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Alzheimer’s disease (AD) is characterized
by a progressive decay of cognitive abilities,
most remarkably (spatial) memory and
learning. AD is diagnosed by clinical men-
tal tests, often combined with the detec-
tion of neurobiological markers, mainly
brain imaging studies and a decreased amy-
loid beta (Aβ) level and/or increased total
and hyper-phosphorylated Tau protein
(tau-P) in cerebral spinal fluid (Hampel
et al., 2008; Alzheimer’s Association, 2014).
The diagnosis is confirmed post-mortem
by histopathological detection of senile
plaques, composed of Aβ accumulations,
and tau-P-containing neurofibrillary tan-
gles (Jellinger and Bancher, 1998). How-
ever, non-demented, aged patients may
have a histopathology that is indistinguish-
able from AD (Price and Morris, 1999; Nel-
son et al., 2012). Furthermore, the brains
of AD may have additional changes, such
as (micro)vascular changes (Scheibel et al.,
1989; de la Torre, 2002; Bell and Zlokovic,
2009; Hommet et al., 2011), white matter
hyperintensities (Kandiah et al., 2015), and
vacuolar cells, which are not considered
as pathognomonic features under current
standards (Nelson et al., 2012).

WEAKNESSES OF THE AMYLOID BETA
CASCADE HYPOTHESIS
In the last two decades, AD-related inves-
tigation has absorbed approximately 18%
of neuroscience research efforts (Sorensen,
2009), but so far neither a cure nor an
effective method of prevention has been
formulated. If Alzheimer etiology is mul-
tifactorial and complex, how can one jus-
tify that etiology studies are dominated
by a single hypothesis, the Aβ cascade
(ABC) hypothesis (Hardy and Higgins,

1992; Selkoe, 2008)? Central in an actu-
alized version of this hypothesis is the
formation of soluble oligomer Aβ forms
(Selkoe, 2008), which cause synaptic dys-
function, tau-P-containing neurofibrillary
tangles (Busciglio et al., 1995), and progres-
sive cognitive decline. The ABC hypothe-
sis was reinforced by the identification of
gene defects in APP, PSEN1, and PSEN2
in patients with an early-onset, inherited
form of the disease, and further strength-
ened when transgenic mouse models that
express familial human APP and PSEN
mutations recapitulate most features of
human disease. The APP gene encodes the
Aβ precursor protein (APP), from which
Aβ is liberated after step-wise, amyloido-
genic, proteolytic processing. The APP
gene is located on chromosome 21, which
may explain early-onset AD in Down’s syn-
drome patients. The genes for PSEN1 and
PSEN2 encode presenilin 1 and 2, which
are part of the γ-secretase complex, the
enzyme that carries out the second cleavage
in APP processing (Haass et al., 2012). Sur-
prisingly, genome-wide association studies
have not identified mutations for either
enzyme that performs initial APP cleavage:
(1) α-secretase, in the non-amyloidogenic
route, and (2) β-secretase/BACE1, in the
amyloidogenic route. Notwithstanding, the
ABC hypothesis does not consider another
APP metabolite to be the toxic agent (Roher
et al., 1991), though the APP intracellular
domain seems to have neurodegenerative
potential (Chang et al., 2006; Ghosal et al.,
2009). Furthermore, the functions of APP
and APP-derived fragments, including Aβ

that is also produced during homeostasis
(Haass et al., 2012), have not yet been elu-
cidated. Meanwhile, numerous in vitro and

animal studies have strengthened the ABC
hypothesis by linking Aβ with tau-P, forma-
tion of neurofibrillary tangles, neurotoxic-
ity, and cognitive defects (Selkoe, 2008). It
should be noted, though, that a large quan-
tity of supporting data were obtained from
experiments with serious flaws in experi-
mental design, for example: (1) the appli-
cation of non-physiological high concen-
trations of Aβ (Selkoe, 2008; McGeer and
McGeer, 2013), (2) the lack of proper neg-
ative controls, which tend to be limited to
the solvent or vehicle, but do not include
alternative fragments of APP or a “mock”
protein) (Busciglio et al., 1995; Pentreath
and Mead,2004; Boyd-Kimball et al., 2005),
(3) the absence of Aβ elimination mecha-
nisms in cell culture studies, and (4) the
absence of mentally healthy human con-
trols in some studies (Cummings et al.,
2014).

In spite of the aforementioned weak-
nesses, the ABC hypothesis may explain
heritable, early-onset AD. However, the
assumption that the hypothesis can be
extrapolated to sporadic, late-onset AD
may be a mistake. Arguments that sim-
ilar clinical symptoms and neurobiolog-
ical findings justify such extrapolation
are not supported by other diseases with
a differential onset time. For example,
skin blistering diseases may have similar
clinical and histological features, but the
early-onset forms (epidermolysis) have a
genetic basis, whereas the late-onset forms
(pemphigoids) are autoimmune diseases
(Valeski et al., 1992). Only for the latter,
a treatment based on etiology is avail-
able. Likewise, it is not surprising that
Alzheimer treatments that target com-
ponents of the ABC hypothesis, though
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promising in animal models of early-onset
Alzheimer, fail in human clinical studies
(Geerts et al., 2013), where 95% of the
patients suffer late-onset AD (Alzheimer’s
Association, 2014; Hill et al., 2014). Fur-
thermore, the ABC hypothesis ignores cer-
tain neurobiological aspects. First, senile
plaques and neurofibrillary tangles dis-
play dissimilar spatiotemporal distribution
(Jucker and Walker, 2011). If the former
induced the latter, similar patterns would
be expected. Second, the role of glial cells
in the ABC hypothesis is reduced to an Aβ

elimination route and does not consider
their recently recognized participation in
all essential neurological tissue functions
(Kettenmann et al., 2011; Oberheim et al.,
2012). Cell counting studies on human
Alzheimer brains have focused on neu-
rons (Pelvig et al., 2003), but the possi-
ble loss of glial cell extensions or cells, or
a change in their functioning, has hardly
been appreciated. Third, if Aβ were as toxic
as claimed, how can one explain cognitive
health in subjects that contain Aβ accumu-
lations that would credit Alzheimer dis-
ease? Indeed, it is amply recognized that
an Aβ plateau is reached long before clini-
cal symptoms may appear (Braak and Del
Tredici, 2011; Cummings et al., 2014). Pro-
ponents of the ABC hypothesis provide
several explanations: (1) the phenomenon
reflects the prodromal period, (2) cogni-
tively healthy subjects have a “cognitive
reserve” (Stern, 2012), i.e., excess of den-
dritic spines, or (3) the inert and very resis-
tant senile plaques should be considered
rather protective than toxic. Surprisingly,
the possibility that another APP metabo-
lite may be the toxic component is not
considered in the ABC hypothesis. Besides,
the accumulation of tau-P, whatever may
have induced its production, associates bet-
ter with clinical symptoms and decline than
Aβ (Cummings et al., 2014). Still, neurofib-
rillary tangles are not specific either to AD
as they occur in a variety of neurodegener-
ative diseases (Nelson et al., 2012). Fourth,
the ABC hypothesis does not pay attention
to the fact that the hippocampus is the site
of both disease initiation and adult neu-
rogenesis (Wang et al., 2014). Finally, the
ABC hypothesis ignores typical character-
istics of the disease, such as the spatiotem-
poral pattern of affected brain areas, the
presence of white matter hyperintensities
(Kandiah et al., 2015), and vacuolated cells

(Nelson et al., 2012). Alternative hypothe-
ses, in which Aβ may occur as a symptom,
but not as the main cause, are presented
below.

PROMISING ALTERNATIVE ETIOLOGY
HYPOTHESES
In the bioenergetics hypothesis, low (sex)
steroid hormone levels affect glucose trans-
port into the brain, as has been demon-
strated in animal models (Yao and Brin-
ton, 2012). In order to fulfill its high
energy demands, the brain switches first
to a ketone body-based metabolism and
later to fatty acid oxidation. This process is
accompanied by oxidative stress, a decline
in mitochondrial function, Ca2+ overload,
and general cellular malfunction (Caman-
dola and Mattson, 2011). These changes in
metabolism would affect the white mat-
ter either by inadequate myelin synthe-
sis or by increased myelin degradation
by astroglia, which could turn them into
vacuolated cells. Indeed, wells with lipoid
granules were noted as a pathological hall-
mark by Alois Alzheimer, but they have
been ignored by many scientists in the
field (Di Paolo and Kim, 2011). White
matter degeneration increases free choles-
terol, which may be incorporated in mem-
branes and lead to an increased number
of lipid rafts. Lipid rafts favor the amy-
loidogenic processing of APP. In this sce-
nario, Aβ is rather a down-stream symp-
tom than a cause of disease. Estrogen-based
therapy, initiated around the menopause
transition in subjects with healthy, non-
compromised brains, has been associated
with a decreased risk of AD (Yao and Brin-
ton, 2012). Furthermore, there are other
neurosteroid hormones that are neuropro-
tective by improving bioenergetics, increas-
ing anti-oxidant activity (Grimm et al.,
2014), or promoting neurogenesis, and as
such may provide new therapeutic options
for AD patients. Indeed, some are currently
studied in clinical trials.

Another hypothesis, the reactivation of
latent Herpes simplex 1 (RL-HSV), was
suggested to explain the earliest predilec-
tion of entorhinal and hippocampal ner-
vous tissue to display AD-related cognitive
decline, the same brain regions that are
primarily affected because of herpes sim-
plex encephalitis (Ball et al., 2013). How-
ever, most people infected with H. sim-
plex 1 (HSV-1) only develop a temporary

cold sore, followed by a life-lasting, latent
infection in the trigeminal ganglia. Peri-
odic reactivation may be asymptomatic,
unless the immune system is weakened,
as in old age. The bipolar trigeminal gan-
glion neurons branch centrifugally to distal
nerve endings, and centripetally to mesen-
cephalic nuclei and locus coeruleus, where
earliest tau pathology has been observed
(Braak and Del Tredici, 2011). From there,
dissemination could pass further into the
cerebral cortex (Armien et al., 2010). Vac-
uolated cells could represent infected neu-
rons or glial cells in process of degenera-
tion (Ohara et al., 2000). HSV-1 binding
to neuronal membranes causes persistent
hyper-excitability and increased intracellu-
lar Ca2+ (Piacentini et al., 2014), which is
thought to contribute to neurodegenera-
tion in the calcium hypothesis (Mattson,
2010). Viral encoded kinases, such as UL13,
could phosphorylate human tau protein
by cross-species substrate specificity (Geiss
et al., 2004). In this model also, tau and
Aβ pathology would be rather a conse-
quence than a cause of AD. HSV-1 DNA has
been located within senile plaques (Itzhaki,
2014). Anti-viral drug reduced Aβ, tau-
P, and HSV-1 accumulation in cell cul-
tures infected with HSV-1 (Itzhaki, 2014).
HSV-1 prevalence, tested by seropositiv-
ity, is high (50–80%) in most countries,
and tends to increase with age (Smith
and Robinson, 2002). Indirect evidence
for the reactivation of HSV-1 comes from
a prospective study in which anti-HSV-1
IgM-seropositivity, a marker of primary
infection or reactivation of latent infec-
tion, highly correlated with the develop-
ment of late-onset AD (Letenneur et al.,
2008). APOE4, a genetic risk factor for late-
onset AD, facilitates viral infectivity (Bur-
gos et al., 2006). Many interesting viral/host
interactions that target to AD suscepti-
bility genes have been discovered (Carter,
2008), which provide an integrated, con-
vincing support to the RL-HSV hypoth-
esis for late-onset AD etiology. Addition-
ally, AD brains contain clear evidence for
activation of the inflammatory pathway.
Chronic inflammation has been proposed
as the main initiator of late-onset AD in
the inflammatory hypothesis (Morris et al.,
2014), but it might reflect a reaction to
an infection (Hill et al., 2014). A reacti-
vation of HSV-1 would have to be differ-
ent from known lytic cycle replication as
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AD patients do not suffer from encephali-
tis or cold sores. Likewise, no direct evi-
dence of HSV-1 reactivation, such as the
detection of increased levels of lytic tran-
scripts or proteins, has been convincingly
reported. Recently, the axonal transport
of nude HSV-1, i.e., a viral particle with
capsid but without envelope or associ-
ated glycoproteins, has been reported (Wis-
ner et al., 2011). This phenomenon may
explain negative or low HSV-1 immunore-
activity on Alzheimer’s brain if antibod-
ies or antiserum to envelope proteins were
used. Alternatively, other (neurotropical)
pathogens may be responsible (Lurain
et al., 2013). Besides, the reactivation of a
neurotropic pathogen may have detonated
an autoimmune disease, originally initi-
ated by cross-reactivity between pathogen
and host antigens. Interestingly, inten-
sive immunoreactivity to human antibody
has been reported in Alzheimer’s brains
(D’Andrea, 2003), which was interpreted
as a sign of autoimmune disease. The
cognate antigen has not been identified,
and could be either an auto-antigen or a
pathogen-derived antigen. Medical history
provides examples of diseases that used
to be attributed to age, stress, or chronic
inflammation until pathogen involvement
could be proven. Nowadays, we know that
peptic ulcers are caused by Helicobacter
pylori (Marshall and Warren, 1984) and
that periodontal disease and concomitant
tooth loss are caused by a limited number
of oral pathogens (Cugini et al., 2013). As a
result, prevention methods and antibiotic
treatments have come available.

In our opinion, now that the ABC
hypothesis road seems dead-ended, alter-
native roads deserve to be explored with
more effort in order to discover new targets
for diagnostics, cure, and prevention.
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