table 3 | A summary of the performances for AD vs. NC classification.

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) AUC (%)

STL

MRI 90.45 ± 6.08 82.67 98.33 90.50 93.55
PET 86.27 ± 8.59 82.00 90.33 86.17 90.12
MP 92.27 ± 5.93 90.00 94.67 92.33 94.91
MPC 94.27 ± 6.54 94.00 94.33 94.17 95.74

SMTL

MRI 93.27 ± 6.33 88.33 98.33 93.33 94.19
PET 89.27 ± 7.43 90.00 88.33 89.17 91.67
MP 95.18 ± 6.65 94.00 96.33 95.17 96.15
MPC 95.27 ± 6.58 94.00 96.33 95.17 97.13

(STL, Single-Task Learning; SMTL, Subclass-based Multi-Task Learning). The

boldface denotes the best performance in each metric.

90.33% (STL) vs. 88.33% (SMTL), the proposed method con-
sistently outperformed the competing STL method over all the
metrics and modalities.

In the discrimination of MCI from NC, as reported in Table 4,
the proposed method showed the ACCs of 76.82% (MRI), 74.18%
(PET), 79.52% (MP), and 80.07% (MPC). Meanwhile, the STL
method showed the ACCs of 74.85% (MRI), 69.51% (PET),
74.85% (MP), and 76.82% (MPC). Again, the proposed method
outperformed the STL method by improving ACCs of 1.97%
(MRI), 4.67% (PET), 4.67% (MP), and 3.25% (MPC), respec-
tively. It is believed that the high sensitivities and the low speci-
ficities for both competing methods resulted from the imbalanced
data between MCI and NC. In the metrics of BAC and AUC that
somehow reflect the imbalance of the test samples, the proposed
method achieved the best BAC of 77.06% and the best AUC of
81.82% with MPC.

From a clinical point of view, establishing the boundaries
between preclinical AD and mild AD, i.e., MCI, has practical and
economical implications. To this end, we also performed experi-
ments on AD vs. MCI classification and summarized the results
in Table 5. Similar to the MCI vs. NC classification, because of
the imbalanced data, we had a large gap between sensitivities and
specificities. Nevertheless, the proposed method still showed the
best ACC of 74.60%, the best BAC of 67.83%, and the best AUC
of 72.85% with MP.

Table 4 | A summary of the performances for MCI vs. NC

classification.

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) AUC (%)

STL

MRI 74.85 ± 5.92 80.67 64.00 72.33 76.55
PET 69.51 ± 10.11 74.78 59.67 67.22 73.54
MP 74.85 ± 3.91 84.78 56.00 70.39 78.79
MPC 76.82 ± 7.15 85.89 59.33 72.61 79.25

SMTL

MRI 76.82 ± 7.15 85.78 59.67 72.72 77.84
PET 74.18 ± 7.18 81.89 59.67 70.78 72.73
MP 79.52 ± 5.39 88.89 62.00 75.44 77.91
MPC 80.07 ± 8.42 86.78 67.33 77.06 81.82

(STL, Single-Task Learning; SMTL, Subclass-based Multi-Task Learning). The

boldface denotes the best performance in each metric.

Table 5 | A summary of the performances for AD vs. MCI

classification.

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) AUC (%)

STL

MRI 62.68 ± 7.01 4.00 93.00 48.50 59.16
PET 72.02 ± 6.73 31.33 93.00 62.17 69.50
MP 69.26 ± 8.66 51.00 78.56 64.78 71.40
MPC 68.40 ± 14.48 41.33 82.44 61.89 70.19

SMTL

MRI 70.60 ± 5.97 39.00 86.67 62.83 66.90
PET 73.31 ± 3.25 33.00 94.00 63.50 67.78
MP 74.60 ± 9.57 46.67 89.00 67.83 72.85

MPC 72.60 ± 9.88 37.33 91.00 64.17 71.74

(STL, Single-Task Learning, SMTL, Subclass-based Multi-Task Learning). The

boldface denotes the best performance in each metric.
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Lastly, we conducted experiments of MCI-C and MCI-NC
classification, and compared the results in Table 6. The proposed
SMTL method achieved the best ACC of 72.02%, the best BAC of
70.33%, and the best AUC of 69.64% with MP. In line with the
fact that the classification between MCI-C and MCI-NC is the
most important for early diagnosis and treatment, it is remark-
able that compared to the STL method, the ACC improvements
by the proposed method were 4.62% (MRI), 5.15% (PET), 7.4%
(MP), and 7.22% (MPC), respectively.

In order to further verify the superiority of the proposed
SMTL method compared to the STL method, we also performed a
statistical significance test to assess whether the differences in clas-
sification ACCs between the methods are at a significant level on
the dataset by means of a paired t-test. Here, the null hypothesis
in our work was that the proposed SMTL method produced the
same mean ACCs as the STL method. The p-values were 8.884e-
04 (AD vs. NC), 4.85e-05 (MCI vs. NC), 1.11e-03 (AD vs. MCI),
7.48e-03 (MCI-C vs. MCI-NC), respectively. That is, the pro-
posed SMTL method statistically outperformed the STL method
for all the cases, rejecting the null hypothesis beyond the 95%
confidence level.

Table 6 | A summary of the performances for MCI-C vs. MCI-NC

classification.

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) AUC (%)

STL

MRI 56.98 ± 20.61 51.00 60.67 55.83 58.85
PET 61.58 ± 17.79 55.00 66.00 60.50 60.63
MP 64.62 ± 14.04 62.50 66.00 64.25 63.87
MPC 62.89 ± 12.29 58.50 66.00 62.25 58.31

SMTL

MRI 61.60 ± 13.12 44.00 75.67 59.83 60.76
PET 66.73 ± 11.32 39.00 88.00 63.50 65.57
MP 72.02 ± 13.80 58.00 82.67 70.33 69.64

MPC 70.11 ± 14.21 59.00 78.67 68.83 67.36

(STL, Single-Task Learning, SMTL, Subclass-based Multi-Task Learning). The

boldface denotes the best performance in each metric.

4.5. DISCUSSION
In the classifications of AD vs. MCI and MCI-C vs. MCI-NC,
the proposed SMTL method with MP, rather than with MCP,
achieved the best performances. That is, although we used richer
information with MPC, i.e., additional CSF features, the perfor-
mances with MPC were lower than with MP in those classification
problems. Based on the results, fusing the CSF features with the
other modalities turned out to be a confounding factor in the clas-
sifications of AD vs. MCI and MCI-C vs. MCI-NC. Furthermore,
in our experiments above, the selected features were fed into a
SVM classifier and in this stage, the features of different modal-
ities have equal weights in decision, which can be a potential
problem degrading the performances. To this end, we addition-
ally performed experiments by replacing a Single-Kernel linear
SVM (SK-SVM) with a Multi-Kernel linear SVM (MK-SVM)
(Gönen and Alpaydin, 2011), with which we could find optimal
weights for the modalities. The modality weights were determined
by nested cross-validation similarly for model parameters selec-
tion described in section 4.1. Specifically, we applied a grid search
with an interval of 0.1 with the constraint of the sum of the
modality weights to be one. In Figure 4, we compared the best
performances of SK-SVM, i.e., equal weights for modalities, with
those of MK-SVM. It should be noted that for both methods of

Table 7 | Comparison of classification accuracies with the

state-of-the-art methods that used multimodal neuroimaing for

AD/MCI vs. NC.

Methods Subjects Modality AD vs. MCI vs.

(AD/MCI/NC) NC (%) NC (%)

Kohannim et al., 2010 40/83/43 MRI+PET+CSF 90.7 75.8
Hinrichs et al., 2011 48/119/66 MRI+PET 92.4 n/a
Zhang et al., 2011 51/99/52 MRI+PET+CSF 93.2 76.4
Westman et al., 2012 96/162/111 MRI+CSF 91.8 77.6
Liu et al., 2013 51/99/52 MRI+PET 94.37 78.80
Proposed method 51/99/52 MRI+PET+CSF 96.18 81.45

The boldface denotes the best performance in each classification task.

FIGURE 4 | Performance comparison between SK-SVM and MK-SVM in four binary classifications. For both methods, the feature selection was
performed on the concatenated feature vectors with the proposed subclass-based multi-task learning.
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SK-SVM and MK-SVM, we applied the proposed STML method
for feature selection. By means of a modality-adaptive weight-
ing strategy with MK-SVM, we obtained the maximal ACCs of
96.18% (AD vs. NC), 81.45% (MCI vs. NC), 73.21% (AD vs.
MCI), and 74.04% (MCI-C vs. MCI-NC). That is, MK-SVM
clearly outperformed the SK-SVM by improving the ACCs of
0.91% (AD vs. NC), 1.41% (MCI vs. NC), 0.67% (AD vs. MCI),
and 2.02% (MCI-C vs. MCI-NC), respectively.

In Table 7, we also compared the classification accuracies of
the proposed method with those of the state-of-the-art meth-
ods that fused multimodal neuroimaing for the classifications of
AD vs. NC and MCI vs. NC. Note that, due to different datasets
and different approaches of extracting features and building clas-
sifiers, it may not be fair to directly compare the performances
among the methods. Nevertheless, the proposed method showed
the highest accuracies among the methods in both classification
problems. In particular, it is noteworthy that compared to Zhang
and Shen’s work (Zhang et al., 2011) in which they used the same
dataset with ours, the proposed method enhanced the accuracies
by 2.98 and 5.05% for the classifications of AD vs. NC and MCI
vs. NC, respectively. Furthermore, in comparison with Liu et al.’s
work (Liu et al., 2013), where they used the same types of features
from MRI and PET and the same number of subjects with ours,
our method improved the accuracies by 1.81% (AD vs. NC) and
2.65% (MCI vs. NC), respectively.

Regarding the interpretation of the selected ROIs, due to
the involvement of cross-validation, multimodal neuroimaging
fusion, and multiple binary classifications in our experiments, it

was not straightforward to analyze the selected ROIs. In this work,
we first built a histogram of the frequency of the selected ROIs of
MRI and PET over cross-validations per binary classification, and
normalized it by considering only the ROIs whose frequency was
larger than the mean frequency and set the frequency of the disre-
garded ROIs to zero. Figure 5 presents the normalized frequency
of the selected ROIs in each binary classification. We then added
the four normalized histograms in Figure 5 to find the relative fre-
quency of the selected ROIs over four classification problems. We
finally selected ROIs whose frequency was larger than the mean
normalized frequency and visualized them in Figure 6. Those
ROIs include amygdala, hippocampus, parahippocampal gyrus
(Braak and Braak, 1991; Visser et al., 2002; Mosconi, 2005; Lee
et al., 2006; Devanand et al., 2007; Burton et al., 2009; Desikan
et al., 2009; Walhovd et al., 2010; Ewers et al., 2012), superior
frontal gyrus, insula, anterior/posterior cingulate gyrus, inferior
occipital gyrus, post central gyrus, supramarginal gyrus (Buckner
et al., 2005; Desikan et al., 2009; Dickerson et al., 2009; Schroeter
et al., 2009), precuneus, paracentral lobule (Bokde et al., 2006;
Singh et al., 2006; Davatzikos et al., 2011), heschl gyrus (Supekar
et al., 2008), superior/middle temporal gyrus, temporal pole,
inferior temporal (Chan et al., 2001; Visser et al., 2002; Burton
et al., 2009).

5. CONCLUSIONS
In this paper, we proposed a novel method that formulates
a subclass-based multi-task learning. Specifically, to take into
account the underlying multipeak data distribution of the

FIGURE 5 | Normalized histograms of the selected features in four binary classification problems.
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FIGURE 6 | Visualization of the selected ROIs by the proposed method.

Different colors denote different brain areas.

original classes, we applied a clustering method to partition
each class into multiple clusters, which further considered as
subclasses. Here, we can think that one cluster, i.e., subclass, rep-
resents one peak in distribution. The respective subclasses were
encoded with their unique codes, for which we imposed the sub-
classes of the same original class close to each other and those
of different original classes distinct from each other. We assigned
the newly defined codes to our training samples as new label vec-
tors and applied a �2,1-norm regularizer in a linear regression
framework, thus formulated a multi-task learning problem. We
finally selected features based on the optimal weight coefficients.
It is noteworthy that unlike the previous methods of PCA, LDA,
and other embed methods for dimensionality reduction, the pro-
posed method considered multiple mapping functions to reflect
the underlying multipeak data distributions, and thus to enhance
performances in AD/MCI diagnosis. In our experimental results
on the publicly available ADNI dataset, we proved the validity of
the proposed method by outperforming the competing methods
in four binary classifications of AD vs. NC, MCI vs. NC, AD vs.
NC, and MCI-C vs. MCI-NC.

In the context of the practical application of the proposed
method, it should be considered for how to determine the optimal
number of clusters, i.e., K, for each class, although, in this paper,
we applied a cross-validation technique for dealing with this issue.
One potential solution for this issue is to use affinity propaga-
tion algorithm (Frey and Dueck, 2007) that does not require
the number of clusters to be determined. The other potential
limitation of our work is that outliers or contaminated features
could affect our clustering results, thus causing performance
degradation by selecting uninformative features or unselecting
informative features. All these limitations will be considered in
our future research.
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