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In this paper, we explore the effects of integrating multi-dimensional imaging genomics
data for Alzheimer’s disease (AD) prediction using machine learning approaches. Precisely,
we compare our three recent proposed feature selection methods [i.e., multiple kernel
learning (MKL), high-order graph matching based feature selection (HGM-FS), sparse
multimodal learning (SMML)] using four widely-used modalities [i.e., magnetic resonance
imaging (MRI), positron emission tomography (PET), cerebrospinal fluid (CSF), and
genetic modality single-nucleotide polymorphism (SNP)]. This study demonstrates the
performance of each method using these modalities individually or integratively, and may
be valuable to clinical tests in practice. Our experimental results suggest that for AD
prediction, in general, (1) in terms of accuracy, PET is the best modality; (2) Even though
the discriminant power of genetic SNP features is weak, adding this modality to other
modalities does help improve the classification accuracy; (3) HGM-FS works best among
the three feature selection methods; (4) Some of the selected features are shared by all
the feature selection methods, which may have high correlation with the disease. Using
all the modalities on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, the
best accuracies, described as (mean ± standard deviation)%, among the three methods
are (76.2 ± 11.3)% for AD vs. MCI, (94.8 ± 7.3)% for AD vs. HC, (76.5 ± 11.1)% for MCI
vs. HC, and (71.0 8.4)% for AD vs. MCI vs. HC, respectively.±
Keywords: Alzheimer’s disease prediction, modality integration, imaging genomics data, feature selection, binary

and multiclass classification

1. INTRODUCTION
Alzheimer’s disease (AD) is a complex chronically progressive
neurodegenerative disease and the most common form of demen-
tia in elderly people worldwide. As reported in Wimo et al. (1997),
the prevalence of clinically manifest AD is about 2% at the age
of 65 years but increases to about 30% at the age of 85 years.
Recent research (Brookmeyer et al., 2007) suggested the num-
ber of people with AD to be double within the next 20 years,
and 1 in 85 people will be affected by 2050. With the increase of
human’s life expectancy, more and more elderly people will suf-
fer from AD, and accordingly it will cause a heavy socioeconomic
burden. Unfortunately, there is no treatment to cure or even slow
the progression of this disorder currently (Weiner et al., 2012).
Huge effort has been put on the better understanding of the dis-
ease for more effective treatment (Hardy and Selkoe, 2002; Jack
et al., 2010; Weiner et al., 2010, 2012).

There are two more labels related to AD, that is, Healthy
Control (HC) and Mild Cognitive Impairment (MCI) (Wee et al.,
2011, 2012; Zhou et al., 2011; Zhang et al., 2012a). People in HC
are actually not AD patients, while MCI can be considered as the
early stage of AD (Dubois et al., 2010), in which people show
mildly impaired in memory with relative preservation of other
cognitive domains and functional activities and do not meet the

criteria for dementia (Petersen et al., 2009). Also in Petersen et al.
(2009) it was showed that each year 10–15% of MCI patients
progressed to AD. As we see, the disease is developed gradually
from HC to MCI, and eventually to AD. Between different sta-
tuses, there are no clear rules for defining the status of the disease.
Therefore, accurate prediction of disease status (i.e., HC, MCI, or
AD) becomes very difficult and important for early treatment of
the disease.

To predict AD, a variety of biomarkers have been found and
proposed (some of them are referred to by the sampling tech-
niques), such as magnetic resonance imaging (MRI) Fan et al.
(2007), positron emission tomography (PET), FDG-PET, and
cerebrospinal fluid (CSF) (Hampel et al., 2008). Amount of works
(Vemuri et al., 2009; Kohannim et al., 2010; Salas-Gonzalez et al.,
2010; Hinrichs et al., 2011; Wolz et al., 2011; Zhang et al., 2011a;
Ewers et al., 2012) have focused on how to utilize these biomarkers
to classify AD, and they suggest that combining them for predic-
tion is better than using any of them independently. Besides these
existing biomarkers, recently genetic information is explored and
studied in some very interesting works (Wang et al., 2012a,b; Nho
et al., 2013a,b) for AD prediction.

In particular, machine learning community has provided pow-
erful classification tools that are used for AD prediction (Zhang
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et al., 2011b, 2012b; Li et al., 2012; Liu et al., 2012; Zhang
and Shen, 2012). Multiple kernel learning (MKL) framework
(Rakotomamonjy et al., 2008; Zhang et al., 2010, 2011a) is one
of the examples which can integrate different sources of informa-
tion automatically using convex optimization. Feature selection
(Liu et al., 2013) is another good example, where the first stage
performs feature selection method, and in the second stage the
selected features are fed into a classifier for training. In Wang et al.
(2012a,b) the authors proposed group-sparse learning algorithms
for regression and feature selection based on MRI, PET, and
single-nucleotide polymorphism (SNP). The basic idea behind
these algorithms is to select a small subset of features (i.e., feature
selection) that will be commonly shared by different regression
tasks.

The main contributions of this paper are two-fold:
(1) Our first contribution is to compare the performances of

three recent proposed feature selection methods from machine
learning community in the same experimental environment.
These methods are multiple kernel learning (MKL) (Zhang
et al., 2011a), high-order graph matching based feature selec-
tion (HGM-FS) (Liu et al., 2013), and sparse multimodel learning
(SMML) (Wang et al., 2013). Feature selection for AD prediction
has been attracting more and more attention. With very limited
data samples and high dimensional data representations, it is rea-
sonable to assume that all the data samples actually lie in a low
dimensional representation space/manifold where classifiers can
achieve better generalization, and feature selection is used to find
such low dimensional manifold. However, in the literature such
feature selection methods are developed independently using
their own experimental settings, making it difficult to tell which
is the best in terms of classification accuracy and how they behave
on the data. Understanding these factors will be very useful for
clinical usage to predict AD by choosing proper methods.

To answer such questions, in this paper we did comprehensive
comparison between the three feature selection methods above
on the Alzheimer’s Disease Neuroimaging Initiative (ADNI)1 data
set, which is designed to characterize clinical, genetic, imaging,
and biochemical biomarkers of AD and identify the relationships
between them over the course of disease progression from nor-
mal cognition to MCI to dementia. Using linear support vector
machines (SVMs) as our classifiers, we report the classification
accuracy, sensitivity, and specificity for both binary and multiclass
classification tasks, based on 10-fold cross validation. Our exper-
imental results suggests (1) HGM-FS works best among the three
feature selection methods, and (2) all the feature selection methods
select some shared features.

(2) Our second contribution is to explore the effects of inte-
grating multi-dimensional imaging genomics data for AD pre-
diction based on the three feature selection methods above.
Developing discriminative features are always very important for
AD prediction. Particularly, in this paper we focus on the perfor-
mances of four widely-used modalities, namely MRI, PET, CSF,
and SNP, with feature selection. This is very important and valu-
able for clinical purpose, because the cost of each modality is very
different, and if the cheap ones can give us satisfactory results,

1This dataset can be downloaded from http://www.loni.ucla.edu/ADNI.

we can utilize them first rather than utilizing costly modalities at
the beginning. Our experimental results suggest that in general,
(1) PET is the best modality in terms of accuracy, and (2) adding
SNP to other modalities does improve the classification accuracy,
even though its discriminant power is weak.

The rest of the paper is organized as follows. In Section 2 the
materials used in our experiments are explained. In Section 3 the
details of our classification methods are provided, including the
preprocessing on genetic data, and our three recent proposed fea-
ture selection methods. In Section 4 our comparison results are
listed and discussed. Finally, we conclude the paper in Section 5.

2. MATERIALS
Our dataset is a subset from ADNI, where each subject can
be represented using either imaging or genetic information. In
total, we use 189 subjects from this dataset: 49 patients with
AD, 93 patients with MCI, and 47 HC. Image preprocessing
is performed separately for magnetic resonance imaging (MRI)
and Fluorodeoxyglucose (FDG) Positron-Emission Tomography
(PET) data. The preprocessing steps of MRI data include skull-
stripping (Wang et al., 2011), dura removal, intensity inhomo-
geneity correction, cerebellum removal, spatial segmentation, and
registration. We then parcellate the preprocessed images into 93
regions according to the template in Kabani et al. (1998). Only
gray matter volume of these 93 regions-of-interest (ROI) is used
in the experiments. For the preprocessing of PET images, we align
the PET image of each subject to its corresponding MRI image
using a rigid transformation and the average intensity of each ROI
is calculated as a feature. CSF data were collected in the morn-
ing after an overnight fast using a 20- or 24-gauge spinal needle,
frozen within 1 h of collection, and transported on dry ice to the
ADNI Biomarker Core laboratory. In this study, CSF Aβ42, CSF
t-tau, and CSF p-tau are used as features.

The single-nucleotide polymorphism (SNP) data (Saykin
et al., 2010) were genotyped using the Human 610-Quad
BeadChip. Among all SNPs, only SNPs, belonging to the top AD
candidate genes listed on the AlzGene database (www.alzgene.
org) as of June 10, 2010, were selected after the standard quality
control (QC) and imputation steps. The QC criteria for the SNP
data include (1) call rate check per subject and per SNP marker,
(2) gender check, (3) sibling pair identification, (4) the Hardy-
Weinberg equilibrium test, (5) marker removal by the minor allele
frequency, and (6) population stratification. As the second pre-
processing step, the quality-controlled SNPs were imputed using
the MaCH software to estimate the missing genotypes. After that,
the Illumina annotation information based on the Genome build
36.2 was used to select a subset of SNPs, belonging to the top 135
AD candidate genes (Bertram et al., 2007). The above procedure
yielded 5677 SNPs from 135 genes. Because the dimensionality
of SNPs is much higher than the ones of other neuroimaging fea-
tures, we use the unsupervised feature selection method to reduce
the dimensionality of SNPs to the similar level of other types of
features.

3. METHODOLOGY
Our AD prediction framework is simple: Given the feature vec-
tors for individuals, feature selection methods are applied first to
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select discriminative features. Then by performing element-wise
product between the selected features and the learned weights by
feature selection methods, the new feature vectors are fed into
linear support vector machines (SVMs) to train the predictors.
During testing, the selected features, learned weights, and predic-
tors are fixed, and each test sample is classified into one of the
three labels (i.e., AD, MCI, and HC) whose predicted score is the
maximum.

In this section, we begin with introducing the preprocessing
on genetic data, which attempts to reduce the computational
time of each feature selection method beforehand by reducing
the dimensionality of genetic data. Then we summarize our three
recent proposed feature selection methods for readers to better
understand our prediction framework.

3.1. PREPROCESSING ON GENETIC DATA
Since the dimensionality of SNP features is so high that the
computational time for the feature selection methods used in
our experiments is very long, we perform a simple unsupervised
dimension reduction method on the genetic data before applying
those complicated feature selection in our experiments to reduce
the computational time.

One commonly used unsupervised feature selection criterion
is Laplacian Score (He et al., 2006), which aims to select fea-
tures that can best preserve the local manifold structure. He et al.
(2006) argued that: in many classification tasks, the local structure
of data is expected to be more important than global structure.

Motivated by such observation, Laplacian Score was proposed
to capture the local structure of data using graph Laplacian. Given
a set of N training data {xi}i= 1,··· ,N where ∀i, xi ∈ R

d and the
corresponding data matrix X ∈ R

d×N , a data similarity matrix
W ∈ R

N×N can be calculated using the heat kernel. By summing
up the elements in W along each row, we can further create a
diagonal matrix D ∈ R

N×N . The Laplacian Score of a feature is

defined as s(k) = XkLXT
k

XkDXT
k

, where Xk is the kth row in matrix X

consisting of the values for the kth feature in all the data samples,
L = D−W is the graph Laplacian matrix, and ( · )T denotes the
vector transpose operator.

One drawback of the Laplacian Score strategy is that: it is very
sensitive to the heat kernel parameter σ which is used to con-
struct similarity matrix. Thus, a huge amount of computation is
needed to tune the parameter σ . On the other hand, constructing
the similarity matrix itself is also time consuming [with the time
complexity of at least O(dN2)].

The Laplacian score only considers the local structure. In order
to utilize both local and global structures, we adopt an unsu-
pervised local and global discriminative (LGD) feature selection
criterion. The score of each feature is defined as the ratio between
global variance and local variance:

s(k) =
∑

i (xi(k)− x̄(k))2

∑
j

∑
xi(k)∈o(xj(k)) (xi(k)− x̄j(k))2

, (1)

where xi(k) is the value for the kth feature of the ith sample, x̄(k) is
the mean value for the kth feature in the data samples, o(xj(k)) is

the set of neighbor points of the jth sample. x̄j(k) is the mean com-

puted from the set of neighbor points as x̄j(k) =
∑

xi(k)∈ o(xj(k)) xi(k)

|o(xj(k))| ,

where
∣∣o (

xj(k)
)∣∣ is the cardinality of the neighbor set. Because

the neighbor points of point xi(k) can be efficiently computed by
sorting the values {xi(k)}i= 1,··· ,N , the computational complexity
of our method is O(dN log N).

3.2. FEATURE SELECTION METHODS
In general, feature selection methods can be considered as the
combination of (1) data fitting terms and (2) sparse-induced reg-
ularization terms. Data fitting terms guarantee that the learned
models are suitable for prediction within certain variations, while
sparse-induced regularization terms make sure that only the
“important” features have non-zero weights. By designing differ-
ent combinations of these two terms, different feature selection
methods are developed. For instance, hinge-loss or least-square
loss can be used as data fitting terms, and �1 norm, trace norm,
or group sparsity can be used as sparse-induced regularization
terms. Typically, different combinations result in selecting dif-
ferent features, and we briefly summarize the details of MKL,
HGM-FS, and SMML to show how they developed for feature
selection.

3.2.1. Multiple kernel learning (MKL)
The basic idea of MKL is to build an optimal kernel for a spe-
cific task (e.g., classification) based on a set of basis kernels.
In our experiments, we employ SimpleMKL (Rakotomamonjy
et al., 2008) as the MKL competitor. Given training samples
{(xi, yi)}i= 1,··· ,N , where ∀i, xi ∈ R

d is an input data vector and
yi ∈ {1,−1} is its binary label, and M feature mapping functions
{φm : Rd → R

Dm}m= 1,··· ,M , SimpleMKL formulates the MKL
problem with the hinge loss function for binary classification as
follows:

min
β,w,b

∑
m

‖wm‖2
2

2βm
+ C

∑
i

�(xi, yi;w, b)

s.t. ∀m, βm ≥ 0, ‖β‖1 ≤ 1 (2)

where ∀m, βm denotes the weight for kernel m induced by fea-
ture mapping function φm, β denotes the kernel weight vector,
w = {wm} and b denote the classifier parameters, C ≥ 0 is a pre-
defined regularization parameter, ‖ · ‖1 denotes the �1 norm of a
vector, ∀i, �(xi, yi;w, b) = max

{
0, 1− yi

[∑
m wT

mφm(xi)+ b
]}

denotes the hinge loss function, which is used in all the optimiza-
tion problems in this paper, and ( · )T in � denotes the matrix
transpose operator. We adopt the method in Xu et al. (2010) to
solve MKL in Equation 2.

3.2.2. High-order graph matching based feature selection (HGM-FS)
(Liu et al., 2013) This method extends the traditional LASSO
(Tibshirani, 1994) by adding two regularizers which capture the
geometrical relations (i.e., high-order statistics) between the pre-
dicted vectors and the target vectors (e.g., class label vectors). The
underlying assumption of the method is that the predicted vec-
tors are not only close to the target vectors in the target space, but
also distributed similarly to the target vectors.
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Given a set of training data {xi, yi}i= 1,··· ,N where ∀i, xi ∈ R
d

is a d-dimensional feature vector, and yi ∈ R
|C| is its associated

|C|-dimensional target vector, we denote X = [x1, · · · , xN ] ∈
R

d×N as the feature matrix, and Y = [y1, · · · , yN ] ∈ R
|C|×N

as the target matrix. Letting W ∈ R
d×|C| be the regression

coefficient matrix, and ‖ · ‖F denote the Frobenius norm, the
two new regularizers are defined as B =∑N

i,j= 1 ‖(yi − yj)−
WT(xi − xj)‖2

F and T =∑N
i,j,K = 1 ‖(yi − yj)T(yj − yk)− (xi −

xj)T WWT(xj − xk)‖2
F , where B and T capture the pair-wise and

triplet-wise geometrical relations in the target space between the
predicted vectors and the target vectors, respectively. Therefore,
the final optimization formulation for HGM-FS can be written
down as follows:

L(W) = min
W
‖WT X− Y‖2

F + λ1‖W‖1 + λ2B+ λ3T (3)

where λ1 ≥ 0, λ2 ≥ 0, and λ3 ≥ 0 are regularization parameters.
In theory, it is possible to add any higher-order graph matching
information into the objective function above, and the features
with non-zero regression coefficients from the original feature
space are selected for final classification.

3.2.3. Sparse multimodel learning (SMML)
(Wang et al., 2013) SMML was proposed to integrate hetero-
geneous features from different modalities by using the joint
structured sparsity regularizations to learn the feature importance
from both group-wise and individual point of views.

Let {xi, yi}i= 1,··· ,N be N training samples, where each
input vector ∀i, xi = {(x1

i )T, · · · , (xK
i )T} ∈ R

d has d =∑K
j= 1 dj

dimensions containing all features from K modalities in
total, each modality j has dj dimensional feature vector, yi ∈
R
|C| is its associated |C| dimensional class label vector, and
|C| is the number of classes. Let X = [x1, · · · , xN ] ∈ R

d×N

and Y = [y1, · · · , yN ] ∈ R
|C|×N . We denote the classification

coefficient matrix as W = [w1
1, · · · , w1|C|; · · · ;wK

1 , · · · , wK|C|] ∈
R

d×|C|, where w
q
p ∈ R

dq is the weights of all features from the qth
modality in the classification decision function of the pth class.

Based on these notations, SMML can be formulated as follows:

min
W

|C|∑
i= 1

N∑
j= 1

(
1− yji(wT

i xj + bi)
)
+

+2γ1

|C|∑
i= 1

K∑
j= 1

‖wj
i‖2 + 2γ2 ‖W‖2,1 (4)

where yji ∈ {−1, 1} denotes the binary class label for data xi,

wi ∈ R
d denotes the classification coefficient vector for class i,

w
j
i ∈ R

dj denotes the classification coefficient vector for class i
and modality j, γ1 ≥ 0 and γ2 ≥ 0 are two predefined regulariza-
tion parameters, ( · )+ = max{0, ·}, and ‖ · ‖2,1 denotes the �2,1

norm of a matrix. Both the regularizers try to capture the essen-
tial structure in the classification coefficient matrix to improve
the performance. In Wang et al. (2013), a very efficient algorithm
has been proposed to solve Equation 4, which is guaranteed to
converge to a global optimal solution.

4. RESULTS
In order to verify the effect of integration of both imaging and
genetic information on the AD prediction accuracy, we perform
two classification tasks separately: (1) binary classification, i.e.,
AD vs. MCI, AD vs. HC, and MCI vs. HC; (2) multiclass clas-
sification, i.e., AD vs. MCI vs. HC. Ten-fold cross validation is
utilized for evaluating each method. LIBSVM (Chang and Lin,
2011) is employed as our linear SVM solver. The parameters for
each method is determined using grid search. Best performance
of each method is reported.

4.1. DATA PROCESS
For MRI, PET, and CSF, we utilize all the features, that is, 93 +
93 + 3 = 189 in total. For genetic SNP data, we apply the pre-
processing method to rank the 5677 SNPs in a descending order,
and finally preserve the top 189 SNPs as the final features for the
genetic data without fully tuning, because we would like to make
the data from both imaging and genetic information sources
balanced.

For MRI, PET, and CSF, each feature is normalized by sub-
tracting the mean and then divided by the standard deviation,
where the mean and the standard deviation are calculated from
training data. That is, given a set of training data {xi}i= 1,··· ,N ,
every single data sample x̃ needs to be normalized as ∀j, x̃(j)←

x̃(j)−x̄(j)√
1
N

∑N
i= 1[xi(j)−x̄(j)]2+ε

, where x̄ = 1
N

∑N
i= 1 xi denotes the mean of

the training data, j denotes the jth feature in each feature vector,
and ε is a very small positive constant to avoid the case of the
dominator equal to zero.

For genetic SNP features, each feature is normalized by sub-
tracting the minimum value along the dimension and then
divided by the difference between the maximum and the min-
imum along the dimension as well, calculated from training
data. This normalization process can be written as ∀j, x̃(j)←

x̃(j)−mini= 1,··· ,N xi(j)
maxi= 1,··· ,N xi(j)−mini= 1,··· ,N xi(j)+ε

.

To generate the final feature vectors as the input for each feature
selection method, each feature is further normalized to the �2-
norm unit ball based on the training data. This normalization can
avoid the scaling bias in each feature. Again, this normalization

process can be written as ∀j, x̃(j)← x̃(j)√∑N
i= 1 xi(j)2+ε

.

4.2. BINARY CLASSIFICATION
In this experiment, we perform three binary classification tasks:
AD vs. MCI, AD vs. HC, and MCI vs. HC, respectively. For each
task, the former is the positive class, and latter is the negative
class. We also test 9 different configurations of modalities as fea-
tures for feature selection methods: (1) MRI only, (2) PET only,
(3) CSF only, (4) SNP only, (5) MRI+SNP, (6) PET+SNP, (7)
CSF+SNP, (8) MRI+PET+CSF, and (9) MRI+PET+CSF+SNP.
Linear SVMs with the final features are utilized as the baseline
method, because there is no feature selection involved.

We first analyze the performance using each individual modal-
ity, compared to the performance using SNP. Figure 1A shows
the performance using SNP features, and Figures 1B–D show
our comparison results. From Figure 1A we can see that using
SNP feature selection based classifiers outperform the baseline
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FIGURE 1 | Binary classification. (A) Classification performance using
SNP features. (B–D) Mean accuracy percentage improvement using
MRI, PET, CSF, respectively, compared to using SNP, with the four
different classification methods, compared to the performance using
SNP. (E–H) Mean accuracy percentage improvement, by adding SNP

features, using different classification methods. (I–K) Learned weights
by MKL, HGM-FS, and SMML, respectively, using all the four feature
modalities, whose order is 93-dim MRI, 93-dim PET, 3-dim CSF, and
189-dim SNP. The weights shown in the figure are average over the
10-fold cross validation.

method consistently, but among them there is no winner for all
the binary classification tasks, and their performances are simi-
lar, in general. From Figures 1B–D we can see that, overall, MRI
and PET outperform SNP significantly for all the methods and
all the binary classification tasks, especially for AD vs. HC. For
CSF, only for AD vs. MCI, its performances of all the meth-
ods are worse than those SNP correspondingly. For the other
two classification tasks, the performances are still much better
than using SNP. Notice that the dimensionality of CSF features
is only 3, which leaves little room for selecting important fea-
tures, while the dimensionality of SNP features are 189. However,
it seems that the discriminative power of SNP features are very
weak, which results in that even the dimensionality of the fea-
tures is higher, its performance is still worse than others. General
speaking, for AD prediction on the binary classification tasks, the
discriminative power of different modalities can be ordered as
PET>MRI>CSF>SNP.

Next we compare the performance with/without SNP fea-
tures using MRI, PET, CSF, respectively, and MRI+PET+CSF.
Figures 1E–H shows our comparison results. For AD vs. HC,
by adding the SNP features the performance using each method
improves little, in general, especially for each feature selection
based classifiers. This is mainly because the performance using
the rest modalities without SNP are almost saturated, and under
this circumstance the SNP features will be considered as noisy fea-
tures, which has little contribution to the performance. Another

reason is that AD vs. HC is the easiest task due to their differences.
For the other two binary classification tasks, especially for AD vs.
MCI, the performance improvement by adding SNP features is
significant for all the methods. This is mainly because the dis-
ease statuses in each task have no clear differentiation, which
makes the discriminative power of the rest modalities quite weak
as well, and in this case the SNP features can provide complemen-
tary information to help differentiate the disease statuses. Overall,
even though the discriminative power of SNP features for AD
prediction are rather weak, these features do help other modal-
ities improve the performance for each feature selection based
classifier, especially on AD vs. MCI.

Table 1 shows the classification performances of different
methods using all the four modalities. As we see, all the fea-
ture selection based classifiers outperform the baseline method
significantly, but still there is no winner for all the binary classi-
fication tasks. Among the three feature selection based classifiers,
HGM-FS works the best, which has achieved the state-of-the-art
performance.

Finally we analyze the learned weights by each feature selection
method using all the four modalities, as shown in Figures 1I–K.
As we see, the weights for SNP features are relatively smaller than
those for the other modalities, on average, and most of them
are zeros. This observation demonstrates that the discriminative
power of SNP features is much weaker than that of the other three
modalities, which is consistent with the observation in Figure 1.

Frontiers in Aging Neuroscience www.frontiersin.org October 2014 | Volume 6 | Article 260 | 5

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Zhang et al. Imaging-genomics integration for AD prediction

However, these small non-zero weights are still very important
for improving the performance for AD prediction. Also, for these
methods, some of the selected features are shared, which may be
very important for the prediction of the disease status. Among the
three methods, the selected features by HGM-FS are sparsest for
every binary classification task.

4.3. MULTICLASS CLASSIFICATION
For multiclass classification, we conduct three “one-vs-the-rest”
binary classification tasks instead, i.e., HC vs. non-HC, MCI
vs. non-MCI, and AD vs. non-AD. Then a test data sample

Table 1 | Performance comparison (%) among different methods

using all the four modalities (i.e., MRI, PET, CSF, and SNP) in terms of

“mean ± standard deviation” for binary classification tasks (i.e.,

positive class vs. negative class).

Linear SVMs MKL HGM-FS SMML

AD Accuracy 65.0±8.7 67.8±9.3 76.2 ± 11.3 69.1±14.8

vs. Sensitivity 52.0±23.5 50.0±27.1 74.0 ± 25.0 69.5±23.4

MCI Specificity 72.3±11.4 77.8 ± 16.2 77.8±16.7 69.0±18.6

AD Accuracy 87.5±14.1 91.9±13.2 92.9±9.5 94.8 ± 7.3

vs. Sensitivity 90.0±14.1 94.0±13.5 94.0 ± 9.7 94.0 ± 9.7

HC Specificity 85.0±17.0 89.5±17.4 91.5±14.5 95.5 ± 9.6

MCI Accuracy 71.2±14.6 76.5 ± 11.1 76.4±10.7 75.6±10.8

vs. Sensitivity 76.4±15.8 76.2±11.7 78.8 ± 9.1 76.3±12.1

HC Specificity 62.0±26.3 76.5 ± 16.3 72.0±19.8 73.5±18.3

For better comparison, we highlight the best performances using red color.

is classified to the class whose decision value is the maximum
among the three binary classification tasks. Notice that multiclass
classification is more difficult than binary classification in general.

As we did for the binary classification, we perform similar
analysis for the multiclass classification as well. Figure 2A shows
the performance of each method using SNP features, which is
slightly worse than the corresponding performance in Figures 1A
and 2B shows the performance improvement using MRI, PET,
CSF, respectively, compared to the performance using SNP. Still
MRI and PET work better than SNP. However, different from
binary classification above, CSF works worse than SNP, especially
for feature selection based classifiers. This is because that the
much lower dimensionality of CSF features makes it much more
difficult to distinguish multiple classes simultaneously. To sum-
marize, for AD prediction using multiclass classification, MRI
and PET are better than both CSF and SNP, and PET again
works best.

Figure 2C shows the performance improvements for all the
four methods by comparing the performances using different
modalities with/without SNP. Similar to Figures 1E–H, in gen-
eral, adding SNP features can improve multiclass classification
performance. And Table 2 lists the performances of the four
methods using all the modalities. Still HGM-FS outperforms the
rest methods, and has achieved the state-of-the-art result on AD
prediction using multiclass classification.

Figures 2D–F shows the learned weights by MKL, HGM-FS,
and SMML, respectively, for the three “one-vs-the-rest” binary
classification tasks using all the four modalities. Again, on each
binary classification task, the learned weights for SNP features are
relatively smaller than those for the rest modalities, some of the
features with non-zero weights are shared as well, and among the

FIGURE 2 | Multiclass classification. (A) Classification performance of the
four methods using SNP features. (B,C) Performance improvement in terms
of mean accuracy using the four different methods (B) by comparing
performance of MRI, PET, CSF, respectively, with that of SNP, and (C) by
comparing different modalities with/without genetic SNP features. (D–F)

Learned weights by MKL, HGM-FS, and SMML, respectively, for multiclass
classification using all the four feature modalities, whose order is 93-dim MRI,
93-dim PET, 3-dim CSF, and 189-dim SNP. The weights shown in the figure are
average over the 10-fold cross validation. For MKL, its learned weights keep
unchanged among the three “one-vs-the-rest” binary classification tasks.
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three methods, HGM-FS produces the sparsest selected features
for multiclass classification.

4.4. TOP SELECTED GENETIC BASIS
The top selected SNPs by three different methods in binary classi-
fications are plotted in Figure 3A (HGM-FS method), Figure 3B
(MKL method), and Figure 3C (SMML method). In all figures,

Table 2 | Performance comparison (%) among different methods

using all the four modalities (i.e., MRI, PET, CSF, and SNP) in terms of

“mean ± standard deviation” for the multiclass classification task

(i.e., AD vs. MCI vs. HC).

Linear SVMs MKL HGM-FS SMML

Accuracy 53.0 ± 14.0 68.4 ± 11.8 71.0 ± 8.4 66.8 ± 11.3

For better comparison, we highlight the best performances using red color.

the color map is used to show the weights of different features in
classifications. If the weight is large, the feature is important to
the corresponding class.

The top selected SNPs by two different methods in multiclass
classifications are plotted in Figure 3D (HGM-FS method) and
Figure 3E (SMML method). The MKL method has the identical
results in binary and multiclass classifications, thus the selected
SNPs by MKL method are the same as Figure 3B.

Because the feature selection mechanisms are different in
three methods, the top selected SNPs are different. However,
after our careful investigations, we found that many of the
most top selected SNPs among three methods come from the
same several genes. For example, the most top selected SNPs in
HGM-FS method in multiclass classifications come from gene
“CTNNA3,” which is a protein-coding gene and is associated to
late-onset Alzheimer’s disease (Miyashita et al., 2007). The most
top selected SNPs in SMML method in multiclass classifications
come from gene “PON2,” which encodes paraoxonase-2 gene and

FIGURE 3 | Top selected SNPs using different methods for (A–C) binary classifications, and (D,E) multiclass classification. The MKL method has the
identical results in binary and multiclass classifications as shown in (B). The color map shows the learned feature weights in classifications.
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is associated with apolipoprotein E4 allele in both Alzheimer’s
and vascular dementias (Janka et al., 2001). The most top selected
SNPs in MKL method in multiclass classifications also come from
gene “CTNNA3” and gene “PON2.” Although the well-known
APOE SNP is not the top one SNP in our list, it still appears in
the top rank list. Because our studies are data-driven integrative
multi-variate studies, our results are consistent with the existing
GWAS results but also show the difference. The top selected SNPs
in our studies reveal more interactions between genotypes and
phenotypes.

5. DISCUSSION AND CONCLUSIONS
In this paper, we conduct a comprehensive study on modality
integration for Alzheimer’s disease (AD) prediction using the
ADNI dataset. We employ four widely-used modalities (i.e., MRI,
PET, CSF, and SNP), and compare three state-of-the-art feature
selection based linear classifiers (i.e., MKL/HGM-FS/SMML +
linear SVMs) with the baseline classifier (i.e., linear SVMs without
feature selection). In our experiments, we perform both binary
classification (i.e., AD vs. MCI, AD vs. HC, and MCI vs. HC) and
multiclass classification (i.e., AD vs. MCI vs. HC), and analyze the
results, respectively, based on 10-fold cross validation.

The key observations from our experimental results are: (1)
Among all the compared methods, MRI and PET perform better
than CSF and SNP in terms of prediction accuracy, and PET is
the best among all the four modalities; (2) In general, SNP per-
forms worst, but it is still helpful to improve the performance
with other modalities together; (3) Among the three feature selec-
tion based classifiers, HGM-FS with linear SVMs performs best,
and using all the four modalities, it has achieved the state-of-the-
art performance for either binary or multiclass classification for
AD prediction; (4) The selected features by each method share
some common parts, the learned weights for SNP features are rel-
atively smaller than those for the others, and HGM-FS produces
the sparsest features among the three methods.

Our results are also very useful for clinical usage. For instance,
considering the prediction performance, PET should be pre-
ferred, which is consistent with some recent evidences in the
diagnosis of AD (Sperling and Johnson, 2013). For AD vs.
HC, imaging modalities are highly recommended, and adding
genomics data will, generally speaking, harm the classification
accuracy. However, for AD vs. MCI, considering all the imaging
and genomics data is highly recommended, since these modali-
ties contain complementary information and integration of these
information for diagnosis will be very helpful. Among the com-
pared feature selection methods, one should be chosen accord-
ing to the classification task, which will maximize the accuracy,
e.g., for AD vs. HC, SMML is preferred rather than HGM-FS.
Several imaging and genetic features are commonly selected by
the feature selection methods in our experiments. These fea-
tures may have high correlation with AD, and understanding why
and how these features change may provide useful evidence to
understand AD.
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