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Sporadic Alzheimer’s disease (sAD) has not been explained by any current theories, so new
hypotheses are urgently needed.We proposed that “energy and Ca2+ signaling deficits” are
perhaps the earliest modifiable defects in brain aging underlying memory decline and tau
deposits (by means of inactivating Ca2+-dependent protease calpain). Consistent with this
hypothesis, we now notice that at least eight other known calpain substrates have also been
reported to accumulate in aging and AD. Thus, protein accumulation or aggregation is not
a “pathogenic” event, but occurs naturally and selectively to a peculiar family of proteins,
and is best explained by calpain inactivation. Why are only calpain substrates accumulated
and how can they stay for decades in the brain without being attacked by many other non-
specific proteases there? We believe that these long-lasting puzzles can be explained by
calpain’s unique properties, especially its unusual specificity and exclusivity in substrate
recognition, which can protect the substrates from other proteases’ attacks after calpain
inactivation. Interestingly, our model, in essence, may also explain tau phosphorylation
and the formation of amyloid plaques. Our studies suggest that α-secretase is an energy-
/Ca2+-dual dependent protease and is also the primary determinant for Aβ levels.Therefore,
β- and γ-secretases can only play secondary roles and, by biological laws, they are unlikely
to be “positively identified”. This study thus raises serious questions for policymakers and
researchers and these questions may help explain why sAD can remain an enigma today.
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A CONCEPTUAL CRISIS IN ALZHEIMER’S DISEASE STUDY
The study of Alzheimer’s disease (AD) is in crisis today. Although
progress has been made in understanding early-onset AD (a rare
disease mostly caused by gene mutations), late-onset sporadic AD
(LOAD or sAD), which affects the vast majority of AD victims and
is the main threat to modern society, has remained an enigma after
nearly 40 years of intensive studies (Holtzman et al., 2012). This
problem has motivated policymakers in Congress and funding
agencies to call for increased funding and innovative researches.

But we think it is more important to understand why the crisis
has happened. To this end, we have undertaken an independent
analysis of the current issues and realized that the official definition
for sAD, a senile disorder, as a “discrete disease” by the National
Institute on Aging (NIA) may be the root problem. This definition
has ignored the fundamental differences between senile disorders
and discrete diseases in origin, study paradigm and intervention
approach. Our study emphasizes that sAD, a devastating disease
in social impact, but is also a normality in its biological nature
(like hearing loss and heart failure at advanced age). This should
be a new conceptual basis to understand the disorder (Chen and
Fernandez, 2000, 2001a; Chen et al., 2011a,b).

As the NIA definition has overlooked the unique features of
sAD, it has consequently confined the studies to the prominent
“pathological” lesions (e.g., plaques and tangles) and presumed

“abnormal” pathways (e.g., gene mutations or Ca2+ overactiva-
tion). Such studies, though well-intentioned and highly produc-
tive, may never explain the basic features of sAD (e.g., why it is a
result of demographic changes and why it increases exponentially
with age). As such, these studies, though being praised enthusi-
astically by the AD study field and mass media, have never been
accepted by the general medical community (e.g., NIH indepen-
dent committee consensus statements 2002 and 2010; see NIA
website).

This may be why, after so many years with over 130,000 research
papers published and many of which are in prestigious journals,
sAD can remain a conceptual enigma accompanied by repeti-
tive failures in clinical trials, a crisis unseen in medical history.
Thus, a high priority today is to synthesize current data into novel
hypotheses that can explain sAD features better than the existing
ones, thereby guiding future studies in a new direction.

OUR HYPOTHESIS FOR THE ORIGINS OF sAD
In this context, we and a growing number of other investiga-
tors have started to think that sAD should be understood from a
new perspective, i.e., aging (Chen, 1998; Swerdlow, 2007; Yankner
et al., 2008; Castellani et al., 2009; Herrup, 2010; Sperling et al.,
2011; Korczyn, 2012). From this ground, we have proposed a
new hypothesis for the natural history of sAD (Figure 1). This
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FIGURE 1 | An integrative model for the “natural history” of sporadic

Alzheimer’s disease (sAD). (A) Proposes that energy deficiency is the
earliest modifiable defect in brain aging, which causes, among other things,
a Ca2+ signaling deficit underlying inefficient memory and the formation of
plaques and tangles (by means of inactivating Ca2+-dependent proteases
and phosphatases; not shown, see text below). (B) Explains why energy
deficit decreases Ca2+ signal potency (by reducing Ca2+ wave frequency),
and why this change can manifest as slow rising Ca2+ “levels” during
aging and sharp Ca2+ rises in cell death. As the aging process continues

into advanced stage, it will diverge into various end results in the elderly
population ranging from healthy brain to MCI or sAD. Thus, the reasons for
the divergence should be a supreme question to answer (question mark;
see text below). Despite the remaining questions, our model points to
energy and Ca2+ deficits as two ideal points of entry for early sAD
intervention (red arrows), whereas targeting the prominent lesions
themselves (plaques and tangles) or numerous cell death-associated
impairments will not have any therapeutic values. The current “amyloid
hypothesis” (blue color) is also shown for comparison.

hypothesis is unique in that it divides the widely called “AD pro-
cess” into two distinctive stages: normal aging and cell-death
stages. Emphasizing the normal aging stage is because no sAD
case occurs without having passed through a long aging process.
Also, unlike other models that focus on the prominent “patholog-
ical” lesions or cellular impairments in the latter stage (Holtzman
et al., 2012), our hypothesis considers the former stage as the pri-
mary study focus because we believe that similar to other senile
disorders, sAD is initiated from invisible and normal changes dur-
ing natural aging, and only such changes are the reasonable drug
targets for its intervention (Chen et al., 2011b).

But, among the myriad changes in the aging brain, which one(s)
should receive our primary attention? In this regard, we (Chen and
Fernandez, 2001a) and others (Beal, 1998; Lannert and Hoyer,
1998; McDaniel et al., 2003; Höglinger et al., 2005; Moreira et al.,
2010; Swerdlow, 2012) have suggested that energy/mitochondrial
dysfunction is perhaps the earliest modifiable defect. Indeed,
from the viewpoint of bioenergetics, life itself is merely a pro-
cess of energy generation and consumption, and free energy is
the ultimate driving force for physiological activities, especially
neurotransmission and memory (Chen and Fernandez, 2000;
Chen et al., 2011b; Figure 1). We also believe that energy deficit in
most elderly is a naturally-occurring event, one that is not triggered
by any “pathogenic/erroneous” factors, except for the passage of
time.

By what mechanism can energy affect memory? We reasoned
that because Ca2+ is a central regulator in neurotransmission and

Ca2+ signaling is highly energy-dependent, energy deficit must
cause memory inefficiency primarily by means of inactivating
Ca2+ signaling, amongst its many consequences in the body (e. g.,
free radicals, bone loss, etc.) (Chen et al., 2011b). This will happen
with concomitant formations of plaques and tangles (by means
of inactivating Ca2+-dependent proteases such as calpain; tau is
a known calpain substrate; plaques may be formed by a similar
mechanism, see below; Chen and Fernandez, 2001b; Chen et al.,
2011b; Figure 1). It thus appears that the proposed energy and
Ca2+ deficits can uniformly explain the three diagnostic markers
of sAD: memory decline, plaques and tangles.

The model also suggests that additional factors (question mark;
Figure 1) are required to diverge the aging process into various end
results in the elderly (see below). In contrast, the current “amy-
loid hypothesis” (blue color) does not explain two basic questions:
(i) what has caused the plaque formation; and (ii) why many
elderly remain healthy despite the presence of plaques and tangles.

CONTROVERSIES IN Ca2+ CHANGES IN AGING
Interestingly, while energy depletion is a well-accepted concept, the
proposed “Ca2+ deficit”, a logical consequence of energy deficit,
has nevertheless become a primary point of controversy, because
it confronts the current “Ca2+ overload/activation” hypothesis
(Khachaturian, 1994), a doctrine that has been taken as granted
by numerous studies (e.g., Manya et al., 2002; Sloane et al., 2003;
Ferreira, 2012). As we have discussed extensively (Chen and Fer-
nandez, 1999, 2001a,b; Chen et al., 2011b), however, the latter
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hypothesis is questionable because it: (i) derives from the flawed
“disease” definition of sAD and thus rests on a presumptive
“abnormal” pathway as its “cause”; (ii) defies the commonsense
knowledge (e.g., how can the energy-dependent Ca2+ signaling be
activated in the energy-depleted aging process?); and (iii) has not
been supported by consistent clinical data after many trials, but is
challenged by at least three studies reporting that calcium antago-
nists exhibit negative effects on cognition in the elderly (Heckbert
et al., 1997; Maxwell et al., 1999; Wagner et al., 2012).

In contrast to this hypothesis, our model is in line with the
clinical studies (Heckbert et al., 1997; Maxwell et al., 1999; Ritchie
et al., 2007; Newhouse et al., 2012; Wagner et al., 2012) and also
with several important reports showing that a number of Ca2+-
dependent enzymes/factors are inactivated during aging (Baudry
et al., 1986; Guttmann et al., 1997; Gao et al., 1998; Pahlavani and
Vargas, 1999; Agbas et al., 2005; Moriguchi et al., 2006; Pascale
et al., 2007; Rice et al., 2014; Sun et al., 2014). Most importantly,
the model can logically explain several basic features of sAD (see
above).

In support of this model, our experimental studies have recently
demonstrated that the Ca2+ signaling efficacy and calpain activity
are both decreased in old human fibroblasts, despite the ele-
vated steady-state Ca2+ levels there. While much more studies
are required for definitively resolving this issue, our findings
suggest that higher static Ca2+ “levels” in aged cells result from
energy depletion and lead to lower Ca2+ signaling potency. This
intriguing phenomenon may happen because the frequency and
amplitude of the Ca2+ waves in vivo may reduce by aging, but
this change can manifest as a “Ca2+ overstay” or elevated steady-
state “levels” in vitro (Figure 1B). For this reason, the rational
approach to reduce the observed “higher Ca2+ levels” in the
aging brain cells should make use of energy metabolism stimu-
lators and Ca2+ agonists, not antagonists as currently believed
(Nguyen et al., 2013).

Furthermore, we have also found that Ca2+/calpain is indeed
sharply activated in the dying cells (Nguyen et al., 2013), suggesting
that Ca2+/calpain undergoes a “bi-phasic” change in the “sAD
process”: first inactivated during aging, then dramatically activated
at the cell-death stage, as observed in the AD brain (Saito et al.,
1993). The latter change, however, may not have any therapeutic
values (Figures 1A,B).

SELECTIVE ACCUMULATION OF CALPAIN SUBSTRATES IN
AGING
Is this hypothesis reasonable? Despite the supportive data, it must
be kept in mind that the dynamic Ca2+ changes in the living brain
have not been directly determined by current technologies, so any
hypotheses about them should be scrutinized with caution. One
way to do this is by examining their corollaries. An important
corollary of our model is that if the Ca2+/calpain deficit causes
the deposition of tau, then it should also cause the concomitant
depositions of many other known calpain substrates. Is this the
case? This would be a key test for our model.

To this end we undertook a review of literature and found that,
amazingly, at least eight other proteins have also been reported
to accumulate or aggregate in aging and AD. They are: spec-
trin, crystalline (in cataracts), filamin, myosin, MAP2, calcineurin,

tubulin, and neurofilament proteins (Johnson et al., 1991; Ashford
et al., 1998; Biswas et al., 2004; Agbas et al., 2005; Puig et al., 2005;
Feuillette et al., 2010; Yan et al., 2012), which are all well-known
calpain substrates (Goll et al., 2003; a comprehensive review).
These accumulated proteins, if considered together, would have
profound implications for the origins of sAD and for our pro-
posal, as it suggests that protein accumulation during aging is not
a “pathogenic” event, but occurs naturally and preferentially to a
peculiar protein family.

But discrepancies exist. For example, proteins other than cal-
pain substrates have also been reported to accumulate in the AD
brain (Griffin et al., 1989). However, it appears that only calpain
substrates have been consistently reported by various laboratories
to progressively accumulate from early aging and throughout the
aging and AD process.

Also, because the accumulated proteins are the breakdown
products of well-known calpain substrates, they have been widely
called “calpain-cleaved products,” thereby suggesting “calpain
overactivation” (Biswas et al., 2004; Feuillette et al., 2010; Yan
et al., 2012). This view, however, needs to be revisited for two
reasons. First, it implies “the more protease cleavage, the more
substrate accumulation,” a scheme that sounds illogical. Second,
it has overlooked the fact that calpain is essential for physiologi-
cal activities such as cell division and growth. As such it should
reach maximum activity in the young, but none of its products
is accumulated there. So it is reasonable to believe that genuine
calpain-cleaved products will not accumulate even at their peak
levels. Therefore, the accumulated fragments in aging and AD
brains should be the alternatively cleaved products by other pro-
teases after calpain inactivation. Sequencing of these products and
comparing them with genuine calpain-cleaved ones will confirm
this view.

Yet, it is also widely believed today that the accumulated
proteins may not result from insufficient proteolysis, but from
abnormal aggregation or phosphorylation by abnormally activated
protein kinases (e.g., tau; Chung, 2009; Bolshette et al., 2014). We
have reservations for these views because they have not explained
why abnormal events can happen in normal early aging during
which the proteins start to aggregate, and especially why the
aggregation occurs selectively to calpain substrates.

The issues are still open for debate together with many other
alternative views [e.g., Ca2+/calpain is unchanged in normal aging
(Saito et al., 1993; Ito et al., 1994); tau is a caspase substrate
(Fasulo et al., 2000); or aggregation is due to protein misfold-
ing or autophagy (Nixon, 2013; Bolshette et al., 2014)]. It must
be noted, however, that comparing with these other compet-
ing models, our hypothesis may offer the simplest and coherent
explanation for the accumulation of several calpain substrates by
a uniform mechanism.

WHY ARE CALPAIN SUBSTRATES SELECTIVELY
ACCUMULATED?
Now, why are calpain substrates selectively accumulated, how can
they stay for decades in the brain without being attacked by many
non-specific proteases there? And why does this not happen to
other proteins? These long-standing puzzles need to be explained,
but notably, they may not be easily explained by current models
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such as protein misfolding or autophagy (for their lack of selectiv-
ity). Thus we think that a clue should lie in the unique properties
of calpain.

It is well-known that unlike most proteases that act non-
specifically or randomly, calpain only makes limited cleavages on
certain enzymes/proteins at designated sites and activates them
for physiological functions. A well-known example is the cleav-
age of PKC by calpain to activate the PKC-related signal pathways
(Kishimoto et al., 1989). Notably, such a cleavage in vivo must be
highly specific, perhaps also exclusive, because if PKC is cleaved
by any other proteases at the same site, disruption of signal trans-
ductions would result. We think that this could be a critical but
as-yet-undocumented feature of the calpain-substrate interaction.

How can calpain ensure such a specificity and exclusivity in sub-
strate recognition, given that it does not have a strong sequence
recognition preference on its substrates (Friedrich and Bozóky,
2005)? For this puzzle, it has been speculated that calpain may
recognize a unique and as-yet-unknown configuration in the sec-
ondary/tertiary structures of its substrates (Carafoli and Molinari,
1998; Cuerrier et al., 2005).

A “LIGAND-RECEPTOR” MODEL FOR CALPAIN-SUBSTRATE
RECOGNITION
Based on the current information, we further notice that the
specificity and exclusivity of calpain-substrate interaction is quite

similar to that of ligand-receptor (or antigen–antibody). From
this new angle, we now propose that calpain substrates in vivo
may assume an unusual, receptor-like configuration that is exclu-
sively accessible by calpain. Upon activation, calpain may change
its conformation in such a way that allows itself to fit into
the substrate. Such a key-and-lock fitting would safeguard the
specificity and exclusivity of their interactions free of interfer-
ences by any other proteases (Figure 2A; using PKC as an
example).

Furthermore, of great interest is that this model may also
explain the selective accumulation of calpain substrates. The
receptor-like configuration of the substrates implies that after cal-
pain inactivation, its substrates (such as tau) would not be attacked
by any other proteases at the same sites. For this reason, the sub-
strates would accumulate and then be truncated by other proteases
at other sites, but their core fragments encompassing the calpain-
cleaving sites (perhaps the domains recognized by calpain) would
be spared and deposited over time, as undigested protein remnants
(e.g., tangles; Figure 2B).

This model can explain: why only calpain substrates are
protease-resistant; why the deposited tau is truncated at both
ends (Guillozet-Bongaarts et al., 2005) and contains the predicted
calpain-cleaving sites (Yang and Ksiezak-Reding, 1995); why the
accumulated breakdown products from genuine calpain substrates
are not genuine calpain-cleaved products, but are alternatively

FIGURE 2 | A “ligand-receptor” model for calpain-substrate interaction

and selective accumulation of calpain substrates in brain aging.

(A) In the young, calpain substrate (e.g., PKC) assumes a “receptor-like”
configuration that is exclusively accessible by active calpain (as ligand).
This unique relationship safeguards the specificity and exclusivity of their
interaction, which allows a faithful cleavage/activation of PKC in the signal
transduction free of interferences by any other proteases. (B) During

aging, however, calpain is insufficiently activated as a result of energy
and Ca2+ signaling deficits (slowed Ca2+ waves). So, calpain substrates
(e.g., tau) will remain intact because other proteases will not cleave it at
the calpain-leaving sites. Over time, tau will be truncated by other
proteases at other sites, but its core fragments encompassing the
calpain-cleaving sites will be spared and deposited (as tangles). Calpn,
calpain.

Frontiers in Aging Neuroscience www.frontiersin.org December 2014 | Volume 6 | Article 329 | 4

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Chen and Nguyen Energy-Ca2+ deficits in Alzheimer’s disease

cleaved ones (see above); and more importantly, why protein accu-
mulation is invariably accompanying memory decline during aging
(both events are regulated by Ca2+), but targeting the deposited
proteins themselves has not delayed the progression of dementia in
clinical trials (protein deposits are secondary to the initial defects;
Figure 1).

Can the proposed “ligand-receptor” model be experimentally
tested? The model predicts that (i) distinct calpain substrates may
share a unique secondary/tertiary configuration complementary
to that of calpain in their crystal structures; (ii) deleting or mutat-
ing key amino acids in the unique configuration will abolish the
substrates’ sensitivity to calpain; and (iii) such a configuration may
not exist in other proteins. These corollaries may aid experimental
validation of the model.

WHY IS TAU PHOSPHORYLATED?
Very interestingly yet, our “ligand-receptor” model in its essence
may also explain tau phosphorylation from a new perspective.
Recall that there have been two basic scenarios for tau phosphory-
lation: overactivation of protein kinases, or inactivation of protein
phosphatases (Trojanowski and Lee, 1995). Although the former
is a current favor, questions remain as to whether kinases can be
“activated”in normal aging where most enzymes loss activities (see
above and below).

So the latter scenario is more reasonable. But, which phos-
phatase among numerous in the brain should we focus on?
This key question has long limited the progress of the study
area with a standing dilemma: if any phosphatase is inactivated,
the loss will be compensated by many other non-specific phos-
phatases, so how can tau stay phosphorylated for decades in the
brain?

These and other considerations thus lead us to a unique protein
phosphatase, calcineurin, a Ca2+-dependent enzyme, of which
tau is a well-known substrate (Kayyali et al., 1997; Yu et al., 2006;
Karch et al., 2013). As a regulated enzyme, its substrate recognition
should also be specific and exclusive to safeguard the integrity
of signal transduction (similar to calpain-substrate interaction;
Figure 2). Thus, as a physiological substrate of both calpain and
calcineurin, tau may also assume a receptor-like configuration that
is exclusively accessible by calcineurin. This would prevent tau
from dephosphorylation by any other phosphatases at the same
sites after calcineurin inactivation.

Thus, as a result of Ca2+ signal down-regulation during aging,
tau would deposit and stay phosphorylated in the brain (Chen
and Fernandez, 2001b). The two natural events can reinforce each
other to render tangles a prominent feature of sAD, and thus there
is no need to assume an abnormal mechanism for it.

Meanwhile, if other phosphatases are believed to be respon-
sible for tau overphosphorylation, then it needs to explain why
their activity loss is not compensated by many non-specific
phosphatases in the aging brain.

HOW ARE AMYLOID PLAQUES FORMED?
While our model may explain tangles and other protein deposits,
it also raises a cardinal question: is amyloid-β precursor pro-
tein (APP) also a calpain substrate? This touches a sensitive issue
because if it is, then calpain would mediate its normal processing,

or as α-secretase as we suggested but controversial (Chen et al.,
2000; Chen and Fernandez, 2004, 2005). But if it is not, then
plaques would remain unexplained, because a key prediction of
our model is that only the substrates of regulated proteases will
deposit during natural aging (Figure 2).

So, the cardinal question becomes: is α-secretase a signal
transduction-regulated protease? This point should be clear by
now because numerous studies have shown that α-secretase
is sensitively regulated by many signal transduction pathways,
most notably glutamatergic, cholinergic, ERK/MAPK-, and PKC-
related pathways (Buxbaum et al., 1990; Efthimiopoulos et al.,
1996; Slack et al., 1997; Jolly-Tornetta et al., 1998).

But, while these elegant studies point to α-secretase as a reg-
ulated protease, they have not suggested a reasonable target for
sAD intervention, since it is difficult to target all those pathways
in practice. So a unifying model is needed, which should make
fewest assumptions in order to parsimoniously and coherently
explain most reports, thereby providing a simple drug target for
intervention.

In this context, we proposed several years ago that α-secretase is
a Ca2+-dependent protease, since Ca2+ appears to be a common
denominator for those pathways (Chen, 1997). This view, though
controversial, has since been strongly corroborated by an array of
more recent reports, which have directly or indirectly linked α-
secretase activity to Ca2+ (Mathews et al., 2002; Adlerz et al., 2007;
Marcello et al., 2007; Dreses-Werringloer et al., 2008; Hoey et al.,
2009; Vingtdeux et al., 2010; Suh et al., 2011; Zeiger et al., 2013;
Kyratzi and Efthimiopoulos, 2014).

We thus believe that the concept of a Ca2+-dependent α-
secretase is established and this offers a practical means for
intervention even though its identity remains elusive. It is also
noteworthy that because Ca2+ is the most sensitive and most
exquisite regulator in the body, this can explain why APP α-
processing is also sensitive to innumerable other elements such as
cholesterol, cytokins, sirtuin, nardilysin, tetraspanin, and TIMP3
(Lichtenthaler, 2011; review).

Contrary to our view, however, an influential report has sug-
gested that Aβ genesis, which changes in opposite direction to
α-secretase, is a“Ca2+-dependent process”(Querfurth and Selkoe,
1994). But, it should be pointed out that physiological Ca2+-
dependent processes [neurotransmission, cell growth, muscle
contraction, etc. (Berridge et al., 1998)] are all reducing their activ-
ities during aging. Thus it is highly unlikely that Aβ genesis, which
increases with aging, would be a physiological Ca2+-dependent
process, even though it can be elevated by a Ca2+ stimulator at
certain concentrations in the test tube.

Additional to its Ca2+-dependent feature, we and others have
shown that α-secretase is also an energy-dependent protease,
because its activity fluctuates intimately with cellular energy levels
(Gasparini et al., 1997; Hoyer et al., 2005; Sawmiller et al., 2012).
This view, at first glance, seems incompatible with the knowledge
that proteolysis in vivo is generally a spontaneous event, and it is
protein synthesis that is energy-dependent. So how can α-secretase
be energy-driven? This question can be explained by the fact that
Ca2+ signaling per se is highly energy-dependent (Walsh et al.,
2009). This means that energy and Ca2+ signaling in vivo will
undergo changes hand-in-hand. Moreover, APP α-processing,
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as part of protein secretions essential for cell maintenance and
growth, will not occur spontaneously but must be controlled by
energy supply and physiological demand. The energy-/Ca2+-dual
dependent features of α-secretase provide a mechanism for such
a control and, thus, they should be the “signature traits” of the
enzyme to aid its identification.

ADDITIONAL EVIDENCE FOR α-SECRETASE BEING
ENERGY-/Ca2+-DUAL DEPENDENT
The proposed“signature traits” for α-secretase have touched a cen-
tral yet most controversial issue in the sAD study: the mechanism
of the plaque formation. So we further examined them by
measuring α-secretase activity in response to five agents in a com-
prehensive way. The agents are ATP, nicotine, glutamate, epidermal
growth factor (EGF), and phorbol 12,13-dibutylester (PDBu),
which represent the five most important signal pathways regulat-
ing α-secretase: energy-, cholingeric, glutamatergic, ERK/MAPK-,
and PKC-related pathways, respectively, (Buxbaum et al., 1990;
Efthimiopoulos et al., 1996; Slack et al., 1997; Jolly-Tornetta et al.,
1998; Sawmiller et al., 2012).

In cultured SH-SY5Y cells we found that these five agents
all robustly enhanced the release of sAPPα (secreted APP by α-
secretase) to various degrees (Figure 3). But these effects were
abolished by BAPTA-AM, an intracellular Ca2+ chelator and, at
the same time, the effects were also blocked by rotenone, a res-
piratory chain complex 1 inhibitor (Figure 3). This suggests that
α-secretase is both energy- and Ca2+-dependent.

Furthermore, of the five agents we tested, the mechanism of
PDBu needs to be further clarified, because the mode of actions
of phorbol esters, the strongest stimulator for α-secretase when
tested in vitro, has only been attributed to PKC activation today.
Since PKC does not directly explain the proteolytic cleavage of APP,
we speculated that phorbol esters may also activate α-secretase by

FIGURE 3 | Responses of α-secretase activity (measured as sAPPα

levels) to five agents that represent the five best known

metabolic/signal pathways regulating α-secretase (energy-,

cholinergic, glutamatergic, ERK/MAPK- and PKC-related pathways,

respectively). The agents were tested in the absence or presence of
intracellular Ca2+ chelator BAPTA-AM (Bap, 10 nM) or energy metabolism
inhibitor rotenone (Rot, 1 μM) in cultured SH-SY5Y cells. In the experiments
testing the inhibitors, the cells were preincubated with Bap or Rot for
10 min before the addition of the agents. All values are means + SEM from
at least five independent experiments. *p < 0.01; **p < 0.001, versus basal
level. Nic, nicotine; Glu, glutamate; EGF, epidermal growth factor; PDBu,
phorbol 12, 13-dibutylester. Methods for Western blotting to determine the
sAPPα levels were as previously described (Chen and Fernandez, 2004).

mobilizing Ca2+, as PKC is a Ca2+-dependent enzyme (Kikkawa
et al., 1982). To test this possibility, we carried out Ca2+ imaging
and found that PDBu evoked Ca2+ transients in a concentration-
dependent manner in cultured SH-SY5Y cells, an effect that was
completely blocked by BAPTA-AM (Figure 4). Thus, among other
actions, PDBu is also a potent Ca2+ activator.

ENERGY-Ca2+ DEFICITS CAN ALSO EXPLAIN AMYLOID
PLAQUES
The Ca2+-dependent feature of α-secretase has prompted us to
suggest calpain as its candidate (Chen et al., 2000; Chen and
Fernandez, 2004, 2005). However, question remains, because
APP is a transmembrane protein, whereas calpain lacks a
hydrophobic segment in its primary sequence, as we noted
(Chen and Fernandez, 1998).

But, there are other proteases that are both Ca2+-dependent
and transmembrane. In fact, furin or PC7, two members of the
proprotein convertase family, have been reported to have both
features and also are directly or indirectly involved in APP α-
processing (Lopez-Perez et al., 1999; Hwang et al., 2006; Turpeinen
et al., 2013). If such a protease (be it furin, PC7 or another Ca2+-
dependent protease) is eventually proven to be α-secretase, then
our model predicts that it should display biochemical properties
similar to calpain, and that it must also be specific and exclu-
sive in substrate recognition (otherwise Ca2+ signaling would
be disrupted) and inactivated by aging. We thus believe that
amyloid plaques are formed by a mechanism similar to the depo-
sitions of tau and other calpain substrates: Ca2+ signaling deficit
(Figure 2).

The unsolved identity of α-secreatse thus should attract the
attention of the research field with focused studies on it. Although
it is no longer of key importance for sAD intervention (activating
Ca2+ will activate it), we still believe that if this issue is resolved,
then the three major diagnostic markers of sAD would be mecha-
nistically understood in scientific terms. Unfortunately, however,

FIGURE 4 | Phorbol 12,13-dibutylester (PDBu) mobilized intracellular

Ca2+ signals in cultured SH-SY5Y cells. At the indicated concentrations,
PDBu evoked fluorescent signals in sequential stimulations. In testing the
inhibitory effect of Bap (10 nM), cells were preincubated with Bap for
10 min before the addition of PDBu. Four fluorescence traces were
recorded corresponding to the four single cells focused by the laser
scanning confocal microscope. FI, fluorescence intensity. Methods for
intracellular Ca2+ imaging were described previously (Nguyen et al., 2013).
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most research attentions today are devoted instead to other com-
peting models: metalloproteases (Buxbaum et al., 1998; Lammich
et al., 1999) and β-/γ-secretases (Citron et al., 1997; Vassar et al.,
1999). As discussed below, however, these other models, though
popular, may face severe theoretical obstacles.

THE THEORETICAL OBSTACLES FOR METALLOPROTEASES
AS α-SECRETASE
(a) Metalloproteases require a metal as their catalytic center, not an
activity regulator, so they belong to unregulated proteases (though
they can be affected by the signal pathways), thus may not be the
most reasonable candidates for α-secretase. (b) More importantly,
if α-secretase is really an unregulated protease, then it would be
difficult or impossible to modify its activity in the brain by com-
mon approaches (such as physical exercises). (c) None of the many
other substrates of metalloproteases (Vingtdeux and Marambaud,
2012) is known to accumulate in aging (as our model predicted).
(d) Metalloproteases initially appear to be α-secretase candidates
by their “specific” cleavage on Aβ peptide in vitro (Buxbaum
et al., 1998; Lammich et al., 1999), yet α-secretase is not sequence-
specific but “distance-specific” (the distance of the cleavage site to
the membrane; Maruyama et al., 1991; Sisodia, 1992). This key
feature is imposed by the “double-anchorage” of both APP and
α-secretase in the membrane (Chen, 1997), but difficult to mimic
in vitro.

CAN β- AND γ-SECRETASES BE RESPONSIBLE FOR Aβ

GENESIS?
Over the years, however, the key importance of α-secretase –
whatever its identity – has been severely overshadowed by a much
more popular concept that Aβ is solely generated via an abnormal
“amyloidogenic” pathway by “β- and γ-secretases.” So inhibit-
ing them would cure AD without touching α-secretase (Selkoe,
2005). As the concept is so appealing, the β-/γ-secretases have
been claimed to be “positively identified” and published in top-tier
journals (Citron et al., 1997; Vassar et al., 1999), and thousands of
studies have since followed.

We, however, stick to the biological laws first. It has come to our
attention that such enthusiasms stem from the “disease” definition
of sAD, so they may face hard questions. For example, if they are
solely responsible for Aβ genesis, then β- and γ-secretases must be
progressively activated by aging, that is, activated by free radicals,
energy crisis and other age-related insults.

Can proteases be activated by such insults in vivo? This fun-
damental question now stands in front of us – regardless our
subjective perceptions of sAD or philosophic faith – and demands
a definitive answer. Further, if Aβ is generated by β-/γ-secretases,
then how many other “β-/γ-secretases” would have to be assumed
for tau and other deposited protein fragments? Are they all
activated by aging?

Proteases and kinases (see above) are known to be activated
by their increased quantity or functionality via up-regulated DNA
replication, protein synthesis or signal transductions, etc. during
physiological activities such as cell growth and memory formation.
Now, if they are also “activated” by aging, an opposite process
that diminishes those activities leading inevitably to a full stop in
the end, then cogent mechanisms compatible with the established

biological principles must be provided for why and how it can
happen.

Perhaps, aging inactivates an intrinsic protease inhibitor,
thereby activating the protease (Rao et al., 2008)? This scenario
needs to explain in the first place why aging affects only one
member of the pair. Yet, maybe proteases are activated by age-
related abnormalities such as epigenetic changes, cell death, DNA
damages, inflammations, immune defects or many other possible
metabolic errors?

Again, the “disease” definition of sAD has allowed countless
such “abnormalities,” replicas of pathogenic factors in discrete
diseases, to be assumed and pursued. But it is a conceptually con-
fused journey, because plaques and tangles, the common features
of the normal aging brains, have to be logically explained by normal
changes in aging, similar to cholesterol deposition.

α-SECRETASE IS THE PRIMARY DETERMINANT FOR Aβ

LEVELS
If age-related cholesterol deposition simply results from an ineffi-
cient lipid degradation – a normal event in aging, rather than from
any “abnormal” lipid “depository pathway” or “activated” lipid
“deposit-ases” – then plaques and tangles would also be formed
by a similar and simple mechanism: insufficient proteolysis, at
least at their initial phase.

It is well-known by now that most intact APP is α-processed
in the young, leaving only a tiny amount of it to generate Aβ.
Therefore, unless intact APP is somehow increased, there would
be no chance whatsoever for Aβ to increase (likewise, unless lipid
catabolism slows down, no cholesterol will deposit). Thus, α-
secretase activity, which controls the levels of intact APP, would
be the primary determinant or rate-limiting step for Aβ levels (i.e.,
other proteases can only play secondary roles; similar to tangle
formation; Figure 2B). Yet, Ca2+-regulated α-secretase may not
allow any other unregulated proteases to act more sensitively to
“compete” with it for alternative APP cleavages (i.e., they have a
chance only after α-secretase inactivation).

This concept, in fact, has been well-established by numerous
in vitro and in vivo studies showing that activating α-secretase,
alone, reduces Aβ; and conversely, inhibiting the enzyme, alone,
increases Aβ [Chen, 1997; Chen and Fernandez, 2001b; and ref-
erences therein]. Why is this knowledge being ignored in the
pursuing of β-/γ-secreatses? Perhaps because it points to Aβ

overproduction as a natural event in aging, contrasting with the
“disease” definition.

The following considerations further suggest that “identifica-
tion of β-/γ-secretases” is a problematic concept in inception: (i)
most proteases are non-specific, so most peptides they produced
in our body are unlikely to have specific and singular – thus iden-
tifiable – “secretases”; (ii) Aβ is no exception, as it exists in vivo
not as Aβ1-40/42 only, but a mixture of many peptides with
their N-termini starting from −4 −3, −2, +3 up to +9, and
C-termini from 34, 38, 44, and up to 46 (Masters et al., 1985;
Haass and Selkoe, 1993; Kim et al., 2001; Zhao et al., 2004). Such
heterogeneous peptides are unlikely to be generated by two sin-
gle proteases; (iii) indeed, several “β-site cleaving proteases” have
been identified today, proving the multiplicity of “β-secretase.” If
so, then what are the values for identifying one or a few of them?
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And (iv) if γ-secretase is a presenilin, then not only would it be
“overactivated” by aging (no one has provided a reason for this
assumption), but also by each of its near-200 gene mutations – a
wild “gain of function” model that contrasts with a “loss of func-
tion”(memory) disease [note that our“mutations cause inefficient
Ca2+ channeling” model better explains the roles of the muta-
tions (Chen and Fernandez, 2001b; Chen et al., 2011b), which
has been supported by an important recent study (Sun et al.,
2014)].

We are aware that current models are corroborated by moun-
tains of evidence, but they have not explained sAD. So it is
necessary for us to keep an open mind. The supreme judge in
science is reason, not only “evidence” (also note that not all pub-
lished data can be called “evidence,” unless they offer a reasonable
explanation for the disease).

A BROAD NEW FRONTIER FOR sAD PREVENTION
Our model (Figure 1) points to energy and Ca2+ deficits
as the two primary drug targets for early sAD interven-
tion. As such, numerous energy-promoting and Ca2+-activating
agents/practices would be useful. These include but are not limited
to: physical exercise, glucose catabolism stimulators, energy-rich
substances, growth factors, hormones, neurotransmitter receptor
agonists, neurotrophic factors, and metabolic enhancers (Nguyen
et al., 2013; Nguyen and Chen, 2014).

This would be a broad and new research frontier (compared
to current dominant anti-amyloid and anti-calcium strategies).
Notably, similar approaches have been successfully used to delay
or prevent other senile disorders such as atherosclerosis and
osteoporosis, and some of them have been shown to exhibit neuro-
protective effects in sAD studies (Pettegrew et al., 2000; McDaniel
et al., 2003; Chan and Shea, 2007; Ritchie et al., 2007; Fisher, 2012;
Newhouse et al., 2012). Thus, it is reasonable to anticipate that
early use of such drugs (or their more effective derivatives or their
combinations), especially when enhanced by targeting many risk
factors in late life via improved social supports, will significantly
delay or even prevent sAD.

At the same time, our study warns that current enthusiastic
clinical trials on anti-amyloid and anti-mutation drugs in high
risky individuals for EOAD and FTD are not the most effective use
of the invaluable resources, because they will not benefit, but only
distract, our study focus on sAD, the most severe social threatening
disease.

CONCLUSION
Sporadic Alzheimer’s disease differs fundamentally from discrete
diseases. This is the watershed where their study paradigms diverge
but is also where commonsense and illusion collide.

In this work we further examined our “energy/Ca2+ deficits”
model for its explanatory potential for several key sAD features
in comparison with current models (e.g., Ca2+ overactivation,
amyloid hypothesis, tau kinase activation, protein misfolding, and
β-/γ-secretases). It appears that despite the controversies and para-
doxes, our model can explain the sAD features better than other
models.

Our model (Figure 1) also rests on several assump-
tions including a “ligand-receptor” relationship between calpain

and substrates, “alternative breakdown” of calpain substrates,
energy-/Ca2+-dual dependent α-secretase and its rate-limiting
role in Aβ genesis. These assumptions may subject to modifi-
cations as new findings emerge in the future, but our starting
point for reasoning – sAD initiates from natural aging – and the
key intervention targets it suggests – energy and Ca2+ signaling
deficits – may stand the test of time and reason.

Nevertheless, our model leaves a supreme question at large: if
memory inefficiency, plaques and tangles all result from normal
aging as we suggested, then what on earth can explain the devastat-
ing sAD only in some but not in other elderly (Figure 1; question
mark)? This question should have been guiding the sAD research
from the beginning, yet unfortunately, it has never been explicitly
asked by NIA. As we discussed elsewhere (Chen and Fernandez,
2000; Chen et al., 2011b), this question can be hopelessly compli-
cated to answer if sAD is as defined today, but it may be much
simpler in concept if it is merely one of many senile disorders, as
viewed by Alois Alzheimer and his colleagues by commonsense.
NIA needs to return to commonsense in the perception
of sAD.
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