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INTRODUCTION

In this study, we wished to examine the relationship between the structural connectiv-
ity of the fornix, a white matter (WM) tract in the limbic system, which is affected in
amnestic mild cognitive impairment (aMCl) and Alzheimer’s disease, and the resting-state
functional connectivity (FC) of two key related subcortical structures, the thalamus, and
hippocampus. Twenty-two older healthy controls (HC) and 18 older adults with aMCl under
went multi-modal MRI scanning. The fornix was reconstructed using constrained-spherical
deconvolution-based tractography. The FC between the thalamus and hippocampus was
calculated using a region-of-interest approach from which the mean time series were
exacted and correlated. Diffusion tensor imaging measures of the WM microstructure of
the fornix were correlated against the Fisher Z correlation values from the FC analysis. There
was no difference between the groups in the fornix WM measures, nor in the resting-state
FC of the thalamus and hippocampus. We did however find that the relationship between
functional and structural connectivity differed significantly between the groups. In the HCs,
there was a significant positive association between linear diffusion (CL) in the fornix and
the FC of the thalamus and hippocampus, however, there was no relationship between
these measures in the aMCI group. These preliminary findings suggest that in aMCl, the
relationship between the functional and structural connectivity of regions of the limbic sys-
tem may be significantly altered compared to healthy ageing. The combined use of diffusion
weighted imaging and functional MRI may advance our understanding of neural network
changes in aMCI, and elucidate subtle changes in the relationship between structural and
functional brain networks.

Keywords: diffusion MRI, tractography, functional connectivity, fornix, mild cognitive impairment (MCI),
hippocampus, thalamus

aMCI and AD predominantly focused on localized brain changes

Alzheimer’s disease (AD) is the most common cause of neurode-
generative dementia and is often preceded by a stage known as
amnestic mild cognitive impairment (aMCI) (Petersen et al., 1999;
Petersen, 2004), which confers an increased risk of developing AD
(Stephan et al., 2012). With the prevalence of AD predicted to
rise substantially over the coming years (Barnes and Yaffe, 2011),
there has been increasing interest in using neuroimaging to under-
stand early brain changes associated with preclinical groups such
as aMCI (Jack et al., 2010; Sperling et al., 2011), which may repre-
sent the earliest stages of the disease. Early neuroimaging studies of

such as hippocampal atrophy (Hua et al., 20105 Jack et al., 2010),
however there is now a large body of evidence suggesting that the
brain’s inherent structural and functional connectivity (FC) is dis-
rupted in aMCI and AD (Seeley et al., 2009; Teipel et al., 2014;
Vidal-Pineiro et al., 2014).

Functional connectivity studies have found reduced connec-
tivity in resting-state networks in aMCI and AD, including the
default mode network (DMN) (Greicius et al., 2004; Beason-Held,
2011; Brier et al., 2012; Jacobs et al., 2013; Sheline and Raichle,
2013), and have found that altered FC is also linked to memory
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dysfunction in these populations (Wu et al., 2013; Dunn et al,,
2014). Studies using diffusion weighted imaging (DWI) and trac-
tography to measure white matter (WM) connectivity inaMCl and
AD have found significant alterations in tracts essential for mem-
ory function such as the fornix, uncinate fasciculus, and cingulum
(Naggara et al., 2006; Muller et al., 2007; Stahl et al., 2007; Cathe-
line et al., 2010; Fellgiebel and Yakushev, 2011; Metzler-Baddeley
etal., 2012a,b).

The fornix is the main efferent pathway of the hippocampus,
connecting it with regions including the mammillary bodies of the
hypothalamus and the thalamus (Schmahmann and Pandya, 20065
Aggleton et al., 2010). A number of studies have found changes in
the fornix in aMCI and AD (Mielke et al., 2009; Zhuang et al.,
2010; Bozoki et al., 2012; Lee et al., 2012), such as lower fractional
anisotropy (FA — thought to reflect fiber tract density and myelina-
tion). Furthermore, in a prospective study in healthy older adults,
lower FA in the fornix at baseline predicted conversion to aMCI
after 2 years (Zhuang et al., 2012a).

Although memory dysfunction in aMCI has been linked with
both hippocampal atrophy (Convit et al., 1997; Grundman et al.,
2003; Stoub et al.,, 2006) and WM degeneration in the fornix
(Zhuang et al., 2012b), however, the role of the thalamus in aMCI
is less well-defined, even though this structure is closely associated
with the fornix and hippocampus. The thalamus plays a major role
in generating the many rhythms in electroencephalography (EEG),
which change substantively during neurodegeneration (Cantero
et al,, 2009); yet little is known about the role of the thalamus
in neurodegeneration, and whether or not thalamus atrophy is a
primary or secondary phenomenon to hippocampal or cortical
atrophy in AD.

Several volumetric studies have found that the thalamus does
undergo neurodegeneration inaMCland AD (Chetelat et al.,2005;
Shiino et al., 2006; de Jong et al., 2008; Cherubini et al., 2010;
Roh et al,, 2011; Zhang et al., 2013), and in a study that com-
bined shape analysis of the thalamus and diffusion tensor imaging
(DTI) (Zarei et al., 2010), thalamic regions most highly connected
to the hippocampus showed the most severe atrophy in aMCI.
Changes in the FC of the thalamus have been reported in aMCI
(Zhouetal.,2013) albeit less frequently than changes in hippocam-
pal FC, and in one study of healthy elders (Ystad et al., 2010), a
negative correlation was found between thalamic FC and verbal
free recall. This suggested that higher performers displayed more
de-synchronization of thalamic signals, and that the FC of the thal-
amus may be linked to memory function. Yoon etal. (2012) found
a positive correlation between perfusion in the left thalamus and
performance on the Rey complex figure test in MCI, suggesting a
role for the thalamus in cognitive decline.

In the current study, we used DWI and resting-state functional
MRI (fMRI) to examine the connectivity of the fornix, thala-
mus, and hippocampus in aMCI, putatively viewed as a set of
connected brain structures, which together form part of a lim-
bic episodic memory network that malfunctions if one or more
components are impaired. In particular, we wished to examine
whether there was a correspondence between the structural and
FC measures, and whether this was altered in aMCI. This is the
first study to our knowledge to examine the link between struc-
tural and FC of the thalamus and hippocampus in aMCI. Previous

studies have suggested that functional and structural connectivity
are closely related, particularly in healthy participants (Damoi-
seaux and Greicius, 2009; Greicius et al., 2009), however the link
between the two is not well-defined (Sporns, 2014), especially in
the context of ageing and aMCI. Disruption of anatomical connec-
tions may influence the organization of FC, and combining MRI
modalities should provide greater insight into the neural network
connectivity changes in aMCIL.

We performed constrained-spherical deconvolution (CSD)-
based fiber tractography of the fornix in a cohort of older adults
with aMCI and healthy age-matched controls, and examined the
resting-state FC of the thalamus and hippocampus. Taken together,
these MRI measures should provide a fuller picture of the changes
that occur in the fornix in aMCI, as well as about the relationships
between microstructural WM changes and alterations in FC. We
predicted that the aMClIs would show decreased FA (thought to
reflect fiber tract density and myelination; Mori and Zhang, 2006),
and increased mean diffusivity values (MD —which tends to be low
in highly intact, organized tracts and which usually increases in dis-
ease states and neurodegeneration; Mori and Zhang, 2006) in the
fornix relative to controls, in line with previous studies (Mielke
et al., 2009; Zhuang et al., 2010; Bozoki et al., 2012; Lee et al,,
2012). We also predicted that there would be reduced resting-
state FC of the thalamus and hippocampus, similar to previous
findings (Zhou et al., 2008, 2013), which may be related to WM
microstructural alterations in the fornix.

MATERIALS AND METHODS

PARTICIPANTS

Twenty-two older healthy control (HC) participants and 19 older
participants with aMCI took part in the study. The tractography
analysis was unsuccessful for one aMCI participant, in whom the
tracts were almost completely absent. An examination of their
T1-weighted anatomical scan revealed quite advanced levels of
atrophy and gross enlargement of the lateral ventricles. Therefore,
18 aMCI were included in the final sample.

The HCs were community-dwelling older adults recruited
from the greater Dublin area via newspaper advertisements. They
underwent a health screening questionnaire and a neuropsycho-
logical assessment, the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD , Morris et al., 1988), in order to
rule out possible cognitive impairment before inclusion in the
study. The CERAD battery has been shown to be sensitive to the
presence of age-related cognitive decline (Welsh et al., 1991, 1992).
All of the older participants included in the study scored no more
than 1.5 SD below the standardized mean scores for subjects of a
similar age and education level on any of the sub-tests.

The aMCI participants were recruited from memory clinics
in St. James Hospital and St. Patrick’s Hospital in Dublin, and
were diagnosed by a clinician according to the Peterson criteria
(Petersen et al., 1999) — i.e., abnormal memory scores for age
and education level with no dementia. Four were single amnestic
MCI (aMCI), and 14 were multi-domain aMCI (Petersen, 2004).
Neuropsychological measures were administered or supervised by
an experienced neuropsychologist and included the mini-mental
state examination (MMSE; Folstein et al., 1975) and Cambridge
cognitive examination (CAMCOG; Huppert et al., 1995).
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All of the participants were right-handed with no history
of head trauma, neurological disease, stroke, transient ischemic
attack, heart attack, or psychiatric illness. They completed the
Geriatric Depression Scale (GDS; Yesavage, 1988), the Eysenck
Personality Questionnaire Revised Edition Short Scale (EPQ-R;
Eysenck and Eysenck, 1991), and a Cognitive Reserve Question-
naire (Rami et al., 2011) before the MRI scan. The groups did
not differ in terms of age, gender, education level, or levels of
cognitive reserve as assessed by the self-report Cognitive Reserve
Questionnaire. The aMCI group had lower MMSE scores, higher
GDS scores, and scored lower on the EPQ measure of extraversion
than the HC group. See Table 1 for a summary of the participant
demographics.

The study had full ethical approval from the St. James Hospital
and the Adelaide and Meath Hospital, incorporating the National
Children’s Hospital Research Ethics Committee. All participants
gave written informed consent before taking part in the study.

MRI DATA ACQUISITION
Whole-brain high angular resolution diffusion imaging (HARDI)
data were acquired on a 3.0 Tesla Philips Intera MR system
(Best, The Netherlands) equipped with an eight channel head
coil. A parallel sensitivity encoding (SENSE) approach (Pruess-
mann et al., 1999) with a reduction factor of two was used dur-
ing the DWI acquisition. Single-shot spin echo-planar imaging
was used to acquire the DWI data with following parameters:
Echo time (TE) 79ms, repetition time (TR) 20,000 ms, field
of view (FOV) 248 mm, matrix 112 x 112, isotropic voxel of
2.3mm x 2.3 mm X 2.3 mm, and 65 slices with 2.3 mm thickness
with no gap between the slices. Diffusion gradients were applied
in 61 isotropically distributed orientations with b= 3000 s/mm?,
and four images with b =0s/mm? were also acquired. The total
scan time was 17 min.

A high-resolution 3D T1-weighted anatomical image was ac-
quired for each participant with the following parameters: TE =
3.9ms, TR=_8.5ms, FOV =230 mm, slice thickness=0.9 mm,

Table 1 | Demographic details of the participants.

HC (n=22) aMCl (n=18) p* (df =38)
Gender 12M, 10 F 9M,9F 1.00
Age 68.86+6.47 68.83 4771 0.99
Education 14.36 +3.17 14.50+3.00 0.89
MMSE 28.82+0.96 2722 £2.10 0.003
GDS 0.77 1.1 2.67+2.30 0.002
EPQE 8.27+2.64 5.33+3.36 0.004
EPQ N 2.144+0.96 3.89+3.46 0.52

CR 17.82 £3.02 16.89+4.92 0.47

MMSE, mini-mental state exam, GDS, geriatric depression scale;, EPQ E, Eysenck
personality questionnaire extraversion scale; EPQ N, Eysenck personality ques-
tionnaire neuroticism scale; CR, cognitive reserve scale. Standard deviations are
indicated in parentheses.

*Results of independent samples t-tests, except for gender which was com-
pared with a Fischer's exact test. Statistically significant differences are indicated
in bold font.

voxel size=0.9mm x 0.9 mm x 0.9 mm. These images were used
for the correction of EPI-induced geometrical distortions in the
DWI data.

Resting-state fMRI data were also acquired during the scan-
ning session. The scan lasted for 7 min during which time the
participants were asked to keep their eyes open and fixate on a
cross hairs in the center of a screen behind the MR scanner, visible
via a mirror. The blood oxygenation dependent (BOLD) signal
changes were measured using a T2*-weighted echo-planar imag-
ing sequence with TE = 30 ms and TR = 2000 ms. Each volume of
data covered the entire brain with 39 slices, and the slices were
acquired in interleaved sequence from inferior to superior direc-
tion. Two hundred ten volumes of data were acquired, with voxel
dimensions of 3.5mm x 3.5mm X 3.85mm and a 0.35 mm gap
between the slices.

DWI ANALYSIS

The DWI data were analyzed using ExploreDTI v4.8.3 (Lee-
mans et al., 2009)!. The images were corrected for distortion
due to head motion, eddy currents and for EPI-induced geo-
metrical distortions by co-registration and resampling to the
high-resolution T1-weighted anatomical images. This was imple-
mented in ExploreDTI according to the method described by
Irfanoglu et al. (2012) and the encoding vectors were reoriented
appropriately (Leemans and Jones, 2009). Since ageing and neu-
rodegeneration are related to brain atrophy and the fornix is
extremely susceptible to contamination from cerebrospinal fluid
(CSF) and atrophy-based partial volume artefacts, the free water
elimination approach (Pasternak et al., 2009) was applied to cor-
rect for partial volume effects prior to fitting the tensor model to
the data in each voxel. The free water elimination method has been
used successfully in several previous tractography studies of ageing
and aMCI, particularly in relation to the fornix (Metzler-Baddeley
et al., 2012a,b; Fletcher et al., 2014).

Tractography of the fornix

For the analysis of the fornix a hybrid analysis approach was used,
whereby reconstruction of the tracts was completed using CSD-
based tractography (Jeurissen et al., 2011) and DTI-based WM
indices were extracted for statistical analyses. CSD rather than
DTI-based tractography was chosen as it can account for com-
plex WM orientation such as crossing fibers (Tournier et al., 2008,
2011), and this approach has recently been successful at detecting
changes in tracts with complex WM architecture in MCI and AD
(Metzler-Baddeley et al., 2012b; Reijmer et al., 2012). In the case
of the fornix for instance, DTI-based tractography cannot resolve
complex fiber architecture in regions where the anterior columns
of the fornix cross with fibers of the anterior commissure (Metzler-
Baddeley et al., 2012a). Several previous studies have successfully
used deterministic tractography based on the CSD method to
segment the fornix (Metzler-Baddeley et al., 2011, 2013).

After the pre-processing steps whole-brain tractography was
performed using every voxel as a seed point. The principle dif-
fusion orientation at each point was estimated by the CSD trac-
tography algorithm, which propagated in 0.5 mm steps along this

Uhttp://www.exploredti.com/
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direction. At each new location the fiber orientation(s) was esti-
mated before the tracking moved a further 0.5mm along the
direction that subtended the smallest angle to the current tra-
jectory. A trajectory was followed through the data until the scaled
height of the fiber orientation density function peak dropped
below 0.1, or the direction of the pathway changed through an
angle of more than 60°.

Following whole-brain tractography, the fornix was extracted
by drawing several regions of interest (ROIs) defined according
to previously published methods (Metzler-Baddeley et al., 2011,
2013). The ROIs were drawn manually for one subject and then
applied to all of the other subjects using an “atlas-based” trac-
tography (ABT) approach, by spatial transformation of the ROIs
to the other subjects’ native space. This ensured consistency in
the placement of the ROIs. See Figure 1 for an example of the
ROIs in the template subject, which was a HC participant. For
several subjects this ABT approach was unsuccessful, most often
due to inter-subject anatomical variability, such as neurodegener-
ation and encroachment of the lateral ventricles in some of the
aMCI participants. In these cases, the ROIs for the tractography
were drawn manually, with some adjustment and/or extra ROIs
typically needed.

Statistical analysis of the tractography data
From the reconstructions of the fornix WM microstructural
indices were extracted for statistical analyses in IBM SPSS Sta-
tistics for Windows, Version 22.0 (Armonk, NY: IBM Corp). These
included free water corrected FA, corrected MD and the corrected
Westin measures of linear diffusion coefficient (CL), and planar
diffusion coefficient (CP) (Westin et al., 2002). The Westin mea-
sures describe the geometrical shape of the diffusion tensor, with
a high value of CL implying only one dominant fiber orientation
within a voxel (Vos et al., 2012), and a high value of CP indicating
the presence of crossing fiber configurations (Vos et al., 2012).
The diffusion tensor metrics in the left and right fornix were
compared within the two groups using a series of paired t-tests
and no statistically significant differences were found. The val-
ues in the left and right fornix were therefore averaged to give
a single fornix measure for each subject. This also reduced the

number of multiple comparisons in the statistical tests, reducing
the possibility of Type I errors. The diffusion metrics were com-
pared between the groups using four paired t-tests, which were
corrected for multiple comparisons using a Bonferroni-corrected
p-level of p < 0.0125.

RESTING-STATE FUNCTIONAL CONNECTIVITY OF THE THALAMUS AND
HIPPOCAMPUS

The fMRI data were processed using the DPARSF V2.3 tool-
box (Data Processing Assistant for Resting-State fMRI, Yan and
Zang, 2010)2, which utilizes SPM8?> for the pre-processing steps
and the REST V1.8 toolbox (Song et al., 2011) for the resting-
state analysis. Data pre-processing involved slice timing correc-
tion, realignment to correct for head motion, normalization to
MNI152 space by Tl-image unified segmentation, smoothing
with a 4 mm full-width-at-half-maximum Gaussian kernel, and
detrending and filtering (0.01-0.08 Hz). The normalized voxel
size was 3 mm X 3 mm x 3 mm. Several nuisance covariates were
regressed out, including six head motion parameters and signals
from the WM and CSE.

The resting-state FC of the thalamus and hippocampus was
measured using a ROI FC approach. The ROIs were created using
probabilistic atlases included in FSL* and were defined in the
MNI152 template space. The left and right hippocampus ROIs
were based on the Harvard-Oxford subcortical atlas structures.
For the thalamus ROIs, the Oxford thalamic connectivity atlas
(Behrensetal.,2003a,b), a probabilistic atlas of seven sub-thalamic
regions, segmented according to their WM connectivity to cortical
areas, was used to delineate the temporal region of the thalamus.
The temporal region was chosen because, anatomically, this region
is most likely to be structurally connected to the cortex nearest
the hippocampus, and so the temporal thalamic-hippocampus
resting-state measure was devised to mirror as closely as possible
the regions structurally connected by the fornix. See Figure 2. The

Zhttp://rfmri.org/DPARSF
Shttp://www.fil.ion.ucl.ac.uk/spm
4http://fsl.fmrib.ox.ac.uk/fsl/fs14.0/fslview/atlas- descriptions.html

FIGURE 1 | Placement of the regions of interests (ROIs) for the dissection
of the fornix in ExploreDTI. (A) The five ROls used to segment the fornix
(B) coronal view of the seed ROI (C) ROI used to split the tracts and isolate
the left fornix. The blue ROl is a SEED/OR gate, the green ROl is an AND gate,

whilst the red ROls are NOT gates. These ROls were drawn for one subject
and once deemed to be accurate and robust they were applied to all other
subjects using an “atlas-based” tract segmentation method. The atlas in this
case was the FA image of this subject.
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A ROiIs for resting state B Example fornix tracts

FIGURE 2 | (A) Position of the resting-state regions of interest (ROIs) in
relation to (B) the fornix in one HC subject. ROIs for the resting-state
analysis were placed in the hippocampus (indicated in red) and the thalamic
region probabilistically connected to the temporal lobe (indicated in blue), as
defined by the Oxford thalamic connectivity atlas (Behrens et al., 2003a,b).

four subcortical ROIs were thresholded at a minimum probability
level of 20%, binarized, and re-sampled to 3 mm X 3 mm X 3 mm.

The average fMRI time series from the four ROIs were extracted
and correlated to determine the FC of the regions at rest. Fisher-Z
score transformations of these values were exported to IBM SPSS
v.22 for second-level statistical analysis. The FC Fischer Z-scores
between the left thalamus and left hippocampus, and between the
right thalamus and right hippocampus, were compared within
groups, and there was found to be no statistically significant
difference. An average thalamus—hippocampus FC measure was
therefore calculated for each subject, which was correlated against
the fornix WM measures. For each group, four correlations were
run and a Bonferroni-corrected p-value of 0.0125 was applied.

Several of the correlation coefficients were compared between
the groups. To do this, the Pearson r values were first converted to
Fisher Z scores. The Z statistic was then calculated using:

Z = (Fisher Z1 — Fisher Z2)/+/(variance), where variance is
equal to: ﬁ + ﬁ
RESULTS
COMPARISON OF FORNIX WHITE MATTER MICROSTRUCTURE IN HC
AND aMCI GROUPS
The analyses of WM microstructural indices in the fornix revealed
no statistically significant differences between the HC and aMCI
groups. There was a trend towards higher CL and lower CP in
the HCs versus aMCIs, however these results did not meet the
Bonferroni-corrected threshold of p < 0.0125. See Table 2 for a
summary of these results and Figure 3 for examples of the fornix
tracts in one HC and one aMClI participant.

RESTING-STATE FUNCTIONAL CONNECTIVITY OF THE THALAMUS AND
HIPPOCAMPUS AND RELATION TO FORNIX WM MICROSTRUCTURE
The average FC of the temporal thalamic regions and the
hippocampus indicated a high degree of resting-state FC in
both the HCs (Fisher’s Z=0.48+0.23) and aMCIs (Fisher’s
Z=0.50+£0.21). There was no statistically significant difference
in FC between the groups [ (38) = —0.32, p=0.75].

The correlational analysis of the functional and structural con-
nectivity measures revealed a significant positive association in the

Table 2 | Mean DWI measures for fornix in the HC and aMCI groups.

Fornix HC aMCI t-statistic p-value
FA 0.25+0.02 0.24+0.03 1.22 0.23
MD 0.0009+0.00006 0.0009+0.00007 —0.88 0.38
CL 0.29+0.02 0.26+0.04 2.21 0.033
CP 0.0698 +£0.012 0.0863 +0.032 —2.21 0.034

FA, fractional anisotropy; MD, mean diffusivity; CL, linear diffusion coefficient; CR
planar diffusion coefficient.

HC group between the linear diffusion coefficient in the fornix and
the FC of the thalamus—hippocampus (r=0.55, p = 0.008), which
was absent in the aMCI group (r= —0.08, p = 0.81). These correla-
tion coefficients differed significantly from one another (Z=5.17,
P <0.0001). Scatterplots of these correlational results are shown
in Figure 4. One of the datasets had a CL value of <0.2, which
upon examination was found to be a statistical outlier (p < 0.05).
This dataset was removed from the correlational analyses, thus in
Figure 4 there are 22 HCs and 17 aMCI datasets plotted.

DISCUSSION

In this study, we examined the structural integrity of the fornix, an
important limbic WM tract, and the resting-state FC of two associ-
ated subcortical structures, the thalamus, and hippocampus. This
is the first study to our knowledge to examine the relationship
between the structural and FC of the thalamus and hippocampus,
and whether this is altered in aMCI, a condition which is known to
affect fornix WM and resting-state connectivity of intrinsic brain
networks.

RELATIONSHIP BETWEEN FUNCTIONAL AND STRUCTURAL
CONNECTIVITY

Although, contrary to our predictions, we found no evidence of
reduced FC between the thalamus and hippocampus in aMCI, we
did find that the correspondence between the FC and fornix WM
was altered in this group. There was a significant positive rela-
tionship in the HCs between CL in the fornix and the FC of the
thalamus—hippocampus, however this relationship was absent in
the aMCls.

Elucidating the relationship between structural and FC is not
trivial, and is an area of growing interest within the neuroimaging
community (van den Heuvel and Sporns, 2013; Sporns, 2014). Pre-
vious combined fMRI-DTT studies have found that resting-state
FC does in general reflect the brain’s structurally connected WM
networks (Damoiseaux and Greicius, 2009; Greicius et al., 2009),
and functional and structural connectivity measures have been
found to correlate, particularly in healthy individuals (Skudlarski
et al., 2008; van den Heuvel et al., 2008).

Several studies have indicated however, that the relationship
between functional and structural connectivity can be altered in
disease states. For example, in a study of major depressive disorder
(de Kwaasteniet et al., 2013), patients had a negative correlation
between FA in the uncinate fasciculus — another of the limbic WM
tracts—and the FC between the subgenual anterior cingulate cortex
and the hippocampus, which was not mirrored in the HC. Further-
more, in a study of schizophrenia (Skudlarski et al., 2010), patients
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A Healthy Control

R L

FIGURE 3 | Example fornix tracts in a (A) healthy control and

(B) amnestic aMCI subject. The top panel in each case shows the tracts
colorencoded with the first eigenvector (FE); the bottom panel shows the
same tracts colorencoded with FA values. For each subject, the left and
right fornix is shown in isolation on the left, and on the right the fornix can
be seen overlaid on the subject’s T1-weighted structural image, with the

FE shown in semi-transparent color (note the corpus callosum in red for
example). The DWI data were co-registered to the structural images during
the processing to correct for EPIl-induced geometric distortions, however
as illustrated by these figures this also facilitates the inspection of the
white tracts in reference to the high-resolution anatomical image of the
brain.

Correlations between Structural and Functional
Connectivity
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FIGURE 4 | Scatterplots indicating the correlations between functional
and structural connectivity measures. In the HCs but not the MCls there
was a significant positive relationship between CL in the fornix and the
resting-state connectivity of the thalamus and hippocampus.

compared to controls were found to show not only overall reduced
global WM connectivity as derived from DTI, but also a lower
coherence between WM connectivity and FC. The current study
supports the idea that the correspondence between functional
and structural connectivity may be altered in neuropathological
states. This is an area of research which certainly warrants further
investigation in future studies.

Functional connections in the brain also exist between regions,
which are not directly structurally connected, likely mediated by
indirect structural connections (Honey et al., 2009), however in the
current study we focused our analysis on the connectivity of two
subcortical structures, which are known to be directly linked via a
WM tract. We found evidence that there is a close correspondence
between functional and structural connectivity in these structures
in healthy ageing, which appears to be disrupted in aMCI.

FORNIX RESULTS

A number of previous studies have found that the fornix is affected
in aMCI, with changes such as lower FA and increased RD reported
(Lee et al., 2012; Metzler-Baddeley et al., 2012a; Oishi et al., 2012;
Zhuang et al.,, 2013). We had predicted that the aMCI group
would show similar changes in fornix WM indices consistent with
compromised WM, however we found no evidence of this in the
current study, with no differences in fornix WM microstructural
indices between the groups.

The lack of difference in the fornix WM microstructural indices
between the HCs and aMCls may be due to sparing of the fornix
in this aMCI cohort, however several other factors may also have
contributed. This study was limited by a relatively small sample
size, which likely reduced the power to detect group differences.
Furthermore, the aMCI cohort included both single and multi-
domain aMCI. This increased heterogeneity of the sample may
also have decreased the likelihood of detecting differences between
the groups. Multi-domain aMCI also confers an increased risk of
conversion to vascular dementia (VaD) (Petersen, 2004; Rasquin
etal.,2005; Libon et al., 2010) and not just AD, which has typically
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notbeen found to involve the same level of disruption to the limbic
system as AD (Burton et al., 2009). However some previous studies
of aMCl also failed to detect changes in FA (Nowrangi et al., 2013;
Rowley et al., 2013), suggesting that FA may not always be a strong
indicator of WM connectivity changes in this cohort.

LINEAR AND PLANAR DIFFUSION COEFFICIENTS

The WM indices of linear and planar diffusion coefficients (CL
and CP) did show a trend towards being significantly different
between the groups (p < 0.035 in each case, which did not survive
Bonferroni correction), with higher CL and lower CP in the HCs.
High CL values are thought to reflect the presence of one dominant
fiber orientation within a voxel (Vos et al., 2012), while high CP
values are thought to indicate the presence of crossing fiber con-
figurations (Vos et al., 2012). The fornix is generally considered to
be a largely single-fiber orientation tract, however differences in
CL and CP may also reflect WM damage. For example, in a recent
study, which investigated WM changes following a season of play-
ing varsity football (Davenport et al., 2014), there was a strong
association between the number of head impacts and reduced
FA, as well as reduced CL and increased CP. In fact, the strongest
statistical relationship was with changes in CL, with the authors
suggested may reflect WM disconnection due to the focal disrup-
tion of axons caused by the traumatic head impacts. Changes in
CL and CP may also reflect WM changes in aMCI, such as WM
degeneration and disruption to axonal organization, however fur-
ther investigation of how these indices change in ageing and aMCI
is needed.

STRENGTHS AND LIMITATIONS OF THE CURRENT STUDY

The present study extends previous studies by examining how
fornix WM microstructural is related to the resting-state FC of
two closely related structures, the thalamus and hippocampus.
It is becoming common for neuroimaging researchers to collect
multi-modal MRI data, therefore it is important for more studies
to integrate findings across these modalities. This is the first study
to our knowledge to combine FC and diffusion tractography to
examine the fornix in ageing and aMCI, and the first to find dif-
ferences in the relationship between the functional and structural
connectivity of the thalamus and hippocampus related to aMCI.

The DWI methods employed in this study were very robust,
as CSD-based tractography methods are preferable to DTI-based
approaches, particular for brain regions with complex WM archi-
tecture. Correcting for free water is also an important pre-
processing step since it is well established that atrophy-related CSF
partial volume can bias DTI-based indices (Metzler-Baddeley et al.,
2012a;Vos etal.,2012; Baron and Beaulieu, 2014; Maier-Hein et al.,
2014). A recent study has highlighted how signals from CSF can
contribute to differences in WM microstructural measures in MCI
(Berlot etal., 2014), highlighting the importance of controlling for
this confound.

A possible methodological limitation of our study is that we
did not examine possible non-linear relationships between WM
measures and FC. Variability in these measures may also be better
captured by using more advanced statistical approaches, such as
joint ICA (Calhoun et al., 2009). This is something which could
be explored in future studies.

CONCLUSION

In the current study, we used multi-modal MRI to examine the
relationship between the functional and structural connectivity
of two important subcortical structures, the thalamus and hip-
pocampus, in healthy ageing and aMCI. We did not replicate
previous findings of changes in DTI metrics in aMCI, which may
indicate that the study was underpowered to properly test these
differences. Thus the results should be taken as preliminary find-
ings, which we believe warrant further investigation in a larger
cohort. However, although there were no group differences in
the WM measures of the fornix or in the FC of the thalamus—
hippocampus at rest, there was a strong correspondence between
the structural and FC measures in the HCs, which was absent
in the aMCI group. The results suggest a disruption to the rela-
tionship between functional and structural connectivity in aMCI,
which may be representative of early neuropathological connec-
tivity changes in the limbic system. Both DWTI and FC have offered
new insights into brain network changes in aMCI. However, the
complementary strengths of both of these methods combined may
advance our understanding of neural network disconnection in
this condition, and may increase the potential biomarker capa-
bilities of MRI by elucidating subtle changes in the relationship
between structural and functional brain networks.
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