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Cross-sectional aging functional MRI results are sometimes difficult to interpret, as
standard measures of activation and deactivation may confound variations in signal
amplitude and spread, which however, may be differentially affected by age-related
changes in various anatomical and physiological factors. To disentangle these two types
of measures, here we propose a novel method to obtain independent estimates of the
peak amplitude and spread of the BOLD signal in areas activated (task-positive) and
deactivated (task-negative) by a Sternberg task, in 14 younger and 28 older adults. The
peak measures indicated that, compared to younger adults, older adults had increased
activation of the task-positive network, but similar levels of deactivation in the task-negative
network. Measures of signal spread revealed that older adults had an increased spread
of activation in task-positive areas, but a starkly reduced spread of deactivation in task-
negative areas. These effects were consistent across regions within each network. Further,
there was greater variability in the anatomical localization of peak points in older adults,
leading to reduced cross-subject overlap. These results reveal factors that may confound
the interpretation of studies of aging. Additionally, spread measures may be linked to local
connectivity phenomena and could be particularly useful to analyze age-related deactivation
patterns, complementing the results obtained with standard peak and region of interest
analyses.
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INTRODUCTION
Functional MRI (fMRI) provides a powerful tool for investigating
brain activity. However, inherent to many of the measures typically
used for fMRI analyses, estimates of the magnitude of activation
of particular voxels and of the area over which the signal spreads
are conflated with one another. Changes in signal amplitude and
spread may have different theoretical interpretations. While signal
amplitude is supposed to reflect the degree of involvement of very
precise cortical areas, signal spread may reflect the extent to which
more diffuse local inhibitory or excitatory networks are involved
(Tolias etal., 2005; Tehovnik etal., 2006). Importantly, separat-
ing these two properties may provide additional information to
understand cognitive theories of aging. For instance, theories
investigating changes in brain activity during working memory
performance in aging may invoke constructs such as compensatory
mechanisms that respond to increasing task difficulty (Reuter-
Lorenz and Cappell, 2008; Schneider-Garces etal., 2010), which
could predict a focal increase in activity, or in turn may focus on
a broad loss of specialization, or dedifferentiation, of tissue (e.g.,
Park etal., 2004 ), which may lead to an increased spread of activa-
tion. Current analysis methods do not provide an accurate way to
dissociate these phenomena.

Advancing age leads to cognitive decline, even in populations of
healthy older adults, and it is also characterized by altered patterns
of neural activity (see Kramer et al., 2006; Park and Reuter-Lorenz,

2009; Fabiani, 2012). Such changes are typically explained as up-
regulation of resources, or alternatively as the reduced suppression
of distracting mental processes. Importantly, these altered func-
tional patterns greatly depend on the networks of brain areas being
considered. fMRI studies indicate that during task performance,
not only are some brain areas “activated” (i.e., their blood oxygen-
level dependent, or BOLD, signal is higher than that observed
during a baseline period), but also that others are “deactivated”
(i.e., their BOLD signal is below that observed during a base-
line period). For instance, attention-demanding tasks are typically
associated with activation of a set of areas encompassing dorsal
and lateral frontal and parietal regions forming a dorsal attentional
network (DAN), with concurrent deactivation of more medial and
ventral regions (the default-mode network, DMN; e.g., Shulman
etal., 1997b; Mazoyer etal., 2001; Raichle etal., 2001; Raichle and
Snyder, 2007). It is not clear whether aging affects focal blood
flow modulations and the spread of such activations and deactiva-
tions differently. In this paper we present a novel approach whose
purpose is to disambiguate peak amplitude and spread, and show
how this may help understand some of the brain activation and
deactivation patterns that occur with aging.

Regions within the DAN are considered to be centrally involved
in controlling attention and supporting working memory and
executive functions (Corbetta and Shulman, 2002). Activation
of regions within the DMN has been linked to monitoring
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the environment (Raichle etal., 2001), stimulus-independent
thoughts (Mason etal., 2007), self-referential thinking (Gusnard
etal,, 2001), social cognition (Harrison etal., 2008), and mental
projection (Buckner and Carroll, 2007). Conversely, deactiva-
tions within the DMN during externally driven tasks suggest the
suppression of these distracting mental processes, and a shift of
resources to task-relevant processes (McKiernan etal., 2003, 20065
Binder etal., 2005; Sonuga-Barke and Castellanos, 2007; Castel-
lanos etal., 2008). Failure to suppress the DMN is associated with
attentional lapses (Weissman etal., 2006) and forgetting (Otten
and Rugg, 2001; Daselaar etal., 2004). The DMN is strongly anti-
correlated with attentional areas (Fox et al., 2005; Fransson, 2006;
Toro etal., 2008) and the strength of this anti-correlation is pre-
dictive of behavioral performance on tasks requiring attentional
control (Kelly etal., 2008). Thus, the literature suggests a diamet-
ric opposition and an active competition for attentional resources
between these two networks (Fox etal., 2005, 2009; Fransson,
2006). For the purposes of this paper, and to avoid still-debated
interpretation issues, we will label the DAN the “task-positive
network,” and the DMN the “task-negative network.”

Interestingly, aging appears to impact these two networks
differentially. Substantial evidence demonstrates that areas com-
prising the task-positive network are often up-regulated in
older adults, especially during working memory and execu-
tive control studies (e.g., Jonides etal., 2000; Reuter-Lorenz
etal., 2000; Cabeza etal., 2002; Grady etal., 2010; Schneider-
Garces etal.,, 2010). In contrast, several studies find that during
task performance older adults deactivate regions in the task-
negative network to a lesser extent than younger adults (e.g.,
Lustig etal., 2003; Grady etal., 2006, 2010; Persson etal., 2007;
Sambataro etal., 2010).

When examining such age-related differences, the vast major-
ity of functional fMRI research focuses on the amplitude of the
BOLD response. This is done using whole-brain group-level
maps, or by measuring values extracted from a peak point in
a region of interest (ROI). Group-level maps can be problem-
atic as they are dependent upon spatial overlap across subjects.
In cases where inter-subject topographic variability is high, dif-
ferent results can be obtained when examining subject-specific
rather than group-level maps (see Feredoes and Postle, 2007).
Further, there is an underlying assumption that the observed
differences reflect variations in the magnitude of activation as
a function of age rather than as a function of confounding
variables that could be altering spatial properties of the BOLD
signal (e.g., increased anatomical variability or smaller spread of
activation).

Region of interest analyses provide the flexibility to extract sig-
nal change using a location specific to each subject or group. Still,
it is not uncommon to implement a ROI peak-based approach
that uses a fixed point for all subjects. A second concern relates to
how the peak value is quantified. A common approach is to define
ROIs using spherical kernels whose diameters can vary from quite
small (3-4 mm) to quite large (8-10 mm). Such discrepancies
between studies are worth further consideration, as these BOLD
effects are not pure measures of amplitude. In standard ROI analy-
ses the results are a product of both the amplitude of the signal and
of how consistently that signal spreads through the volume that

is being sampled. If peak amplitudes are similar, but the spread
varies across two populations, drastically different results could be
obtained depending on a researcher’s choice of ROI size for the
measurement.

If the BOLD response around a peak is conceptualized as a
Gaussian kernel, it contains two important characteristics—its
height (amplitude) and its width (spread). While a great deal of
the literature focuses on perceived age differences in amplitude
measures, age effects on the spread of activation or deactivation
have only been cursorily explored. This limited body of work usu-
ally finds that older adults have reduced spatial extents (D Esposito
etal., 1999; Buckner etal., 2000; Hesselmann et al., 2001; Huettel
etal., 2001; Stebbins et al., 2002; Aizenstein et al., 2004) or that the
extent varies across brain regions (Grady etal., 2010). Although
intriguing, previous examinations have been limited by a com-
bination of small sample sizes (Huettel etal., 2001; Aizenstein
etal., 2004), using group rather than individual extents (Buck-
ner etal., 2000; Cabeza etal., 2002; Mattay etal., 2002; Stebbins
etal., 2002; Grady etal., 2010), approximate voxel-counting met-
rics (D’Esposito etal., 1999; Hesselmann etal., 2001; Huettel
etal., 2001; Stebbins etal., 2002; Aizenstein etal., 2004; Sam-
bataro etal., 2010), examining only one attentional network (all
but Grady etal., 2010), or using qualitative rather than quantita-
tive estimates of spatial extent (Cabeza etal., 2002; Grady etal.,
2010).

In the papers that do take a quantitative approach, typi-
cally these “spatial extent” analyses are conducted by consid-
ering the number of voxels within a region that pass some
statistical threshold-level of activation. With this approach the
amplitude of the peak and its spread are confounded and
no independent estimation is possible. In other words, the
current literature suggests an age-related modification in the
spatial extent of the BOLD signal, but such an effect has
not been thoroughly explored. This is crucially important as
such changes on an individual level would impact both group-
level whole-brain maps, as well as the results obtained from
peak ROI measures where the size of the kernel varies across
studies.

Here we introduce a new quantitative approach to estimate
the spatial extent, or spread, of the BOLD response (measured in
mm), around peak activations and deactivations in task-positive
and task-negative networks. This approach is based on estimat-
ing a parameter (signal spread) that reflects the rate of decay of
the BOLD signal as a function of distance from its peak. As the
decay is expressed relative to the peak, this measure does not con-
found signal amplitude with its spread. This spread measure could
be conceptualized as reflecting how coherently local connections
are engaged around peak areas. In other words, to the extent
that the signal spreads further within modulated areas, it could
be thought that local connections are more consistently engaged.
Conversely, a reduction in spread may be associated with a loss
or reduced consistency in local connections. In this way, measures
of spread of the BOLD signal may provide information about the
local connectivity within a particular region, separately from mea-
sures of peak amplitude, which instead are typically interpreted as
estimates of the up- or down-regulation of a particular cortical
region.
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MATERIALS AND METHODS

PARTICIPANTS

The participants were 14 younger (range = 18-27; mean = 23.3;
females = 6) and 28 older adults (range = 65-80; mean = 70.6;
females = 12)!. Subjects were screened for psychological and neu-
rological problems, medications, and vision. To participate in the
experiment individuals had to be cognitively unimpaired, as indi-
cated by score atleast 51 on the modified Mini-Mental Status exam
(mMMSE; Mayeusx et al., 1981)2, and show no signs of depression
on Beck’s Depression Scale (BDI; Beck etal., 1996). Participants
were also administered the Vocabulary subtest of the Wechsler
Adult Intelligence Scale-Revised (WAIS-R; Wechsler, 1981) and
the operation word span task (O-Span, Engle etal., 1999). The
university’s institutional review board approved all procedures,
and participants provided written informed consent. Participants
were part of a larger project and a subset of these data, involv-
ing completely independent analyses from those reported here,
have been presented elsewhere (Schneider-Garces etal., 2010).
Demographics are presented in Table 1.

PROCEDURES

Subjects performed a modified version of Sternberg’s memory
search task (Sternberg, 1966) with memory load varying from
two to six items. Subjects saw an initial display of letters, and

"This study was part of a multi-session project on the effects of age and fitness on
neurovascular coupling. Fitness was expected to be particularly important in the
older adults. For this reason, more older than younger adults were recruited. See
Fabiani et al. (2014).

2This version of the MMSE includes picture naming and forward and backward
span in addition to standard questions.

Table 1 | Demographic, behavioral, and peak variability data.

Variable Younger adults Older adults t(40) or
(N = 14) (N = 28) F(1,38)
Age 23.3(2.3) 70.6 (4.3) 46.41**
Education (years) 16.0 (1.7) 16.2 (3.4) 0.40
Modified MMSE 56.7 (1.3) 55.5 (1.3) 7.84*
Vocabulary 13.0 (2.4) 13.3(2.4) 0.15
(WAIS-R)
O-Span 23.81(9.7) 13.4 (10.1) 2.80%*
Sternberg accuracy  0.94 (0.05) 0.87 (0.08) 4.71*
(avg)™
Sternberg RT (avg) 926(176) 1068(168) 5.35%
Peak location
variability (log)
Task-positive 1.93 (0.09) 1.97 (0.02) 1.74
Task-negative 1.77 (0.08) 1.85 (0.08) 8.03*

Mean (SD); MMSE, modified mini-mental status exam, O-Span, Operation-span
task. For the MMSE, Viocabulary, O-Span, and peak location variability age dif-
ferences were tested using an ANCOVA in which gender and education were
entered as covariates. Group significantly differ at *p < 0.05; **p < 0.005.

+ F-statistic calculated on average Fisher transformed accuracy data.

then had to indicate whether a subsequently presented probe was
included in the array. The letters were uppercase (B, D, E G,
H, J, M, R, and T). Corresponding lower-case probes were used
to avoid a direct visual match. Each letter subtended approx-
imately 1.4° of visual angle in the diagonal. This task and
design were selected because they produce robust activation of
the attentional network and deactivation of the task-negative
network.

The stimuli were presented across five runs. Each run con-
sisted of five rest intervals (20 s each) and four task blocks
(48 s each) alternating with each other. Within each block
subjects were presented with eight trials, each beginning with
the presentation of a memory set for 3 s above a fixation-
cross. A 1-s maintenance interval followed where only the
fixation-cross remained on screen. The probe letter was then
presented for 500 ms, followed by another 1.5-s fixation-
period. During this 2-s interval, subjects indicated via button
press whether the probe was new or part of the preceding
memory set.

Each memory set was composed of randomly chosen letters,
with the constraint that no identical letters were allowed within
the same set. The probe letter was present (yes response) on 50%
of the trials. Load was parametrically manipulated (2, 3, 4, 5, or 6
letters) across the five runs in either ascending (2-6) or descending
(6-2) order, with each run containing only one set size, yielding a
total of 32 trials per load. The random assignment to an ascending
or descending order was made for counterbalancing purposes and
did not significantly affect either the behavioral or BOLD results.

DATA ACQUISITION AND PREPROCESSING

Participants’ fMRI data were obtained on a Siemens Allegra 3T
scanner. Data were recorded with a fast echo-planar imaging
sequence with BOLD contrast (TR = 2000 ms, TE = 25 ms, flip
angle = 80°, FOV = 220 mm, 64 x 64 acquisition matrix). The
scans consisted of 38 slices interleaved, 3-mm-thick axial slices
(3-mm in-plane resolution, 0.3-mm gap). T1-weighted anatom-
ical scans (MPRAGE, 192 slices, 1 mm x 1 mm x 1 mm voxel
size) were obtained to enable accurate anatomical coregistra-
tion.

The data were analyzed using FMRIB’s Software Library
4.1.4 (FSL; Smith, 2004; Woolrich etal., 2009). Preprocessing
included motion correction, brain extraction, spatial smoothing
with a Gaussian kernel of FWHM 6.0-mm, and the application
of a 70-s high-pass temporal filter. Brain-extracted functional
images were transformed into Montreal Neurological Institute
(MNI) space through a two-stage process between the sub-
ject’s functional and T1 scans, and the subject’s T1 to the MNI
template with affine transformations of 6 and 12° of freedom,
respectively.

Each run was modeled as a boxcar design convolved with a
gamma hemodynamic response function. Runs within a subject
were combined using a fixed-effects model. Both activity positively
and negatively correlated with the predicted model were consid-
ered for the current analyses. Group-level statistics were calculated
using FSL with a mixed-effects design and adjusted for multiple
comparisons using a cluster correction determined by z > 2.3 and
a (corrected) cluster significance threshold of p = 0.05.
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ROI PEAK ANALYSES

A series of anatomical regions were selected to further examine
the two networks (Figure 1). Peak coordinates from published
studies (Shulman etal., 1997a; Raichle etal., 2001; Greicius et al.,
2003; Fransson, 2005; Uddin etal., 2009) were placed into the
Harvard-Oxford atlases included with FSL to select a series of
ROIs. Subdivisions within a region (e.g., anterior and poste-
rior superior temporal gyrus) were combined to yield a solitary
ROI. The spatial pattern of resulting ROIs was highly congru-
ent with visual depictions of default and attentional control
networks published in the literature (Beckmann etal., 2005;
Damoiseaux et al., 2006, 2008; Buckner and Carroll, 2007; Smith
etal., 2009).

The ROIs were used to mask a subject’s first level analysis. In
this way it was possible to extract subject- and run-specific peaks
of activation or deactivation within each ROI. Allowing the peak
to vary across subjects accounts for individual anatomical variabil-
ity and avoids biases that might be introduced if a singular peak
location was used for all subjects (Swallow etal., 2003; Devlin and
Poldrack, 2007; Feredoes and Postle, 2007).

As ROIs sizes vary within the literature, a cross-section of sphere
sizes was selected to determine whether different results would
have been obtained with different choices of ROI sizes. Spheres
with a radius of 3, 5, and 10 mm were placed around each ROI

peak to assess percent signal change. Contrasts were such so that
this assessed activation for the task-positive regions, and deactiva-
tion for the task-negative ones. These values were averaged across
their respective networks. As the current focus is not on the load
manipulation, values were also averaged across the five varying
levels of difficulty. For each network and sphere size data were
entered into an analysis of covariance (ANCOVA) controlling for
years of education and gender.

SPATIAL VARIABILITY

As older adults are conceptualized as being more anatomically
variable due to atrophy, intra-group consistency in spatial local-
ization is an important issue to consider (Swallow etal., 2003;
Devlin and Poldrack, 2007). Within each ROI, the average Euclid-
ian distance between each individual’s peak location in MNI space
and every other subject in their group (young or old) was calcu-
lated. This captures how tightly loci of blood flow are clustered
and is a measure of within group consistency in peak locations.
These measures were subsequently averaged across set sizes and
across all regions in a network. This resulted in every individ-
ual having one summary measure per network representing mean
spatial deviation in peak locations from their respective cohort.
These scores were compared between the age groups using an
ANCOVA controlling for years of education and gender. Finally, a

A Task-Positive Regions of Interest

I!l Frontal pole Superior frontal gyrus Insula

Paracingulate . Occipital pole

B Task-Negative Regions of Interest

=-16

Hippocampus Medial temporal gyrus

Superior temporal gyrus i Lingual gyrus
cortex

. Operculum

. Precuneus

Posterior cingulate .

Temporal pole

FIGURE 1 | Regions included in region of interest (ROI) analyses for the task-positive (A) and task-negative network (B).
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repeated-measures ANCOVA was performed examining potential
network by group interactions, also controlling for education and
gender.

SPREAD OF ACTIVATION/DEACTIVATION

This measurement involved obtaining estimates of the relative
amplitude of the signal at various distances from the peak point
of activation or deactivation (averaged across all directions). The
process of spatial smoothing acts as a spatial filter and modifies the
distribution of the BOLD signal across the functional volume. As
a result the BOLD data were reprocessed without spatial smooth-
ing, to avoid any interaction between sphere size and smoothing
kernel. Peak locations for each area and subject were then iden-
tified, and the percent signal-change values were extracted using
a series of spherical ROIs with radii ranging from 3 mm (voxel
size) to 10 mm, with 1-mm steps, placed around the extracted
peak location. Values for the task-positive regions were obtained
from the contrast positively correlated with the task, and represen-
tative of activation, while those of the task-negative regions were
drawn from the negatively correlated contrast, and thus represen-
tative of deactivation. Voxels outside the brain were excluded from
analysis.

Observations were then individually normalized for each sub-
ject, run, and ROI by dividing them by the value obtained using
the 3-mm sphere. In this way subsequent measures were trans-
formed into a proportion of the initial 3-mm sphere. This was
done to account for baseline variations in the magnitude of per-
cent signal-change data across subjects (D’Esposito etal., 2003;
Ances etal., 2009). This transformation makes changes assessed
with the increasing sphere sizes purely a function of the relative
spread of the BOLD signal and therefore independent from ampli-
tude. Values were averaged across all runs to yield one pattern per
ROI per subject.

We estimated the BOLD signal changes occurring in the
unique voxels added with each subsequently larger sphere
(e.g., when going from 3 mm to 4 mm) using the follow-
ing procedure: (a) We multiplied the volume of a sphere (e.g.,
268 mm X 268 mm X 268 mm) by the normalized percent
signal change value obtained with that sphere (e.g.,0.83) to
compute the overall signal in each sphere adjusted for its size
(e.g.,0.83%268 = 222.44); (b) we subtracted the overall amount
of signal change obtained for a particular sphere (e.g., 4 mm)
from that obtained for the next larger sphere (e.g., 5 mm); and (c)
we divided the results by the difference in volume between the two.
The resulting value corresponds to the average amount of activa-
tion (or deactivation) in those unique voxels added when going up
a step from a smaller to a larger sphere, relative to the intensity of
the 3 mm sphere.

When repeated across all pairs of consecutive spheres, this anal-
ysis characterizes the decay of the BOLD response as a function of
distance from the peak. This curve was then fitted using a func-
tion that assumes that signal should decay proportionally to the
square of the distance from the peak (1/radius?) value. The slope
of this relationship was considered a measure of the speed of sig-
nal “decay” around a peak point. Larger slopes correspond to a
more focal pattern of activation or deactivation and faster dis-
sipation of a signal in surrounding tissue. Conversely, smaller

values as representing a slower decay or broader “spread” of the
BOLD response. As the slopes were derived from “normalized”
values (i.e., values relative to the peak amplitude), they should be
considered as measures of spread irrespective of peak amplitude.
However, we also directly examined the degree of independence of
the spread and peak measures by analyzing the amount of shared
variance between the two measures. Slopes were first averaged
across all regions in a network and entered into an ANOVA. If
these omnibus tests were significant, individual ROIs, collapsed
across hemispheres, were examined.

RESULTS

BEHAVIORAL RESULTS

Due to a response-box malfunction, full behavioral data were
unavailable for four younger adults. The mean reaction time (RT),
Fisher-corrected accuracy, and Cowan’s K data® were entered in
repeated-measure ANCOVAs controlling for education and gen-
der. The RT data indicated main effects of set size (F4,136 = 77.80,
p < 0.001, ¢ = 0.7) and age group (Fj,34 = 4.20, p < 0.05), but
not a set-size by age interaction (Fy,136 = 0.52, n.s., € = 0.7). Sim-
ilarly, the Fisher-corrected accuracy data indicated main effects of
set size (Fy,136 = 8.60, p < 0.001, ¢ = 0.7) and age (Fj 36 = 8.69,
p < 0.01), but no significant interaction (F4,136 = 1.90, p = 0.141,
¢ = 0.7). Crucially, Cowan’s K data showed a main effect of age
(F1,136 = 22.20, p < 0.0001), indicating that span decreased with
age from 5.09 in the younger adults to 3.89 in the older adults. The
average RT and accuracy data are presented in Table 1.

MEAN ACTIVATION AND DEACTIVATION ANALYSES

The mean contrasts for the task-positive and task-negative net-
works are presented in Figure 2. Both groups produced robust
activation, with foci of recruitment in prefrontal, parietal, and
occipital areas. Foci of deactivation were located in medial pre-
frontal cortex, precuneus, posterior cingulate cortex, medial
temporal lobe, and bilateral parietal cortex. These latter brain
regions are representative of areas belonging to the DMN (e.g.,
Raichle etal., 2001; Smith etal., 2009). Older adults showed an
expanded pattern of activation, but more limited patterns of deac-
tivation localized to medial prefrontal cortex, posterior cingulate
cortex, and precuneus. These results are consistent with previ-
ous work (Lustig etal., 2003; Grady etal., 2006; Persson etal.,
2007).

Whole-brain analyses were expanded by using ROI peak anal-
yses with spheres with radii of 3, 5, and 10 mm. These values
were chosen to encompass a variety of sizes that may be used in
typical ROI analyses in the literature. The data were collapsed
across different areas within each network, keeping task-positive
and task-negative regions separate, and submitted to an ANCOVA
controlling for gender and years of education. The inclusion of
education did not materially alter the results of these or subse-
quent analyses. Education was maintained within all models to be
consistent with prior work in the literature.

Grand mean values for each network and sphere size, con-
trolling for years of education and gender, are presented in

3K was calculated according to the method reported in Schneider-Garces etal.
(2010), where these analyses are reported in a more extensive fashion.
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Younger adults
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FIGURE 2 | Mean activation (A) and deactivation (B) effects on the BOLD response in younger and older adults.

Older adults

X=0

11}

Y=-18 Z=7

Table 2. Older adults had significantly greater activation of the
task-positive network areas than younger adults, as measured with
the 3 mm (F; 33 = 8.32, p < 0.01), 5 mm (F 33 = 9.40, p < 0.01),
and 10 mm (F) 33 = 10.30, p < 0.01) spheres. In contrast, older
adults demonstrated significantly reduced deactivation of task-
negative areas compared to younger adults only when assessed
with the 10 mm sphere (Fj 33 = 6.98, p < 0.05) but similar lev-
els of deactivation using the 3 mm (F; 33 = 0.33, p = 0.57) and
5 mm (F; 33 = 0.08, p = 0.78) spheres. These data provide ini-
tial indication that increases in activation in the older adults are
present for both the peak locations and the immediately surround-
ing tissue, while decreases are located only close to peak points of
deactivation and rapidly weaken in surrounding tissue. This phe-
nomenon will be examined in greater detail with the following
analyses.

SPATIAL VARIABILITY

This analysis assessed the variability of the peak point across indi-
viduals and age groups. Data for this measure, controlling for years
of education and gender, are presented in Table 1. The distribution
in space of task-evoked activation peak points was not significantly

different between the two age groups (Fj 33 = 1.74, p = 0.195).
Points of deactivation were significantly more variable in the older
adults (F1,33 = 8.03, p < 0.01). The network by group interaction
was not significant (F; 33 = 1.70, p = 0.20).

ANALYSES OF SIGNAL SPREAD

To measure signal spread, we looked at the amount of task-related
activation (or de-activation) present in voxels at increasing dis-
tances from peak foci. The relative signal changes for these voxels
were normalized with respect to the peak value measured with
a 3 mm sphere to account for variability in amplitude across
subjects. Data for task-positive and task-negative networks was
averaged across ROIs with a network. Group results are presented
in Figure 3.

This figure shows that, as expected, the amplitude of the signal
decays with distance. To quantify this decay, we fitted a quadratic
decay function to the activation (or deactivation) values separately
for each location and subject. The fits of this function with the data
were typically good, with #’s > 0.5 in all cases*. The slope of this

4We also fitted other functions — cubic, exponential — with similar, but slightly
lower, fits.

Table 2 | Mean percent change values observed using 3 mm, 5 mm, and 10 mm spheres for both the task-positive and task-negative networks.

3 mm sphere

5 mm sphere

10 mm sphere

Positive* Negative Positive** Negative Positive* Negative*
Old 2.20 -1.35 1.49 —0.780 0.641 -0.14
Young 1.57 —-1.25 1.02 -0.812 0.378 —-0.31

Groups significantly differ at *p < 0.05 **p < 0.005.
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FIGURE 3 | Normalized BOLD signal amplitudes averaged across all regions within each network as a function of distance from the peak.

function indicates the decay/spread of the signal around the area
of peak; larger values represent a more focal spread and thus a
more rapid decay. All the statistical analyses were then conducted
on these slope estimates. For ease of presentation, we labeled the
slope of the quadratic function as “spread.”

The decay parameters for each task-positive and task-negative
area, averaged across subjects separately for younger and older
adults, are presented in Figure 4 (bottom row) and Table 3.
The values presented are estimated grand means for task-positive
and task-negative networks. The omnibus ANCOVA (controlling

for education and gender) performed on data averaged across
all areas and networks revealed a significant group by network
interaction (F; 33 = 17.82, p < 0.001). Separate planned anal-
yses for task-positive ROIs indicated a main effect of group
(F138 = 6.99, p < 0.05), with the signal decaying faster in
younger than older adults (left bottom graph in Figure 4).
The opposite was true for task-negative areas (right bottom
graph in Figure 4); the average signal decayed faster (ie.,
spread less) in older than in younger adults (Fj3s = 13.82,
p < 0.001). For both task-positive and task-negative areas,
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FIGURE 4 | Top left, (A) Amplitude of the peak BOLD signal within each
ROl in the task-positive network, measured with the smaller (3 mm)
kernel. Bottom left, (B) Slope of the spatial decay of the BOLD signal within
each ROl in the task-positive network. Top right, (C) Amplitude of the peak
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the smaller (3 mm) kernel. Bottom right, (D) Slope of the spatial decay of the
BOLD signal within each ROl in the task-negative network. For all graphs
error bars are based on the SE of the mean across subjects.
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Table 3 | Decay slopes for each ROI, and probability of t-test of the
decay functions for younger and older adults.

Decay Young Decay Old p-value

Task positive regions

Frontal pole 10.477 10.193 0.319
Insula 9.797 8.697 0.006
Superior frontal gyrus 10.941 10.363 0.255
Middle frontal gyrus 9.971 9.665 0.365
Inferior frontal gyrus 9.5633 9.209 0.245
Superior parietal lobule 11.218 10.305 0.126
Lateral occipital complex  10.303 9.795 0.116
Paracingulate cortex 8.791 8.290 0.097
Frontal operculus 9.960 9.432 0.142
Occipital pole 9.530 9.103 0.136
Task negative regions

Temporal pole 10.131 11.135 0.014
Superior temporal gyrus 10.185 10.650 0.267
Middle temporal gyrus 10.321 10.473 0.626
Fronto-medial cortex 10.033 11.012 0.074
Subcallosal cortex 10.587 10.700 0.795
Posterior cingulate cortex 9.378 10.382 0.030
Precuneous 9.591 10.793 0.038
Lingual gyrus 9.398 10.456 0.005
Temporooccipital gyrus 10.875 12.403 0.023
Planum polare 10.425 12.157 0.042
Hippocampus 10.949 11.896 0.13

there was also a significant effect of area within a network
(respectively, Fg360 = 4.00, p < 0.0001, and Fjg 400 = 4.125,
p < 0.0001).

As the omnibus test was significant, a series of analyses
examining individual ROIs within the task-positive network was
performed. All regions demonstrated similar directional trends,
with the younger adults having a more pronounced decay than
the older adults, although this effect reached significance only in
the insula (F; 33 = 9.00, p < 0.05). The opposite was true for
task-negative areas; the average signal decayed faster (i.e., spread
less) in older than in younger adults. This effect was significant
in several regions, including the temporal pole (Fi33 = 6.49,
p < 0.05, the posterior cingulate cortex (PCC; Fj33 = 5.69,
p < 0.05), the precuneus (F} 33 =4.29, p < 0.05), the lingual gyrus
(F1,38 = 9.28, p < 0.005) and the planum polare (F; 33 = 4.40,
p < 0.05), whereas it was marginal in fronto-medial (F; 33 = 4.02,
p =0.052) and temporo-occipital cortex (F 33 = 2.92, p = 0.10).
Thus, in general, the activation signal decayed more slowly and the
deactivation signal decayed faster in older compared to younger
adults.

To provide a more intuitive idea of the significance of these
phenomena, we also computed the signal spread in volumet-
ric terms. To this end, we estimated the distance at which the

signal decays by 50%, and then computed the associated vol-
ume of signal spread, separately for each subject and brain
region. This transformation indicates that the signal spreads
to a volume that is 8.8% bigger in task-positive regions [12.45
vs. 11.44 cubic mm, t(40) = 2.667, p < 0.02] and 10.7%
smaller in task-negative regions [9.98 vs. 11.17 cubic mm,
1(40) = —3.48, p < 0.002] in the older compared to the younger
adults.

Comparison of peak and decay/spread measures

The graphs in the top row of Figure 4 show the peak mea-
sures obtained with the 3-mm sphere for each ROI and network.
Note that this sphere size was chosen to separate the effects
of peak and spread, which are confounded when using larger
spheres. Note also that for the task-negative regions the most
negative peak point was chosen. These graphs indicate that for
the task-positive network (top left) there was a similar pat-
tern across ROIs, with the older adults showing significantly
larger peaks in the frontal pole (Fi 49 = 7.78, p < 0.01), insula
(F1,40 = 7.45, p < 0.01), superior frontal gyrus (Fj40 = 6.33,
p < 0.05), middle frontal gyrus (Fj4 = 5.08, p < 0.05),
paracingulate cortex (Fj49 = 7.89, p < 0.01) and occipital pole
(F1,40 = 7.06, p < 0.05). There was also a trend in the same
direction in superior parietal cortex (Fj40 = 3.10, p < 0.10)
and frontal operculum (Fj 49 = 4.07, p < 0.10). For the task-
negative ROIs, however, the results were less consistent, with two
regions showing a larger (negative) peak for older adults (sub-
callosal cortex: Fi/4 = 12.06, p < 0.005; MTG: Fy49 = 5.21,
p < 0.05), while several others showing trends in the opposite
direction.

In order to test the utility of using spread measures in addi-
tion to standard measures of peak we entered peak and spread
measures as simultaneous predictors in a multiple regression anal-
ysis, using age as the criterion variable. For both the task-positive
and task-negative networks, the overall multiple regression results
were significant [respectively, R(2,39) = 0.541, p < 0.005 for
the task-positive network and R(2,39) = 0.512, p < 0.005 for
the task-negative network]. For the task-positive network, the
beta value was only significant for the peak measure (f = 0.431,
p < 0.05), but not for the spread measure (3 = —0.21 n.s.).
For the task-negative network, the beta value was only signif-
icant for the spread measure (f = 0.452, p < 0.05), but not
for the peak measure (8 = 0.132 n.s.). This suggests that in the
task-positive network the peak amplitudes are being modulated
by age above and beyond changes in the spread of blood flow.
Conversely in the task-negative networks there are residual age
effects on the spread of deactivations after controlling for changes
in amplitude.

Independence of peak and spread estimates

An important issue for the purposes of this paper is how inde-
pendent the spread estimates are from the magnitude of the
peak value. Both measures may be considered indices of the
degree of cortical activation (or deactivation) during the task.
It is important to know, therefore, whether they provide similar
or different information. We used an intra/inter-class correlation
analysis approach to assess the degree of independence of spread
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and peak measures. For each region we compared the average
amount of variance (across subjects) that was shared between dif-
ferent measures. Specifically, for each region we computed four
types of shared variances: (a) the average shared variance between
measures of spread in one region and measures of spread in dif-
ferent regions of the same network (SS); (b) the average shared
variance of measures of peak in one region and measures of
peak in different regions of the same network (PP); (c) the aver-
age shared variance between measures of spread in one region
and measures of peak in different regions of the same network
(SP-all); and (d) the average shared variance between measures
of spread and measures of peak taken from the same region
(SP-same).

The expectation is that all correlations share the network as
a common source of variance. In addition both SS and PP will
have one other source of variance in common (i.e., the same
type of measure), whereas SP-same will have the same region
in common. SP-all correlations will have no other common
sources of variance (different measures and regions) and there-
fore will provide an estimate of the baseline level for shared
variance.

These data were submitted to a mixed-design ANOVA, with one
fixed between-cases factor (network), one random factor (region,
nested within network), and a four-level repeated-measure fac-
tor (correlation type). The results, averaged across task-positive,
task-negative and all regions (see Table 4) indicated a significant
effect of correlation type (F3,57 = 29.16, p < 0.0001). Importantly,
all the intra-class correlations (i.e., PP and SS) were significant
(all F’sj9.40 > 2.20, p < 0.05) even when Bonferroni-corrected.
However, none of the inter-class correlations (SP, including mea-
sures of spread and peak from the same regions) were significant
(all F’sj940 < 1.66), with the exception of peak-spread measures
for task-positive networks (Fi949 = 1.93, p < 0.05), which how-
ever, would not reach significance when Bonferroni-corrected.
Planned comparisons showed that the same modality (PP and
SS) within a network were more highly intercorrelated than
measures across modalities from the same regions (SP same)

(t20 = 2.39, p < 0.05, and 9 = 5.38, p < 0.001, respectively).
This indicates a high degree of independence across measures. We
also computed the intraclass/interclass correlations separately in
younger and older adults. The results were essentially identical for
the two groups. Within-measures (PP and SS) shared-variance
between areas were significant (Fi9)3 = 4.85, p < 0.005 for
the young group, and Figp7 = 3.44, p < 0.01 for the old
group), whereas across-measures (SP) shared-variance between
areas were not significant (F9,13 = 2.09 n.s, for the young group,
and Fj9p7) = 0.88, n.s. for the old group). There is there-
fore evidence that the two measures are independent in both
groups.

DISCUSSION

The quantification of BOLD fMRI data is typically carried out
on a three-dimensional volume extending over a number of vox-
els. As such the observed effects are not a pure measure of signal
amplitude, but are a combination of both the peak strength of
local blood flow changes as well as the spread of such changes
throughout that volume. Anything that modulates the spread
of this signal (e.g., changing the size of the smoothing kernel)
can drastically impact the observed strength and localization of
functional effects (see White etal., 2001; Jo etal., 2008; Mikl
etal., 2008). The goal of the analyses reported in this paper was
to investigate whether there were systematic age-related differ-
ences in the spreading of activation and deactivation during an
attention-demanding task, and whether the spread measures pro-
vided additional information compared to the measures of peak
activity.

The whole-brain analyses indicated that older adults over-
activate areas positively associated with the task, while simultane-
ously failing to fully deactivate areas of the task-negative (DMN)
network, replicating previous findings (e.g., Lustig etal., 2003;
Persson etal., 2007; Park and Reuter-Lorenz, 2009). These analy-
ses were supplemented by ROI analyses using three different sized
spheres to approximate ROI analyses that are often performed in
the literature. Compared to the younger adults, the older adults

Table 4 | Analysis of shared variance (intra-class correlation, r2) between spread and peak measures.

Brain networks Spread-spread Peak-peak Spread-peak Spread-peak
(SS) (PP) (SP-all) (SP-same)

Shared sources Measure type Measure type Network Region network

of variance network network

Task-positive 0.141 0.220 0.051 0.094

Task-negative 0.104 0.182 0.050 0.068

All regions 0.122 0.201 0.050 0.080

p-value vs. 0.026 0.000 0.023

SP-same

SS = the average shared variance between measures of spread of one region and measures of spread in different regions of the same network. PP = the average
shared variance between measures of peak of one region and measures of peak in different regions of the same network. SP-all = the average shared variance
between measures of spread of one region and measures of peak in different regions of the same network. SP-same = the average shared variance between

measures of spread and measures of peak taken from the same region.
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had greater levels of activation at all three sizes (3 mm, 5 mm, and
10 mm), but only demonstrated reduced deactivation when using
the 10 mm sphere. These results are generally consistent with pre-
vious work, but also suggest that the size of the kernel used for
quantification impacts the results. This is likely because, in this
analysis, peak amplitude, and spread of activity are confounded.

To address this concern, we introduced a novel technique to
assess the spread of activation and deactivation of the BOLD
signal around its peak. This new approach shows that older
adults have alterations in the spread of the BOLD response
compared to younger adults. By measuring the relative (normal-
ized) size of the BOLD response at various distances from the
peak point, we could evaluate signal spread for both activation
and deactivation separately from peak amplitude. When examin-
ing activations, the older adults had a shallower average slope
of decay from the peak point. This supports previous notions
that older adults possess broader (or less focused) areas of acti-
vation. Within the task-positive network this was particularly
true for the insula while other regions only showed a trend for
age-related differences. This suggests a systematic, but relatively
subtle, increase in the spread of activations in older adults. This
also suggests that the expanded activations seen in group level
maps of older adults are a product of both greater peak ampli-
tudes as well as a broader spread of such activity to surrounding
tissue.

This pattern was highly significant but inverted for the deacti-
vation of tissue. Older adults showed a rapid decay of deactivation
with increasing distance from the peak point. This indicates that
the deactivation patterns are relatively focal, and then quickly
dissipate. This finding was significant across a wide range of
areas including core areas of the task-negative network such as
the posterior cingulate cortex, precuneus, and temporal pole.
The results from this analysis indicate that older adults have
a significant reduction in the spread of deactivation. They
also suggest that the reduced group level deactivation maps
of older adults are not due to changes in focal deactivations,
but rather in how these deactivations propagate to surrounding
tissue.

For voxel-wise analyses, statistics at the group level are depen-
dent upon spatial overlap across subjects. The peak points for
the older adults were significantly more spatially variable for
task-negative areas. Although our analyses of the task-positive
network did not reveal significant differences in spatial cluster-
ing, the numeric directions, as well as the lack of a network by
group interaction, are consistent with increased spatial variability
occurring throughout the brain but being more pronounced in
the task-negative regions. This pattern alone would affect group-
level maps, and such issues have been considered in the literature
(e.g., Swallow et al., 2003; Devlin and Poldrack, 2007). This effect
would compound systematic age differences in the amplitudes
and spread of activations and deactivations. In areas where older
adults have stronger and broader activations, such as the task-
positive network, increased anatomical variability could lead to a
more diffuse group-level pattern of activity. In areas where activ-
ity is narrower, such as the task-negative network, an increase in
spatial variability would lead to a spatially underestimated group-
level map. The type of spatial normalization could also interact

with such phenomenon. By their very nature non-linear registra-
tions warp tissue differently across the brain. Selective atrophy in
aging or disease populations may exacerbate such phenomenon
relative to younger adults. This could induce an artificial broad-
ening or narrowing of spread of blood flow within a cortical
region.

The general problems of spatial overlap are readily known and
are a good argument in favor of ROI analyses, which provide more
flexibility. Still, as seen in our typical ROI peak analyses using
three different sized spheres, the choice of kernel size can interact
with differences in the spread around peaks. As clearly seen in
Table 2, the selection of a 3 or 5 mm compared to a 10 mm
sphere would alter our interpretation of the data. Using the 3
or 5 mm sphere we would have concluded that the older adults
had stronger activations than the younger adults in task-positive
areas, while the two groups did not differ in the strength of their
deactivations in task-negative areas. Using the 10 mm spheres the
results would now reveal a significant group effect for both the
task-positive and task-negative modulations. This does not mean
that ROI analyses are inappropriate, just that interpretations must
be considered in terms of both the area of tissue being modulated
as well as the strength of this modulation. Such considerations
are particularly important when comparing two groups that may
systematically differ from each other, rather than when examining
a manipulation within the same subject.

Some possible limitations to the approach proposed here
should also be considered. Potential confounds when comparing
younger and older adults could arise from either cortical atrophy
or head motion. Atrophy would reduce the total volume that a
given cortical region encompasses. Due to such shrinkage, one
would expect a narrower focus where blood flow is modulated.
In contrast, head motion could lead to a smearing of activity to
produce a more diffuse locus of activity or deactivation. Our cur-
rent data demonstrated dissociations, with older adults showing a
broader extent of activity in the task-positive areas and a reduced
spread in task-negative ones. As illustrated in Figure 4, the vast
majority of regions within each network displayed consistent age-
related patterns of spread despite having a range of spatial locations
throughout the brain. It is highly unlikely that atrophy or head
motion alone could produce such a dissociation and consistency
within networks rather than manifesting as a global effect on the
brain.

Another well-known concern in aging studies is the potential
occurrence of age-related differences in neurovascular coupling.
Neural activity is inferred from the BOLD signal based upon the
relationship between neuronal firing, metabolic consumption of
oxygen, and the subsequent increase in blood perfusion. The
coupling between the hemodynamic response and neural activ-
ity is thought to be impaired in older age (D’Esposito etal., 1999;
Buckner etal., 2000; Hesselmann et al., 2001; Huettel etal., 2001;
Aizenstein etal., 2004; Fabiani et al., 2014). Most studies examine
coupling in terms of activation profiles, yet the same sluggish vas-
cular response should also impair the down-regulation of blood
flow. Hence the spread of activation and deactivation should be
equally (or at least similarly) impaired by a reduction in local vas-
culature. Therefore, the observation of a selective deficit in the
deactivation spread appears inconsistent with this account.
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To the extent that the patterns of activity reported here for
the younger adults represent the gold standard for optimal brain
function, we could speculate about possible interpretations of the
alterations of signal spread in older adults. In fact, the increased
spread of activation in the task-positive network in older adults
is inherent to the idea of de-differentiation (Park etal., 2004)
and is also consistent with notions of compensation (e.g., Cabeza
etal., 2002; Persson et al., 2004; Reuter-Lorenz and Cappell, 2008;
Schneider-Garces etal., 2010). It should be noted, however, that
we do not mean to imply that subjects deliberately compensate for
poor performance by varying the amount of spread of the acti-
vated brain areas. We are only stating that age is associated with an
increase in the spread of activation in areas up-regulated during
the task. The measurement approach presented in this paper may
allow researchers to further explore the dissociations and overlaps
existing between different models of cognitive aging.

The observation of reduced spread of deactivation in the task-
negative network had not been previously characterized, and can
be interpreted in several ways. Both age groups are deactivating tis-
sue focally to the same degree, but this signal does not spread as far
to neighboring tissue in the older participants. This is particularly
true for core regions of the DMN such as the precuneus, posterior
cingulate cortex, and fronto-medial cortex. One possible inter-
pretation is that local connections are less efficient in controlling
the deactivation, either mediating or possibly compounding the
widely reported reduction in top-down attention control over sen-
sory areas in older adults (e.g., Fabiani etal., 1998, 2006; Gazzaley
etal., 2005, 2008).

Another interpretation is that the task-negative (DMN) net-
work has properties that make it uniquely vulnerable to age-related
declines. For example, this network has an elevated susceptibility
to disrupted metabolic processes and preferentially accumulates
amyloid beta (Klunk etal., 2004; Buckner etal., 2005). Reduced
levels of deactivation are associated with Alzheimer’s disease
(Petrella etal., 2007; Persson etal., 2008; Sperling etal., 2009)
further supporting the idea that the task-negative network may
be selectively linked to cognitive health. In addition, amyloid
plaques in DMN regions may cause functional disruption even
in older adults classified as normal (Hedden etal., 2009). Age-
related structural damage in these regions may therefore be the
substrate for drops in local connectivity as a function of age,
which may in turn result in drops in the spread of the BOLD
signal.

Although this evidence suggests that the task-negative network
may be particularly sensitive to age-related decline, it should
also be considered that this network is not ubiquitously less
responsive in older adults (but see Grady, 2012). In a tests
of emotional memory by Kensinger and Schacter (2008), older
and younger adults possessed comparable levels of functional
activation in regions within this network. In fact, older adults
slightly over-activated these regions during encoding. Similar
work using emotional stimuli has found preserved or enhanced
activation in older adults (Gutchess etal., 2007). This suggests
that the task-negative network is not always impaired, but rather
that age differences may be more evident when it must be
suppressed. It may be that older adults have difficulty inhibit-
ing the activation of any networks, but the design of most

functional studies requires a disengagement of processes that
recruit the DMN during rest. Ultimately, an examination of
BOLD signal spread across the task-negative network in a task
that specifically activates this network, such as that reported by
Grady etal. (2010), is needed. This will help determine whether
the age-related effects observed in the current study are due
to failing deactivation/top-down control that can affect multi-
ple networks or if problems are specific to the task-negative
network.

A third possibility is that a common mechanism may account
for both the increased spread in the task-positive network and
the decreased spread in the task-negative network occurring in
aging. It is thought that deactivation may involve a relative inhi-
bition or suppression of a particular cortical region. Inhibition
in the cortex is carried out through GABAergic interneurons
(Chagnac-Amitai and Connors, 1989) whose genetic modulators
are down-regulated with age (Loerch etal., 2008; Bishop etal.,
2010). Thus, a reduction in the expression of GABA receptors in
the cortex may lead to a reduction of the deactivation process.
The same mechanism may also account for the increased spread
of the activation signal observed in older adults, as the spread
of activation may be limited in younger adults by the action of
inhibitory interneurons, which may be reduced in aging. This
age-related change could potentially alter the balance between
activation and deactivation signals in the brain, as well as the
spread of these signals. Thus the same mechanism — reduction of
GABAergic inhibition in the cortex — could potentially account
for both reduced spread of deactivation and greater spread of
activation.

Currently each proposed interpretation is plausible but specu-
lative. It may be that no single interpretation can entirely account
for these findings, but rather that a combination of multiple mech-
anisms drives the observed modulations in spread. For example
there could be a down-regulation of GABA interneurons, but
this deficit may be non-uniform across the brain. A multimodal
approach combining fMRI, electrophysiological measures, and
positron emission tomography tailored to the investigation of
GABA receptors (e.g., Heiss and Herholz, 2006) may begin to
address these questions. Improved understanding of the mecha-
nisms that drive the changes in spread may inform studies of aging,
and provide a new avenue of research to explore the brain.

In summary, many aging studies that utilize fMRI data focus
on perceived differences in the amplitude of activation. Many of
these analyses, particularly those drawing upon group-level maps,
are actually conflating differences in amplitude with changes in
the spread of blood flow. Uniquely within the field of cogni-
tive aging, the current work independently examines both the
amplitude and the spread of the BOLD response in younger and
older adults. Understanding both of these properties is impor-
tant when interpreting differences between these age groups. The
current experiment supports previous work demonstrating over-
activation and under-deactivation in older adults, while using an
innovative approach to assess the spread of functional blood flow
changes. This metric revealed that older adults have a broader
extent of activation while simultaneously having a narrower focus
of deactivation, independent of amplitude differences. These
results provide a novel measure that illustrates the two-fold pattern
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of differences in both amplitude and spread of functional blood
flow changes with increasing age.
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