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A hallmark of aging is alteration of organismal homeostasis and progressive decline of

tissue functions. Alterations of both cell intrinsic functions and regenerative environmental

cues contribute to the compromised stem cell activity and reduced regenerative

capability occurring in aged muscles. In this perspective, we discuss the new evidence

supporting the hypothesis that skeletal muscle stem cells (MuSCs) are intrinsically

defective in elderly muscles. In particular, we review three recent papers leading to identify

fibroblast growth factor receptor-1, p38 mitogen-activated protein kinase, and p16INK4a

as altered signaling in satellite cells from aged mice. These pathways contribute to

age-related loss of MuSCs asymmetric polarization, compromised self-renewal capacity,

and acquisition of pre-senescent state. The pharmacological manipulation of those

networks can open novel strategies to rejuvenate MuSCs and counteract the functional

decline of skeletal muscle during aging.

Keywords: muscle satellite cells, muscle regeneration, muscle aging, p38 mitogen-activated protein kinases,

p16INK4a

Extended lifespan raises the issue of handling age-related disorders, which profoundly affect the
quality of life of an increasing number of people. At the physiological level, themost relevant feature
of aging is the functional decline of tissue functions (Oh et al., 2014).

In particular, in the elderly, muscle mass declines progressively by means of a process named
sarcopenia, making skeletal muscle one of the more compromised tissues during aging. Beyond the
protein breakdown associated with the loss of sarcomeric proteins, aged muscles display compro-
mised regenerative capacity associated with altered environmental cues (Kim and Choi, 2013; Sayer
et al., 2013).

Muscle regeneration is achieved by the interplay between adult stem cells, named muscle satel-
lite cells (MuSCs), and other cellular types (i.e., macrophages and muscle interstitial cells) that
participate in the orchestration of regeneration. Muscle niche derived and systemic cues con-
tribute to regulate muscle homeostasis and functionality (Chakkalakal et al., 2012; Bentzinger
et al., 2013). Changes of those three compartments are described throughout lifetime and account
for the decline of functional capacities in the elderly (Jang et al., 2011). Upon muscle injury,
MuSCs that are located in a niche between the basal lamina and the sarcolemma, become acti-
vated and recapitulate myogenic differentiation to replenish damaged muscle (Collins et al., 2005;
Cheung and Rando, 2013). Additionally, environmental cues finely regulate this process driving
efficient muscle regeneration (Sinha et al., 2014). In order to ensure optimal performance, it is
critical that several properties of MuSCs are finely regulated and coordinated. Amongst these
properties are survival, self-renewal, fine-tuning between exit from quiescence and proliferative
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expansion, and eventually commitment toward myogenic differ-
entiation (Bentzinger et al., 2013). All these processes are altered
in the elderly leading to compromised muscle functionality.

Beyond the notion provided by parabiosis experiments that
circulating systemic factors are able to restore muscle regener-
ation in aged mice (Conboy et al., 2005), recent evidence sup-
ports the hypothesis that MuSCs are intrinsically defective in
aged muscles. These new findings open the possibility to target
this stem cell compartment to counteract functional decline of
muscle during aging. Here, we will provide a general comment
on three breakthrough studies from Bernet et al. (2014), Sousa-
Victor et al. (2014) and Cosgrove et al. (2014) discussing the
relative contribution to muscle regeneration of cell-autonomous
vs. cell non-autonomous factors during aging.

In their work Bernet et al. and Cosgrove et al. provide evidence
that constitutive activation of the p38 MAPK in aged MuSCs
leads to a decline in their self-renewal and regenerative capacity.
Both groups demonstrated that partial pharmacological inhibi-
tion of p38 is sufficient to restore the ability of MuSCs to par-
ticipate efficiently in muscle regeneration and to maintain the
stem cell pool. Interestingly, Bernet et al. identify an alteration of
the FGF-2/FGFR1 axis as a feature of aged MuSC dysfunction,
as observed previously by Brack and colleagues (Chakkalakal
et al., 2012). Although in the paper by Chakkalakal the authors
suggest that increased activity of FGFR1 results in the disrup-
tion of MuSC quiescence in aged muscles, the Bernet study sup-
ports the hypothesis that FGF-2 increase in the aged niche is a
compensatory response to the loss of function of FGFR1 activ-
ity observed in aged MuSCs. In particular, they show that while
in young MuSCs the FGF2/FGFR1 axis drives asymmetric divi-
sion through activation of p38 only in the committed daughter
cell, in aged MuSCs this balance is altered. Indeed, the insen-
sitivity to FGF signaling in the elderly MuSCs results in con-
stitutive activation of p38 with loss of asymmetric polarization
and impaired self-renewal capacity. Likewise, FGFR1 ligand inde-
pendent, constitutive activation restores MuSC asymmetric cell
division.

With elegant experiments of autologous and serial MuSC
transplantation Cosgrove et al. demonstrate the intrinsic defect of
elderly derived MuSCs in association with increased p38 activity.
The authors demonstrate a synergistic interaction of biochemical
and biophysical factors, respectively pharmacological inhibition
of p38 and a hydrogel culture system, which contribute to recon-
stitute the proliferative capability and self-renewal as assayed by
in vitro and in vivo engraftment. The effect of p38 inhibition in
driving stem cell renewal was already demonstrated by Palacios
et al. (2010), supporting the notion that pharmacological inter-
vention with p38 inhibitors may support muscle regeneration.
Moreover, this paper provides a useful strategy to overcome the
bottleneck of in vitro stem cell expansion in cell therapies using
specific soft biomaterial that mimics the muscle niche.

In the same month Sousa-Victor and colleagues came out
with a study demonstrating that geriatric MuSCs fail to support
muscle regeneration and display defective activation. Serial trans-
plantation experiments supported the conclusion that this defect
is a cell intrinsic feature of geriatric MuSCs. They identify the
master regulator of senescence p16INK4a as a key determinant

TABLE 1 | Schematic representation of the rejuvenation strategies used in

the discussed papers.

responsible for a quiescence-senescence switch (a process named
geroconversion) operating in geriatric MuSCs in coincidence
with their impaired regenerative potential. Indeed, genetic inac-
tivation of p16INK4a locus was sufficient to recover the cells from
the senescence-associated cell cycle arrest and restore their self-
renewal capacity, leading to the reconstitution of the stem cell
pool after muscle damage. The novelty of this study relies on the
finding that geriatric stem cells are associated with the progres-
sive accumulation of DNA damage and senescence-associated
markers that in turn contribute to the loss of reversible qui-
escence mediated by p16INK4a. Indeed, in geriatric MuSCs, the
p16INK4a locus is constitutively de-repressed due to altered PRC1
complex function.

These studies demonstrate that in addition to the regenera-

tive environment that profoundly affects the niche and stem cell

function, there is another level of tissue homeostasis regulation
that is intrinsic to adult stem cells. The cell autonomous func-

tionality declines in the elderly due to de-regulated p38 signaling

and accumulation of DNA damage and senescence-associated

features. This evidence suggests new avenues to reverse the
dysfunctional status of MuSCs from aged tissues. For instance,

constitutive FGFR1 signaling can restore MuSCs asymmetric

division and self-renewal, and pharmacological blockade of p38
signaling can promote MuSCs self-renewal and engraftment by

silencing p16INK4a, thus reversing geroconversion and allowing

MuSCs to support muscle regeneration (Table 1). Intriguingly,

the activation of p38 signaling has been associated with senes-
cence (Wang et al., 2002) as well as increasing levels of p16INK4a

(Serrano et al., 1997; Iwasa et al., 2003) in cell types other than

muscle stem cells highlighting the notion that a more complex
signaling network that may be context dependent controls senes-

cence (Xu et al., 2014). The p38 signaling pathway has been

demonstrated to be involved in IL-6 induced STAT3 transcrip-
tional activation (Zauberman et al., 1999; Riebe et al., 2011).

Intriguingly, the recent finding that increases in JAK-STAT sig-
naling inhibits MuSCs function during aging further provides

evidence for the pivotal role of p38 in driving muscle regen-
eration (Price et al., 2014; Tierney et al., 2014). Future stud-
ies should determine the molecular relationship between these
new players of muscle aging—DNA damage, p38 signaling and
p16INK4a in order to devise treatments aimed at reversing MuSC
senescence.
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