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The amyloid hypothesis proposes a serial
model of causality whereby beta-amyloid
(AB) initiates a cascade of negative events
such as neurofibrillary tangle formation
leading to neurodegeneration, and even-
tually clinical onset of Alzheimer’s disease
(AD). While this hypothesis was mainly
founded on genetic forms of AD observa-
tions, increasing results coming from AB
imaging suggests that the reality for late-
onset AD is more complex. Clearly, the
disease develops in an older brain, where
age-associated comorbid factors are more
prevalent and therefore have a more signif-
icant influence on disease expression. Fur-
thermore, it is well established that around
one-third of cognitively normal older
adults have abnormal AB accumulation in
their brain (Aizenstein et al., 2008), indicat-
ing that AP alone might not be sufficient to
lead to the clinical expression of late-onset
AD. Most of the late-onset AD cases might
therefore be the consequence of multi-
factorial pathologies (Chételat, 2013).
Alzheimer’s disease is associated with
a characteristic pattern of macroscopic
neurodegeneration (that can be detected
in vivo using MRI and FDG PET biomark-
ers) in limbic and heteromodal regions
of the cerebral cortex, here referred to as
AD-typical regions (Dickerson et al., 2009;
Landau et al., 2009; Schroeter and Neu-
mann, 2011; La Joie et al., 2012; Wirth
et al.,, 2013a). In this opinion paper, we
argue that multiple factors work together
with AB to hasten neurodegeneration
in these limbic and heteromodal brain
regions. Specifically, we propose that brain
regions typically found to be atrophied
and/or hypometabolic in AD dementia

are vulnerable to multiple, and at least
partly independent, pathologies (e.g., AB,
tau, and vascular factors) and therefore
represent regions where the impact of
these pathologies converges (Figure 1).
We further suggest that some of these
pathologies might interact (i.e., have a syn-
ergistic effect) in AD-typical regions and
that most of AP-related neurodegenera-
tion might in fact be the consequence of
these interactions. This hypothesis would
explain why some individuals show cogni-
tive impairment with relatively low levels
of AB, while others have very high lev-
els of AB without cognitive deficits. We
therefore suggest that even if Af might
be a needed pathological feature of late-
onset AD clinical expression, its harmful
effect might depend on other pathological
factors that could emerge independently.
This viewpoint thus emphasizes the idea
that multiple pathways can trigger AD-
typical atrophy/ hypometabolism and
contribute to the clinical expression of AD.
While these pathways can be due to AD or
non-AD factors, the convergence of these
“other” pathways with -amyloidosis might
be needed for the development of cognitive
deficits (Wirth et al., 2013a; Mormino et al.,
2014) and clinical progression to dementia
(Knopman et al., 2012).

It became evident in the past years that
AB is not the only factor driving neu-
rodegeneration in AD-typical regions (Fjell
et al., 2013; Wirth et al., 2013b). This sug-
gests that other factors may work with Af to
cause the brain changes typically found in
patients with AD. Neurofibrillary tangles,
which consist of microtubule-associated
protein tau, are the other hallmark of

AD. Even though the amyloid cascade
hypothesis postulates that AP leads to
tau pathology, neurofibrillary pathology
can develop independently and prior to
AP accumulation (Spillantini and Goed-
ert, 2013). “Primary age-related tauopa-
thy” (PART) has recently been proposed
to describe a pathology that is commonly
observed in the brains of older individ-
uals (Crary et al., 2014). From this per-
spective, A and tau can increase the risk
of AD via independent mechanisms that
work together to induce synaptic and neu-
ronal loss (Small and Duff, 2008). This idea
does not exclude the possibility that AB can
induce tau pathology, rather it suggests that
tau pathology can occur independently of
AP and that individuals who have PART
might be more vulnerable to A if the latter
starts to accumulate.

Recent work has proposed that AR
and tau, measured by CSF levels, interact
to trigger neurodegeneration in AD-typical
regions such as the temporoparietal asso-
ciative cortex (Fortea et al., 2014) and the
entorhinal cortex (Desikan et al., 2014).
Furthermore, medial frontal thinning asso-
ciated with CSF p-tau seems to be present
only in subjects with abnormal levels
of AP (Fortea et al., 2014). Based on
these interactions and because tau patholo-
gies preferentially affect the temporal lobe
(Braak and Braak, 1991; Whitwell et al.,
2008), we suggest that temporoparietal
AD-typical regions represent points of con-
vergence between AP and tau pathologies
(Figures 1B,C). Even if neocortical asso-
ciation areas are not primarily affected
by tau accumulation (or its impact),
they represent key regions where Af
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FIGURE 1 | Regional convergence of different pathologies (and their impact) involved in the
clinical expression of late-onset Alzheimer’s disease. (A) Solid lines represent pathologies that are
needed to develop the clinical onset of Alzheimer's disease (AD), while the dotted line represent a
pathological factor that is not needed but, if present increases the risk of developing AD. (B) The pattern
of brain injury associated with tau, AB, and vascular pathologies is represented by a schematic
illustration based on current literature (Braak and Braak, 1991; Whitwell et al., 2008; Debette et al.,
2011; La Joie et al., 2012; Villeneuve et al., 2014). (C) White dots represent brain regions where at least
two pathologies are converging. These white dots also represent brain regions that are typically found
to be atrophied and/or hypometabolic in individuals with AD (Dickerson et al., 2009; Landau et al., 2009;
Schroeter and Neumann, 2011; Wirth et al., 2013a), and when atrophied in cognitively normal older
adults, they increase the risk of progression to AD (Dickerson et al., 2009).

accumulates, and are probably one of the
first regions were both pathologies meet
(since the transentorhinal cortex is mainly
spared from AB). This point of convergence
of both pathologies might be what triggers
their synergetic impact on brain integrity.
Cerebrovascular disease (e.g., cerebral
microbleeds, white matter lesions, infarcts)
and vascular risk factors (e.g., hyper-
tension, dyslipidemia, and diabetes) are
prevalent in older individuals and are
known to increase the risk of AD (Prins
and Scheltens, 2015). Even if such factors
are not needed for the development of
AD, they seem to increase the risk of AD
by targeting brain regions vulnerable to
AD (Wirth et al., 2013b; Villeneuve et al.,
2014). Neurodegenerative abnormalities in

cortical thickness and glucose metabolism
in AD-typical regions have, for instance,
been associated with white matter lesions
in cognitively normal older adults (Wirth
etal.,2013b). While white matter lesions do
not seem to interact with AB to potentiate
neurodegeneration (Haight et al., 2013),
they nevertheless appear to have an addi-
tive impact on brain integrity (Chui et al,,
2012). Vascular risk factors, particularly
low levels of HDL cholesterol, have in
turn been found to interact with AP to
reduce cortical thickness in AD-typical
regions such as the precuneus, the tem-
poroparietal associative cortex, and the
superior and middle frontal cortices (Vil-
leneuve et al., 2014). This interaction sug-
gests that the impact of AP on cortical

thickness in AD-typical regions is potenti-
ated in the presence of vascular risk (and/or
vice versa). While AB deposition (La Joie
et al., 2012) and its impact on neurode-
generation (Chételat etal., 2010; Villeneuve
et al, 2014) is predominant in frontal
and posterior association areas in indi-
viduals with cognitive impairments, vas-
cular pathologies preferentially affect the
frontal and temporal lobes (Jagust, 2013;
Thal et al., 2014; Villeneuve et al., 2014).
Therefore, brain regions such as the frontal
lobe or the temporoparietal cortex repre-
sent converging points between AP and
vascular pathologies. Even if evidence is
missing for an interaction between tau
and vascular factors in AD-typical regions,
such interaction cannot be excluded and
temporal regions such as the hippocam-
pus are known to be vulnerable to both
tau and vascular pathologies (Braak and
Braak, 1991; Debette et al., 2011). There-
fore, some AD-typical regions might also
represent points of convergence between
tau and vascular pathologies.

Figure 1 is a schematic illustration of
our main hypothesis and does not rep-
resent real data. In Figure 1A, we pro-
pose that both the AP and tau path-
ways are needed for AD clinical expression
while other pathways such as the vascu-
lar pathway (related to vascular risk fac-
tors and/or vascular brain injuries) are not.
Figure 1B represents brain regions most
affected (injured) by each pathology in cog-
nitively impaired individuals (Braak and
Braak, 1991; Whitwell et al., 2008; Debette
et al., 2011; La Joie et al., 2012; Villeneuve
et al., 2014). It is important to stress that
these maps probably vary from one indi-
vidual to another as the effects of a pathol-
ogy on brain integrity likely depend on
the length of time the pathology has been
present, the amount of pathology, the loca-
tion of the pathology (particularly true
for vascular brain injuries which can be
more focal than tau and AP) as well as
other genetic and environmental factors
that could influence vulnerability to each
pathological process. Also, it is extremely
difficult to isolate the degree of impor-
tance of a single pathology since differ-
ent pathologies frequently occur together
and probably interact, as argued in this
opinion paper. The AD-typical regions,
shown as white dots in Figure 1C, represent
brain regions that are typically atrophied
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and/or hypometabolic in individuals with
AD (Dickerson et al., 2009; Landau et al.,
2009; Schroeter and Neumann, 2011; Wirth
etal., 2013a). In this opinion paper, we fur-
ther suggest that they represent the point
of convergence of multiple pathologies, as
well as brain regions where pathologies
might have a synergistic effect.

This viewpoint does not explain how
one pathology may potentiate the other
or why some brain regions might be more
vulnerable to multiple pathologies (Seeley
et al., 2009; Buckner and Krienen, 2013;
Jagust, 2013). Rather, it stresses the impor-
tance of considering late-onset AD as a
multi-factorial process and questions the
notion that AB-negative individuals pre-
senting atrophy or hypometabolism in AD-
typical regions are at low risk of AD, espe-
cially if they are close to the threshold for
AB-positivity. Indeed, if other pathologies
interact with AB, low (or subthreshold) AB
levels could be sufficient to be harmful in
the presence of these other pathologies.
In conclusion, while AR may be needed
to develop the clinical symptoms associ-
ated with AD, other factors might work
together with AB to promote brain injury
in AD-typical regions.

GLOSSARY
AD-typical regions=Ilimbic and hetero-
modal regions of the cerebral cortex
typically found to be atrophied and/or
hypometabolic in patients with dementia
due to AD.
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