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Alzheimer’s disease (AD) involves a gradual breakdown of brain connectivity, and
network analyses offer a promising new approach to track and understand disease
progression. Even so, our ability to detect degenerative changes in brain networks
depends on the methods used. Here we compared several tractography and feature
extraction methods to see which ones gave best diagnostic classification for 202
people with AD, mild cognitive impairment or normal cognition, scanned with 41-
gradient diffusion-weighted magnetic resonance imaging as part of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) project. We computed brain networks based
on whole brain tractography with nine different methods – four of them tensor-based
deterministic (FACT, RK2, SL, and TL), two orientation distribution function (ODF)-based
deterministic (FACT, RK2), two ODF-based probabilistic approaches (Hough and PICo),
and one “ball-and-stick” approach (Probtrackx). Brain networks derived from different
tractography algorithms did not differ in terms of classification performance on ADNI,
but performing principal components analysis on networks helped classification in
some cases. Small differences may still be detectable in a truly vast cohort, but these
experiments help assess the relative advantages of different tractography algorithms,
and different post-processing choices, when used for classification.
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Introduction

Alzheimer’s disease (AD) – the commonest form of dementia – is characterized by memory loss in
its early stages, typically followed by a progressive decline in other cognitive domains (Braak and
Braak, 1996; Bartzokis, 2011; Braskie et al., 2011; Hua et al., 2013). Recent models of AD suggest
that cognitive deficits arise from the progressive disconnection of cortical and subcortical regions,
involving neuronal loss and white matter (WM) injury (Delbeuck et al., 2003). Several magnetic
resonance imaging (MRI) analysis methods can track structural atrophy. Diffusion-weighted MRI
(DWI), a variant of standard anatomical MRI, is sensitive to microscopic WM injury not always
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detectable with standard anatomical MRI. DWI tracks
anisotropic water diffusion along axons, revealing microstruc-
tural WM fiber bundles connecting cortical and subcortical
regions. With whole-brain tractography, one can recon-
struct major fiber bundles in the brain’s anatomical network
(LeBihan, 1990). In both AD and mild cognitive impair-
ment (MCI), diffusion MRI studies have associated cognitive
impairment with progressive deterioration in the corpus
callosum, cingulum, superior longitudinal fasciculus, and
fornix (Medina et al., 2006; Stebbins and Murphy, 2009; Liu
et al., 2011; Daianu et al., 2013; Nir et al., 2013; Jin et al.,
2015).

Many studies of brain disease – not just AD – use whole-
brain tractography to assess large-scale connections in the brain.
Tractography is a method used to reconstruct the pathways of
major WM fiber bundles, by fitting a curved path through the
directional diffusion data at each voxel. Tractography can reveal
brain abnormalities in multiple sclerosis (Mesaros et al., 2012),
a variety of cognitive disorders (Catani, 2006), Parkinson’s dis-
ease (García-Gomar et al., 2013), brain trauma (Dennis et al.,
2015b), psychiatric conditions such as body dysmorphic disor-
der (Arienzo et al., 2013), and even in genetics (Jin et al., 2011,
2013). To assess these differences, dozens of tractography algo-
rithms have been developed (Behrens et al., 2007; Kreher et al.,
2008; Fillard et al., 2009) but there is little consensus on which
method is the best to use, and this may also depend on the goal
of the study. To the best of our knowledge, no empirical stud-
ies have compared tractography methods for studies of brain
disease.

There are two main steps in the tractography: the first is
to fit a diffusion model at each voxel of the image, and the
second is fiber tracking across voxels. The most straightfor-
ward way is to use the standard tensor model, which requires
at least six diffusion-weighted images (DWIs) and one base-
line (non-diffusion-weighted) image to estimate the six unknown
parameters of the tensor. The local dominant fiber direction
at each voxel is then estimated as the eigenvector associated
with the largest eigenvalue of the tensor. Fibers can be followed
across voxels using greedy algorithms such as “fiber assign-
ment by continuous tracking” (FACT), which builds stream-
lines1 across the image by following the diffusion tensors’
principal eigenvectors in the current direction of propagation
(Mori et al., 1999). More complex models, based on multi-
ple tensors, orientation distribution functions (ODFs), or “ball-
and-stick” models, can extract multiple fiber directions per
voxel.

The two main classes of fiber tracking methods are determin-
istic and probabilistic approach. Deterministic methods tend to
be simple and fast. One of the first deterministic tractography
approaches, FACT, can be run on a 3D brain image in several
minutes. Probabilistic algorithms may require longer compu-
tation times. On a single processor, it typically takes several
hours to run the Hough method (Aganj et al., 2011), one of

1For the rest of the paper, we use ‘fiber’ to mean an individual streamline or 3D
curve detected by a tractography algorithm. Clearly it would need to be validated
whether a streamline represents a true fiber in the brain, but the term ‘fiber’ is less
cumbersome so we use it here.

the probabilistic algorithms, which fits vast numbers of poly-
nomial curves through an ODF and tends to find the most
dominant tracts of the brain using global optimization. Clearly,
different algorithms recover different sets of fibers (Zhan et al.,
2013b; Dennis et al., 2015a), and the fiber bundles that best
differentiate patients from controls may be extracted by some
algorithms but not others. When applied to detect brain dif-
ferences in disease, it is not clear how tractography algorithms
differ or if some are more sensitive to differences than others.
This depends on which fibers are extracted and how accu-
rately, the level of extraneous fibers and noise, and whether
the fiber bundles affected most by the disease are extracted or
missed.

Some prior studies compared different tractography algo-
rithms for accuracy and robustness to image noise (Lazar and
Alexander, 2003; Huang et al., 2004; Moldrich et al., 2010; Fillard
et al., 2011). In Lazar and Alexander (2003), a Monte Carlo sim-
ulation was used to study the influence of principal direction
estimation and streamline integration methods on the robust-
ness to noise of DTI tractography. Fillard et al. (2011) used a
hardware phantom to compare 10 fiber reconstruction methods
at different signal-to-noise (SNR) levels. Phantom-based evalu-
ations use simple tract shapes, which tend to be more regular
than tracts in the living brain. Huang et al. (2004) created sev-
eral noisy versions of a high-SNRmouse brain dataset to compare
fiber bundle selection strategies. Moldrich et al. (2010) tested
several tractography algorithms for studying WM pathways in
the ex vivo mouse brain. Using deterministic and probabilis-
tic algorithms across a range of regions of interest, they found
that probabilistic tractography was more robust than determin-
istic tractography for visualizing both white and gray matter
(GM) pathways. Moreover, as far as we know, no empirical stud-
ies have compared tractography methods for studies of brain
disease.

Based on tractography, there at least two common ways
that the integrity and connectivity of WM can be studied, i.e.,
the analysis of individual anatomically meaningful tracts (Jin
et al., 2012, 2014) and the connectivity strength between par-
cellated GM regions (Zhan et al., 2012a,b, 2015). In the latter,
brain connectivity maps (structural networks) are often com-
puted by combining the tracts with an anatomical parcellation
scheme (Jahanshad et al., 2011; Zhan et al., 2013b). Before fur-
ther analysis, the brain networks can be thresholded, to keep
only those connections with a weight or value, for example nodal
degree (number of connections), higher than a given threshold.
Network analysis of these brain connectivity matrices can reveal
organizational properties of brain networks. Clearly, the trac-
tography and feature extraction method choices affect how well
we can identify disease-related differences. To understand how
these choices affect how well we can detect effects of AD, we
applied nine tractography methods to the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset, and investigated five
feature extraction approaches on the computed networks. Our
goal was to evaluate the performance of different tractography
and feature extraction methods. Rather than test their anatom-
ical accuracy, we focused on their ability to detect disease-related
effects.
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Materials and Methods

Subject Demographics and Image
Acquisition
Data used in preparing this article were obtained from ADNI2,
the second stage of the Northern American ADNI2. ADNI’s
primary goal is to test whether serial MRI, positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessments can be combined to measure the
progression of MCI and early AD. For up-to-date information,
please see http://www.adni-info.org.

In our experiments, we analyzed 202 subjects’ diffusion MRI
and structural MRI data collected from 16 sites across the United
States and Canada for the ADNI2 project. Note that only around
one third of the ADNI2 participants have diffusion MRI scans,
and the other two-thirds are scanned with resting state func-
tional MRI or arterial spin labeling (ASL). Detailed inclusion and
exclusion criteria are found in the ADNI2 protocol3. Subjects are
divided into three broad diagnostic categories: normal elderly
controls (NCs), people with MCI and patients with AD. Subject
demographics are summarized in Table 1.

Each subject underwent whole-brain MRI scanning on
3-Tesla GE Medical Systems scanners. T1-weighted SPGR
(spoiled gradient echo) sequences (256 x 256 matrix; voxel
size = 1.2 × 1.0 × 1.0 mm3; TI = 400 ms; TR = 6.98 ms;
TE = 2.85 ms; flip angle = 11◦), were collected as well as
DWI (128 × 128 matrix; voxel size: 2.7 × 2.7 × 2.7 mm3;
scan time = 9 min; more imaging details may be found
at http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_
GE_3T_22.0_T2.pdf). 46 separate images were acquired for each
DWI scan: five T2-weighted images with no diffusion sensiti-
zation (b0 images) and 41 DWIs (b = 1000 s/mm2). The DWI
protocol for ADNI was chosen after a detailed evaluation of
different protocols that could be performed in a reasonable
amount of time; we reported these comparisons previously
(Jahanshad et al., 2010; Zhan et al., 2013a). All T1-weighted MR
and DWI images were checked visually for quality assurance to
exclude scans with excessive motion and/or artifacts; all scans
were included.

Comparing Tractography Methods
We evaluated several tractography and feature extraction choices,
and how well they detect disease effects in ADNI2. Figure 1

2http://adni.loni.usc.edu
3http://adni-info.org/Scientists/Pdfs/ADNI2_Protocol_FINAL_20100917.pdf

TABLE 1 | Summary of ADNI data used in this study.

Normal
control (NC)

MCI (MCI) AD Total

Number 51 112 39 202

Age (y) 69.69 ± 15.43 71.68 ± 9.89 75.56 ± 9.11 71.92 ± 11.54

Sex 29F 41F 14F 84F

There is no age difference among these groups based on a one-way ANOVA
(p = 0.0536) but the proportion of women in HC group (56.86%) was higher than
that of the AD (35.90%) or MCI groups (36.61%).

illustrates the overall study design, which is detailed in Section
“Preprocessing to Statistical Analysis.”

Preprocessing
For each subject, extra-cerebral tissue was removed from the T1-
weighted anatomical scans using ROBEX, a robust automated
brain extraction program trained on manually “skull-stripped”
MRI data (Iglesias et al., 2011). Skull-stripped volumes were visu-
ally inspected, and manually edited if needed. Anatomical scans
then underwent intensity inhomogeneity normalization using the
MNI nu_correct tool4. To align data from different subjects into
the same 3D coordinate space, each anatomical image was lin-
early aligned to a standard brain template (the Colin27; Holmes
et al., 1998) using FSL flirt (Jenkinson et al., 2002).

Then each subject’s raw DWI volumes were aligned to the
b0 image using the FSL eddy-correct tool5 to correct for head
motion and eddy current distortions. The gradient table was also
corrected accordingly. Non-brain tissue was removed from the
DWIs using the Brain Extraction Tool (BET) from FSL (Smith,
2002). To correct for echo-planar induced (EPI) susceptibility
artifacts, which can cause distortions at tissue-fluid interfaces,
skull-stripped b0 images were linearly aligned and then elastically
registered to their respective preprocessed T1-weighted structural
scans using an inverse consistent registration algorithm with a
mutual information cost function (Leow et al., 2007). The result-
ing 3D deformation fields were then applied to the remaining 41
DWI volumes to generate full preprocessed DWI dataset for the
downstream computation.

Whole Brain Tractography
Nine different tractography methods were evaluated, including
deterministic and probabilistic approaches. Among the deter-
ministic methods were four tensor-based deterministic algo-
rithms: FACT (Mori et al., 1999), the second-order Runge–Kutta
(RK2) method (Basser et al., 2000), the tensorline (TL; Lazar
et al., 2003) and interpolated streamline (SL) methods (Conturo
et al., 1999) and two deterministic tractography algorithms based
on fourth order spherical harmonic derived ODFs – FACT and
RK2.We also tested three probabilistic approaches: one was “ball-
and-stick model based probabilistic tracking” (Probtrackx) from
the FSL toolbox (Behrens et al., 2007) and the other two were
based on ODFs represented by fourth order spherical harmonic
series: the Hough voting method (Aganj et al., 2011) and the
probabilistic index of connectivity (PICo) method (Parker et al.,
2003).

Developed in the 1990s, FACT was one of the first deter-
ministic tractography methods for DTI. It is still perhaps the
most popular fiber tracking approach for both scientific and
clinical applications. The main idea is to trace out the path of
the diffusion tensor’s principal eigenvector (the unit eigenvec-
tor associated with the maximum eigenvalue) in the image, while
testing for sudden transitions in the local fiber orientation. The
RK2 algorithm uses the second order Runge–Kutta method to
solve a differential equation to more reliably estimate the fiber

4www.bic.mni.mcgill.ca/software/
5http://www.fmrib.ox.ac.uk/fsl
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FIGURE 1 | Flow chart describing the steps taken in this study to create, analyze, and compare structural networks.

trajectory. The key idea behind RK2 is to equate the tangent vec-
tor with the principal eigenvector. The TL method tracks fibers
using diffusion tensor “deflection,” and uses the entire tensor to
determine the direction of tract propagation, instead of just the
principal eigenvector. The SL method reconstructs fiber trajec-
tories throughout the brain by tracking the direction of greatest
diffusion in interpolated steps (typically 0.5 mm). All six deter-
ministic tracking approaches (tensor-FACT, RK2, SL, TL, and
ODF-FACT, RK2) were applied using their implementations in
the Diffusion Toolkit6. Fiber tracking was restricted to regions
where fractional anisotropy (FA) ≥ 0.2 to avoid GM and cere-
brospinal fluid; fiber paths were stopped if the fiber direction
encountered a sharp turn (with a critical angle threshold ≥ 30◦).
Sharp “right-angle” turns may be biologically possible in some
cases (Wedeen et al., 2012), but allowing right-angle turns in trac-
tography would create large numbers of false positive pathways at
fiber crossings. Usually deterministic approaches generate around
30,000–50,000 non-duplicated fibers (3D curves) per brain.

Probtrackx was performed after Bedpostx has been applied.
Bedpostx stands for Bayesian Estimation of Diffusion Parameters
Obtained using Sampling Techniques (Behrens et al., 2007). The

6http://trackvis.org/dtk/

X stands for modeling crossing fibers. Bedpostx runs Markov
Chain Monte Carlo sampling to build up distributions on dif-
fusion parameters at each voxel. It creates all the files necessary
for running probabilistic tractography. In our study, up to three
fibers were modeled per voxel. Once Bedpostx had been run, we
chose all voxels with FA ≥ 0.2 as the seeds. Following Bedpostx,
Probtrackx was run on each individual seed voxel. Probtrackx
repeatedly samples from the voxel-wise principal diffusion direc-
tion calculated in Bedpostx, creating a new streamline at each
iteration. This builds a distribution on the likely tract location
and path, given the data. 1000 iterations were run to ensure con-
vergence of the Markov chains, from which the posterior distri-
butions of the local estimate of the fiber orientation distribution
were sampled.

Hough probabilistic tractography was performed with code
provided by the authors (Aganj et al., 2011). In short, ODFs
at each voxel were computed using the normalized and dimen-
sionless constant solid angle ODF estimator, derived for Q-ball
imaging (QBI) as in (Aganj et al., 2010). Tractography was per-
formed by probabilistically seeding voxels with a prior probability
based on the FA value (FA ≥ 0.2). All possible curves pass-
ing through a seed point were estimated and each received a
score estimating the probability of the existence of the fiber,
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computed from the ODFs. Then the Hough transform voting
process was adopted to determine the best fitting curves through
each point. Each subject’s dataset contained approximately 10,000
non-duplicated fibers per brain. Hough probabilistic tractogra-
phy aims to optimize the fiber pathway globally, so there is no
explicit upper limit on the number of detectable crossing fibers
although the data angular resolution will limit this in practice.

Probabilistic index of connectivity probabilistic tractography
was conducted with Camino7. Seed points were chosen at those
voxels with FA ≥ 0.2. ODFs were estimated using fourth order
Spherical Harmonics and a maximum of three local ODF max-
ima (where fibers mix or cross) were set to be detected at each
voxel. Then, a probability density function (PDF) profile can be
produced from the derived local ODFmaxima.Monte-Carlo sim-
ulation was used to generate fibers emanating from seed points
inside the entire brain. Streamline fiber tracking followed the
voxel-wise PDF profile with the Euler interpolation method, for
10 iterations per each seed point. The maximum fiber turning
angle was set to 30◦/voxel. Tracing stopped at any voxel whose
FA was less than 0.2. This approach generates many more fibers
than other methods used in this study.

The parameter settings for each of these tractography algo-
rithms can also be varied, leading to a huge number of com-
parisons. To avoid that, we used parameter settings for each
method that had been previously optimized by our group or oth-
ers; in most cases, they were the default parameter settings of the
methods. To avoid undue complexity, we concede that changing
these parameters could conceivably affect how the methods are
ranked. Moreover, all fibers shorter than 10 mmwere filtered out,
as these were much more likely to be false positive fibers.

Computing Brain Networks
One hundred thirteen cortical and subcortical ROIs (listed in
the Supplement) were defined using the Harvard Oxford Cortical
and Subcortical probabilistic atlas (Desikan et al., 2006). Midline
cortical masks were bisected into left and right components, to
define separate hemispheric ROIs for each cortical region. Since
this is a probabilistic atlas, masks were thresholded at 10% to
ensure inclusion of tissue along the gray-WM interface, where
fiber orientation mapping and tractography are most reliable. To
register these ROIs to each subject’s DWI space, we used FSL’s flirt
function to determine the optimal affine transformation between
the MNI152 T1 average brain (on which the Harvard Oxford
probabilistic atlases are based) and each subject’s skull-stripped
T1-weighted image (see Preprocessing), as well as the optimal
affine transformation between each subject’s skull-stripped T1
and unique FA images. We used a 12 degree-of-freedom registra-
tion with a mutual information cost function. After combining
the above two steps’ transformation matrices, we transformed the
113 ROIs to each subject’s DWI space using nearest-neighbor
interpolation. To ensure that ROI masks did not overlap with
each other after registration, each voxel was uniquely assigned to
the mask for which it had the highest probability of membership.
We admit there are other ways to define ROIs, such as FreeSurfer
parcellation or using non-linear registration method with other

7http://cmic.cs.ucl.ac.uk/camino/

atlases. However, testing all possible paracellations was beyond
the scope of this paper, here we used the same brain parcellation
scheme to compare different tractography methods.

For each ROI pair, the number of detected fibers connecting
them was determined from the tractography results in Section
“Whole Brain Tractography.” A fiber was considered to con-
nect two ROIs if it intersected both of them. This process was
repeated for all ROI pairs, to compute a whole brain fiber con-
nectivity matrix. This matrix is symmetric, by definition, and has
a zero diagonal (no self-connections; Zhan et al., 2013b). To avoid
computation bias in the later feature extraction and evaluation
sections, we normalized each brain matrix by the maximum value
in the matrix, as matrices derived from different tractography
methods have different scales and ranges.

Feature Extractions
Up to this step, each subject has nine matrices. Now we need to
select feature extraction methods for the classification. Typically
the training of a classifier requires the subjects to be described
by feature vectors. Therefore the brain networks, represented by
matrices – equivalent to very high-dimensional vectors – cannot
easily be used to train classifiers, without some dimension reduc-
tion or feature selection. As such a feature extraction process is
needed to extract useful information from brain networks and
represent it in a simpler vector form. One simple approach is to
directly use all of the numerical values from the matrix represent-
ing the brain network. We call this approach the “raw features”
approach, where we just use all the numerical information in the
network. One apparent advantage is that this approach requires
no extra computation. Even so, the approach generates a huge
feature space. Also, the network matrix elements are always cor-
rupted by a certain level of noise. With the huge feature space
and limited sample sizes, classifiers may be especially suscepti-
ble to such noise. To make the learning process more robust,
we chose some commonly used feature selection techniques by
thresholding the matrices globally or at individual level, to reduce
the number of features. We also chose to use one of the mostly
used dimension reduction methods, principal components anal-
ysis (PCA) to reduce the number of features. We also tested
another closely related approach for dimension reduction on the
2D matrices, based on generalized low-rank approximation of
matrices (GLRAM). Thus, for each matrix belonging to the 202
subjects, five different feature extraction methods were selected
and described as follows:

(1) Raw features. In our study, the matrices are always symmet-
ric, so we used all the values in the upper triangle of the
matrices as features for classification. This feature space is a
6328 × N vector: 6328 = (113 × 112/2) and N is the number
of subjects.

(2) Global threshold. In this method, we first compute the mean
matrix by averaging the matrices across all subjects. We then
rank the elements of the upper triangle of the mean matrix,
and record the locations of the largest 5–40% elements,
respectively. (We experimented with a wider range from
5 to 100% but obtained best results with the largest 5–40%
of the elements, so we report experimental performance in
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this range.) We then used this subset of elements from the
subject matrices as features for classification. In other words,
if the threshold = 0.25, we first computed a mean network
by averaging all subjects’ networks, then masked the top 25%
elements’ positions in the upper triangle of the mean net-
work. Based on this “global” mask, all values except in these
masked positions were set to zero for each subject’s net-
work. Then the upper triangle of the thresholded network
was defined as features for classification. The feature space
is a 6328xN vector with all values in unmasked positions set
to zero and N is the number of subjects.

(3) Individual binary threshold. In this method, we convert the
values in the matrices into binary variables. If a value exceeds
a given threshold, it is set to 1, and 0 otherwise. This indi-
vidual threshold is obtained by ranking the elements within
each subject, and a value is set to 0/1 depending on its relative
ranking among all entries within that same matrix. We vary
the threshold from the top 5% to top 40% (to be consistent
with global threshold method), and perform classification at
each thresholding level. The feature space is a 6328xN vector,
but with all values less than threshold set to zero. Again, N is
the number of subjects.

(4) PCA. The raw feature space is large (113 ∗ 112 /2 = 6328
matrix elements or features), and in the training phase we
have fewer than 100 samples. To tackle the ‘large dimen-
sion, small sample size’ problem, we employed PCA to reduce
the data dimensionality. We first take the upper diagonal
as features, and form a sample-by-feature input matrix. We
then perform PCA on the input matrix to perform dimen-
sion reduction by keeping the first k principal components,
where we vary k from 10 to 150. The reduced input matrix
is then used to perform classification. The feature space is a
k × N vector, where k is the parameter we investigated in
Section “Comparing Classification Performance after Using
GLRAM,” which is 10–150. Again, N is the number of sub-
jects.

(5) GLRAM (Ye, 2005). One way to reduce the matrix dimension
is to use a generalized low-rank approximation, in which we
collectively factorize all the subject matrices into three com-
ponents. That is, for the matrix of each subject Mi, we factor-
ize it as Mi = L × Xi × R, where L ∈ Rd × k and R ∈ Rk × d

are shared orthonormal transformations for all matrices, and
Xi ∈ Rk × k is a reduced matrix. We use Xi as the new feature
representation for classification. One important parameter in
GLRAM is the reduced row/column dimensionality. Again, a
range of parameter values was investigated to seek the “best”
option for the classification. The feature space is am m2 ×
N vector, N is the number of subjects, and m is the reduced
matrix dimension.

Classifications
After feature extraction from the matrices, we evaluated these fea-
ture vectors for three between-group comparisons including AD
vs. NC, AD vs. MCI, NC vs. MCI. One could define some metric
of group separation to summarize the results, but in practice algo-
rithms may have different strengths and weaknesses depending
on the groups compared, as different sets of fibers may differ

across diagnostic groups. In these comparisons, AD, MCI, and
NC are groups listed in Table 1. We performed the classification
as follows:

(1) We selected all the subjects relevant to the classification task.
(2) We performed z-score normalization for each feature, i.e., for

each feature, we subtract the mean value of the feature across
the selected subjects and divide by the standard deviation.

(3) The class labels are typically unbalanced in our study. To
avoid bias, we constructed 20 balanced training/testing sam-
ple splits, as follows:

(a) Randomly draw 85% of the data from the smaller class
for training, and the remaining 15% for testing.

(b) In the larger class, we match the same number of training
samples by a random subsampling, and the rest are put
in the test set.

For example, in the AD/NC task, we have 39 AD samples and
51 NC samples. We first use 33 AD samples (85%) for train-
ing and six AD samples (15%) for testing. Then we randomly
select 33 NC samples and include them in the training set and
include the remaining 18 samples in the test set.

(4) In each training/testing split, we use the training set to train
a sparse logistic regression classifier (the classifier parameters
are estimated from the training data via fivefold cross valida-
tion), and we test the classifier’s effectiveness on the test set.
The AUC (area under ROC curve) is computed by averag-
ing the trapezoidal approximations for the curve created by
true positive rate (TPR) and false positive rate (FPR). TPR
is the proportion of positive samples correctly identified as
positive and FPR is the proportion of negative samples cor-
rectly identified as negative. Multiple classification models
were generated for every cross fold. Each provides a predic-
tion, positive or negative, for the given class instance. In the
machine learning field, AUC is a common measure of classi-
fication performance. For tractography, other measures may
also be useful, such as ground truth accuracy and complete-
ness of fiber recovery. So admittedly we are only studying
one metric, although it is probably as important as the
others.

Statistical Analysis
However, it may be inaccurate to characterize the tractogra-
phy algorithm performance using the averaged AUC based on
only 20 splits. Thus, the 95% confidence interval (CI) for the
AUC was computed and one-way analysis of variance (ANOVA)
was performed on the AUCs. Our null hypothesis (H0) was:
there is no significant difference in the AUCs from different
tractography algorithms. If H0 was rejected, post hoc multiple
group comparisons were planned to investigate where these dif-
ferences are. All statistical analysis steps were performed using
IBM SPSS Statistics V22. The experiment-wise alpha thresh-
old was set to p < 0.05. In our study, a Bonferroni correction
was adopted for multiple hypothesis correction. However, all
the p-values reported here have been adjusted by SPSS with
the appropriate correction for the effective number of multiple
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comparisons used. For instance, for a three-group experiment,
a pairwise comparison (i.e., a t-test) that yields a p-value of
0.016 would be considered significant at the 0.05 level, because
0.016 < (0.05/3). Instead of giving the nominal two-tailed p-
value, SPSS adjusts the p-value by multiplying it by 3, in this
case giving a Bonferroni p of 0.048 (0.016 times 3). (SPSS adjusts
the actual p-value by applying the Bonferroni correction back-
ward.)

Results

Comparing Brain Networks
Table 2 compares fiber lengths and numbers for differ-
ent tractography algorithms. We did not report them for
Probtrackx, which does not output these parameters. In
Table 2, ODF-based deterministic tractography (ODF-FACT,
RK2) tended to generate more false positive fibers (such as
shorter fibers) than tensor-based deterministic tractography
(tensor-FACT, RK2, SL, and TL). Moreover, the “noisy fiber
ratio” (see last column in Table 2) suggests that determinis-
tic approaches (tensor-FACT, RK2, SL, TL, and ODF-FACT,
RK2) and PICo may generate more false positive fibers than
Hough. Hough fits fibers by global optimization, but greedy
algorithms process small neighborhoods at each step, much
like FACT or PICo. Clearly, the differences in fiber num-
bers and lengths may affect downstream analysis, as described
below.

Figure 2 compares the mean normalized brain networks
for nine tractography algorithms. This mean normalized net-
work is computed from all 202 subjects. Visually, the deter-
ministic approaches – including tensor-FACT, RK2, SL, TL, and
ODF-FACT, RK2 – have very similar connection patterns and
the probabilistic approaches (PICo, Hough, and Probtrackx)
have very different patterns. The apparent connectivity val-
ues are also different. If we randomly consider one connection
between the 11th ROI and the 107th ROI (see Supplement
for the numbering of ROIs), the apparent connectivity varies
from a minimum of 0.021 (Hough) and maximum of 0.148
(tensor-TL).

Comparing Classifications Based on Raw
Matrices
Figure 3 shows the CI for the AUC of nine tractography algo-
rithms for the three diagnostic group discrimination tasks on raw
matrices. Three different colors represent three diagnostic tasks.
As we can see from Figure 3, all AUCs in the same diagnostic task
have some level of overlap. This means there is no significant dif-
ference among the AUCs of nine tractography algorithm for each
diagnostic task. Our results from one-way ANOVA (Table 3) are
also confirmed this. All three computed values of the F statistic
in Table 3 (1.111, 1.348, and 1.945) are less than the critical F-
value (1.9929) for (8,171) degrees of freedom at α = 0.05, thus we
have to accept the null hypothesis. This suggests that there are no
significant group differences in the mean AUCs computed from
nine tractography algorithms for each diagnostic task using raw
matrices as the features.

When using the rawmatrix data as features, there is no univer-
sally superior method that performs best for all tasks. However,
the classification problems do differ in difficulty. As expected, it
is easier to distinguish healthy controls from the AD group than
from the MCI group. In general, classification accuracy depends
on the problem but not strongly on the tractography algorithm.

Comparing Classifications Based on
Thresholded Matrices
As described in Section “Feature Extractions” on the “Global
Threshold” and “Individual Binary Threshold,” we tried a range
of different threshold values from 0.05 to 0.4, at intervals of 0.05.
Although the meaning of the threshold value is slightly different
between “Global Threshold” and “Individual Binary Threshold,”
they have same threshold value range so we presented both
results together to check whether the “threshold value” affects
classification performance and whether there are any significant
differences among these nine tractography algorithms in terms
of classification performance using these thresholded matrices as
the features.

Table 4A summarizes one-way ANOVA F-test results on the
AUCs using thresholded matrix features. Our critical F-value
in the degrees of freedom = (7,152) at α = 0.05 is 2.0703.

TABLE 2 | Compares the fiber length and number for different tractography algorithms except Probtrackx.

Fiber length (mm) Total number

Mean Median Maximum Fibers Short fibers Ratio (%)

Tensor FACT 33.30 ± 2.85 22.55 ± 2.09 229.48 ± 52.81 43301 ± 7359 11206 ± 1466 25.88

RK2 38.22 ± 3.37 25.75 ± 2.72 279.67 ± 48.05 47699 ± 7808 12073 ± 1465 25.31

SL 42.95 ± 3.90 31.36 ± 3.42 291.38 ± 68.39 48205 ± 7853 9756 ± 1168 20.24

TL 43.65 ± 3.99 32.44 ± 3.57 291.12 ± 43.07 44489 ± 7526 8366 ± 1031 18.80

ODF FACT 23.87 ± 1.76 15.80 ± 1.18 152.29 ± 14.81 56674 ± 10063 20051 ± 2984 35.38

RK2 27.03 ± 2.18 17.36 ± 1.53 188.16 ± 29.66 65626 ± 11202 22884 ± 3184 34.87

ODF PICo 26.37 ± 1.97 17.92 ± 1.22 174.58 ± 21.70 503527 ± 82907 144907 ± 19699 28.78

Hough 54.51 ± 3.29 57.12 ± 0.55 109.49 ± 1.96 10000 374 ± 309 3.74

Values are computed from all 202 subjects; mean and median values of fiber length are computed using all fibers. We noticed most short fibers were extracted at the
brain periphery, mainly due to noise in the images, and hence, all fibers shorter than 10 mm were called “short fibers” and were removed from downstream analysis.
Column Ratio is the proportion of all fibers that were short fibers.
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FIGURE 2 | Comparison of averaged normalized brain networks from
nine different tractography algorithms, including (A) tensor-based
FACT; (B) tensor-based RK2; (C) tensor-based SL; (D) tensor-based
TL; (E) ODF-based FACT; (F) ODF-based RK2; (G) ODF-based PICo;
(H) ODF-based Hough, and (I) Ball-and-stick model based
Probtrackx, from all 202 subjects. In each network, each cell

represents the connectivity between each pair of ROIs; the ROI index
runs from 1 to 113 from left to right and from bottom to top. ROI
names are detailed in the Supplement. Visually, brain networks from
different tractography algorithms may have similar patterns but in reality,
the recovered brain network varies, as shown by the value in the
randomly selected cell (11,107).

In Table 4A, all computed F-values larger than 2.0703 have
been marked in red, which means in these seven situations the
threshold values do affect the AUCs. To further investigate how
threshold values affect AUCs on these seven situations, we did
post hoc multiple group comparisons and Bonferroni correction
was adopted to correct for multiple comparison. After applying
Bonferroni correction, the three nominally significant situations
(ODF-RK2 using the Global Threshold feature method for AD
vs. NC, tensor-TL using the Individual Binary Threshold fea-
ture method for AD vs. MCI, and the Hough method using
Individual Binary Threshold feature method for MCI vs. NC)
no longer showed significant differences for different threshold

values. Thus, when using the Global Threshold method to extract
features, the classification performance of all tractography algo-
rithms in each of three diagnostic tasks are not affected by the
threshold values. This is also true for the task AD vs. NC when
using the Individual Binary Threshold feature extraction method.
Table 4B summarizes post hoc multiple comparison results for
tensor-RK2 and Hough in task AD vs. MCI as well as Tensor-
TL and PICo for task MCI vs. NC using the Individual Binary
Threshold as the feature extraction method. Only comparisons
with statistical significance between different threshold values are
shown in Table 4B. Using Individual Binary Threshold feature
extraction method, the classification performances in the tasks
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FIGURE 3 | Ninety five percent confidence intervals (CI) for the AUC
(classification accuracy) for three diagnostic tasks represented by
the three color bars (blue, black, and red) for nine tractography
algorithms. The red color means the AD vs. NC classification task, black
colors denote AD vs. MCI, and blue colors indicate MCI vs. NC. The y-axis
indicates the tractography algorithms and x-axis shows the AUC value. In

theory, the higher the AUC value, the better the classification performance.
However, if the CI of AUCs has some overlap, we cannot conclude that
one algorithm is better than the others, even if the mean AUCs are
numerically different. As is evident from the three color bars’ horizontal
positions, some classifications are more difficult: AD v. NC is the easiest,
and MCI v. NC is the most difficult, perhaps in line with expectation.

TABLE 3 | One-way ANOVA test on the classification performance of nine
tractography algorithms for three diagnostic tasks when using the raw
matrices as features.

Diagnostic task Degrees of freedom F Sig.

AD vs. NC Between groups 8 1.111 0.358

Within groups 171

AD vs. MCI Between groups 8 1.348 0.223

Within groups 171

MCI vs. NC Between groups 8 1.945 0.056

Within groups 171

The “F” column presents computed F score and the “Sig.” column gives the
p-value. Results with Sig. value < 0.05 are treated as nominally significant, so
no differences were detectable. “Between Groups” represents sum of the squared
deviations from the mean between groups, which captures variability between each
group. “Within Groups” represents sum of the squared deviations from the mean
within groups, which captures variability within each group. We have nine tractog-
raphy algorithms, so the number of degrees of freedom for the Between Groups
comparison is 9−1 = 8. And since we have 20 splits for each algorithm, the num-
ber of degrees of freedom for the Within Groups comparison is 20x9−9 = 171.
Since α = 0.05 and the number of degrees of freedom = (8,171), we accept H0

if F8,171 ≤ 1.9929. All our three F-values (1.111, 1.348, and 1.945) are all less
than 1.9929, so we accept our H0. In other words, there are no significant group
differences in these nine tractography algorithm-derived networks using the raw
matrices as features.

AD vs. MCI and MCI vs. NC are statistically affected by the
threshold values for some tractography algorithms: Tensor-RK2,
Hough or Tensor-TL and PICo.

Now we come to our second hypothesis test in this section,
to see whether our classification performances vary among dif-
ferent tractography algorithms, when using thresholded matrices
as the feature. However, this is a complex question as there are
nine tractography algorithms with eight different threshold val-
ues; for each threshold value we conduct 20 different splits of the

data, which means there are 20 AUCs for each threshold point for
each tractography. To simplify the analysis, we picked the thresh-
old value with the largest average AUC for each tractography
algorithm and then conducted a one-way ANOVAonAUCs com-
puted from different tractography algorithm-derived thresholded
matrices. Our results (Supplementary Table S2) show that all
computed F Raw Feature-values are less than the critical F-value
(1.9929) at the α = 0.05 level with degrees of freedom = (8,171).
This does not allow us to reject the null hypothesis (H0) that there
are no statistical differences among the AUCs computed from
these nine tractography algorithm-derived thresholded matrices
in each diagnostic task, no matter what the Global Threshold or
Individual Binary Threshold.

Comparing Classification Performance after
Using PCA
As described in Section “Feature Extractions” (on PCA), we eval-
uated a range of choices: from the first 10 principal components
(PCs) to the first 150 PCs, computed from all the data. Our
first hypothesis test is whether the choice of number of PCs
affects how each tractography algorithm performs. The second
hypothesis test is whether the choice of tractography algorithm
affects the classification performance when using certain number
of PCs.

For the first hypothesis test, our null hypothesis (H0) is
that the choice of the number of PCs will not affect the clas-
sification performance. We performed one-way ANOVA on
the AUCs from 12 different numbers of PCs and our results
(Table 5A) show that some tractography algorithms in some
diagnostic tasks are statistically affected by the number of PCs
when using PCA for feature extraction. Interestingly, for the
classification task AD vs. NC, only the tensor-RK2 method
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TABLE 4A | One-way ANOVA test on the classification performance across different threshold values for nine tractography algorithms in three
diagnostic tasks.

Degrees of
freedom

Global threshold Individual binary threshold

AD vs. NC AD vs. MCI MCI vs. NC AD vs. NC AD vs. MCI MCI vs. NC

F Sig. F Sig. F Sig. F Sig. F Sig. F Sig.

Tensor-FACT Between groups 7 0.410 0.895 0.578 0.773 1.195 0.309 0.507 0.828 1.391 0.213 0.474 0.852

Within groups 152

Tensor-RK2 Between groups 7 0.096 0.998 0.245 0.973 0.924 0.490 1.176 0.320 2.336 0.027 1.020 0.419

Within groups 152

Tensor-SL Between groups 7 0.100 0.998 2.055 0.052 0.188 0.988 1.133 0.346 0.566 0.783 0.970 0.456

Within groups 152

Tensor-TL Between groups 7 0.378 0.914 0.072 0.999 0.525 0.815 0.804 0.585 2.285 0.031 2.474 0.020

Within groups 152

ODF-FACT Between groups 7 0.752 0.628 0.412 0.894 0.645 0.718 0.455 0.865 0.608 0.749 0.250 0.972

Within groups 152

ODF-RK2 Between groups 7 2.393 0.024 1.030 0.412 0.302 0.952 1.445 0.191 1.030 0.413 1.062 0.391

Within groups 152

Probtrackx Between groups 7 1.410 0.205 0.481 0.847 0.279 0.962 0.423 0.887 0.727 0.649 0.591 0.763

Within groups 152

PICo Between groups 7 0.138 0.995 0.153 0.993 0.579 0.772 0.572 0.778 0.916 0.496 4.114 0.000

Within groups 152

Hough Between groups 7 0.289 0.957 0.887 0.518 0.506 0.829 0.183 0.988 3.049 0.005 2.538 0.017

Within groups 152

The F column is the computed F statistic and the “Sig.” column shows the p-value. Only cells with Sig. value < 0.05 are treated as nominally significant. (If “Sig. = 0.000”
is written, this value is less than 0.001). Since we have eight threshold values (0.05−0.4 in intervals of 0.05), the number of degrees of freedom for the Between Groups
comparison is 8−1 = 7. Moreover, since we have 20 splits for each threshold value, the number of degrees of freedom for the Within Groups comparison is 20x8−8 = 152.
Thus, our critical F-value for a number of degrees of freedom = (7,152) at α = 0.05 is 2.0703. Our null hypothesis, H0, was that there is no significant difference among
different threshold values, so we would only reject H0 when our computed F-value > 2.0703. There were three tests with large F-values (>2.0703) but they did not pass
the Bonferroni correction in post hoc comparisons. These cells included the ODF-RK2 method in the task AD vs. NC using the “Global Threshold,” tensor-TL in task
AD vs. MCI using the Individual Binary Threshold, and the Hough method in task MCI vs. NC using Individual Binary Threshold. We treated these three cases as not
significant. The rest of the cases with large F-values (>2.0703) are marked as red in the table and the corresponding post hoc multiple group comparisons in these cases
are presented in (B).

TABLE 4B | Post hoc comparison results for the Individual Binary Threshold method.

Diagnostic tasks Tractography algorithm (I) Threshold (J) Threshold Mean difference (I-J) Sig. 95% confidence interval

Lower bound Upper bound

AD vs. MCI Tensor-RK2 0.05 0.30 −0.09325 0.023 −0.01800 −0.0065

0.40 −0.08961 0.035 −0.1763 −0.0029

Hough 0.05 0.25 −0.10897 0.034 −0.2142 −0.0038

MCI vs. NC Tensor-TL 0.05 0.35 −0.10285 0.014 0.0109 0.1948

PICo 0.05 0.15 0.11037 0.028 0.0056 0.2151

0.35 0.12817 0.004 0.0234 0.2329

0.40 0.12654 0.005 0.0218 0.2313

The “Sig.” column shows the SPSS adjusted p-value and only values below 0.05 are treated as nominally significant (Please refer to the footnote for detailed explanation).
Only comparisons that passed Bonferroni correction are shown here. 95% confidence interval is on the mean difference (I-J). Using the Individual Binary Threshold as the
feature extraction method, the AUCs from some tractography algorithms may be statistically affected by the threshold values chosen for specific diagnostic tasks.

was affected while for task AD vs. MCI, most tractography
algorithms except ODF-RK2 and PICo were affected by the
number of PCs used. Post hoc comparisons (Table 5B) con-
firmed this. Moreover, from Table 5B we can see that in those
tractography algorithms affected by the number of PCs, the
AUCs for smaller numbers of PCs are higher than the AUCs
in larger number of PCs. For example: for the task AD vs.
MCI, the AUC of tensor-FACT using 10 PCs is statistically

(by 0.14 units) “higher” than same algorithm using 150 PCs.
This trend is consistent for all tractography algorithms listed
in Table 5B, which suggests that these top PCs have recovered
enough information for the classification and more PCs may
impair the classification accuracy for these tractography algo-
rithms. Comparisons that did not pass Bonferroni correction are
not listed in Table 5B, so are no significant differences in clas-
sification performance among different choice of PCs. In other
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TABLE 5A | One-way ANOVA test on the classification performances across different numbers of PCs for nine tractography algorithms in three
diagnostic tasks.

Degrees of freedom AD vs. NC AD vs. MCI MCI vs. NC

F Sig. F Sig. F Sig.

Tensor-FACT Between groups 11 1.312 0.219 1.912 0.039 0.600 0.828

Within groups 228

Tensor-RK2 Between groups 11 3.388 0.000 2.065 0.024 0.299 0.986

Within groups 228

Tensor-SL Between groups 11 0.348 0.973 4.128 0.000 0.826 0.614

Within groups 228

Tensor-TL Between groups 11 0.770 0.670 2.886 0.001 0.649 0.786

Within groups 228

ODF-FACT Between groups 11 0.620 0.811 2.250 0.013 0.331 0.978

Within groups 228

ODF-RK2 Between groups 11 0.508 0.897 1.142 0.330 2.083 0.022

Within groups 228

Probtrackx Between groups 11 0.260 0.992 4.908 0.000 2.641 0.003

Within groups 228

PICo Between groups 11 0.053 1.000 0.836 0.604 1.074 0.383

Within groups 228

Hough Between groups 11 0.541 0.874 2.417 0.007 0.653 0.782

Within groups 228

Since we have 12 possible numbers of PCs (10∼150), the number of degrees of freedom for the Between Groups comparison is 12−1 = 11. Moreover, since we have
20 splits for each number of PCs, the number of degrees of freedom for the Within Groups comparison is 20 x 12−12 = 228. Thus, the critical F-value = 1.8308 at the
α = 0.05 level with degrees of freedom = (11,228). Our null hypothesis, H0, is that there is no significant difference among different numbers of PCs. We can only reject
H0 when our computed F-value > 1.8308, these situations are been marked in red. The corresponding post hoc comparison results in these situations are shown in (B).

words, only tests that passed Bonferroni correction are shown in
Table 5B.

Based on this reasoning, we use 10 PCs for each tractography
algorithm and conducted one-way ANOVA across the nine trac-
tography algorithms to check this section’s second null hypothesis
(H0): the classification performances when using PCA from dif-
ferent tractography algorithm show no significant difference for
each diagnostic task. Our result (Tables 6A,B) shows that for
tasks AD vs. NC and MCI vs. NC, we have to reject H0, but
for AD vs. MCI, we cannot reject H0. In both task AD vs. NC
and task MCI vs. NC, there exist some comparisons between
some tractography algorithms which do pass Bonferroni correc-
tion (Table 6B) while for task AD vs. MCI, although the F-value
in one-way ANOVA (Table 6A) are larger than the critical F-
value (= 1.9929 at the α = 0.05 level with the degrees of freedom
(8,171)), this does not pass Bonferroni correction, so we can con-
clude that the classification performances when using PCA from
different tractography algorithm have no detectable difference
for the task AD vs. MCI. Moreover, for the task MCI vs. NC,
Probtrackx performs significantly better than most deterministic
tractography approaches (tensor-FACT, RK2, TL and ODF-RK2;
Table 6B).

Comparing Classification Performance after
Using GLRAM
In this section, we tested another feature extraction (dimen-
sion reduction) method, “GLRAM.” Our first hypothesis test
is whether the classification performance of each tractography

algorithm shows any differences when using GLRAM with
different levels of dimension reduction. Our second hypothesis
test is whether the classification performance of different tractog-
raphy algorithms shows any differences when using GLRAM as a
feature extraction method.

In GLRAM, an important parameter is to determine the
dimension of the reduced matrix; different dimensions for the
reduced matrix may lead to different results. For example, a
higher dimension for the reduced matrix means less information
loss, although it is not clear whether this helps for classifica-
tion. Thus, we tested a range of reduced dimension parameters,
from 5 to 35, at intervals of 5 (in total, seven different dimen-
sions).

Tables 7A,B illustrate the influence of the dimension param-
eter on the classification performance of each tractography algo-
rithm using GLRAM. For one task (AD vs. NC), the tractogra-
phy algorithms’ performance was not affected by the dimension
parameter of GLRAM. In other tasks, only one tractography algo-
rithm’s performance in each task was affected by the choice of
the dimension parameter in GLRAM (Table 7B). For example,
by using Probtrackx in task AD vs. MCI, the lower dimension
dataset (5) gave better performance than higher dimension sets
(10, 25, 30, and 35). This is evident because the mean differences
are all significant and positive; even so, the trend appears to be
opposite when using the Tensor-SL approach for the task MCI
vs. NC.

After we studied the effects of GLRAM dimension parame-
ters on each tractography algorithm in terms of its classification
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TABLE 5B | Post hoc comparisons results.

Diagnostic tasks Tractography algorithm (I) PC number (J) PC number Mean difference (I-J) Sig. 95% confidence interval

Lower bound Upper bound

AD vs. NC Tensor-RK2 15 75 0.16667 0.003 0.0293 0.3040

150 0.16759 0.003 0.0302 0.3050

20 75 0.15370 0.011 0.0163 0.2911

150 0.15463 0.010 0.0173 0.2920

AD vs. MCI Tensor-FACT 10 150 0.14378 0.022 0.0092 0.2784

Tensor-RK2 10 150 0.17437 0.016 0.0150 0.3338

Tensor-SL 10 40 0.12890 0.017 0.0105 0.2473

100 0.12099 0.038 0.0026 0.2394

150 0.19536 0.000 0.0770 0.3137

15 150 0.17532 0.000 0.0569 0.2937

20 150 0.12342 0.030 0.0050 0.2418

Tensor-TL 10 150 0.17099 0.001 0.0383 0.3037

15 150 0.14747 0.013 0.0148 0.2802

ODF-FACT 10 150 0.11424 0.019 0.0084 0.2200

Probtrackx 10 100 0.14219 0.000 0.0519 0.2325

15 100 0.12236 0.000 0.0320 0.2127

20 100 0.10876 0.004 0.0184 0.1991

25 100 0.12500 0.000 00347 0.2153

30 100 0.13544 0.000 0.0451 0.2258

35 100 0.13397 0.000 0.0436 0.2243

40 100 0.10506 0.006 0.0147 0.1954

45 100 0.09726 0.019 0.0069 0.1876

50 100 0.09515 0.026 0.0048 0.1855

Hough 10 150 0.12416 0.008 0.0154 0.2329

15 150 0.11994 0.014 0.0112 0.2287

MCI vs. NC ODF-RK2 40 150 0.11920 0.012 0.0125 0.2259

Probtrackx 10 100 0.12047 0.002 0.0247 0.2162

15 100 0.09728 0.041 0.0016 0.1930

Only tests that passed Bonferroni correction are shown here. Using PCA as a feature extraction method, the AUCs for some tractography algorithms are statistically
affected by the number of PCs for specific diagnostic tasks. Moreover, a smaller number of PCs tends to give better performance (higher AUC) than higher numbers of
PCs for these tractography algorithms when using PCA.

performance, we picked up the dimension parameter with
the largest average AUC for each tractography algorithm and
then conducted one-way ANOVA across nine tractography
algorithms to test our null hypothesis (H0) that the choice
of tractography algorithms does not affect the classification
performance. Our result (Supplementary Table S3) is favor
of accepting H0, in other words, there is no evidence that
the choice of tractography algorithms affects the classification
performance when using GLRAM as the feature extraction
method.

Comparison of Different Feature Extraction
Methods
Finally, we tested whether the classification performance is
affected by the choice of the feature extraction methods. For
each tractography algorithm, there are five feature extraction
choices, which include “Raw feature,” “Global Threshold” using
the threshold value with the highest average AUC, “Individual
Binary Threshold” using the threshold value with the high-
est average AUC, “PCA” using 10 PCs, “GLRAM” using the

dimension parameter with the highest average AUC. Here our
null hypothesis (H0) was that there are no significant differences
among these five feature extraction methods for any tractography
algorithm. So we performed one-way ANOVA on each of nine
tractography algorithm among the five feature extraction meth-
ods, for each diagnostic task. Our results (Table 8A) show that
this depends on the diagnostic task as well as the choice of trac-
tography algorithm. For example, the performance of tensor-SL
(Table 8A) was significantly affected by the choice of feature
extraction methods for the task AD vs. NC but not in the other
tasks. Some tractography algorithms’ performance was statisti-
cally consistent across different feature extraction methods, such
as tensor-FACT in all three tasks (Table 8A). We also performed
post hoc tests on the “significant” cases inTable 8A and our results
(Table 8B) showed that after Bonferroni correction, some fea-
ture extraction methods perform significantly better than other
extraction methods for some tasks, but not in other tasks, so
the trend is not consistent. The diagnostic task and the choice
of tractography algorithm both affect the results, so there is no
universally optimal method.
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TABLE 6A | Statistical analysis results for classification performances
from nine tractography algorithms using PCA. (A) One-way ANOVA.

Task Degrees of freedom F Sig.

AD vs. NC Between groups 8 3.144 0.002

Within groups 171

AD vs. MCI Between groups 8 2.191 0.030

Within groups 171

MCI vs. NC Between groups 8 2.728 0.007

Within groups 171

We have nine tractography algorithms, so the number of degrees of freedom for
the Between Groups comparison is 9−1 = 8. And since we have 20 splits for each
algorithm, the number of degrees of freedom for the Within Groups comparison is
20x9−9 = 171. Since α = 0.05 and the number of degrees of freedom = (8,171),
we accept H0 if F8,171 ≤ 1.9929. All our three F-values (3.144, 2.191, and 2.728)
are larger than 1.9929, so we reject our H0; in other words, there are significant
differences in these nine tractography algorithms in classification using PCA to
extract features. However, for the task AD vs. MCI, no group comparison passes
Bonferroni correction in the post hoc tests.

Discussion

In this study, we have adopted five feature extraction methods
on nine whole brain tractography derived brain networks for
three diagnostic classification tasks. There are three possible fac-
tors affecting the ultimate classification accuracy: the difficulty
of the diagnostic task, the feature extraction method and the
tractography algorithm.

Our result (Figure 3) shows the classification accuracy is
strongly correlated with the difficulty of the diagnostic task. The
AD vs. NC is the easiest task since there are clear evidences to
show that the AD patients have detectable pathological changes
(such as short term memory loss, problems with language, dis-
orientation, mood swings, loss of motivation, not managing self
care, and behavioral issues) in the brain structures and functions
(Burns, 2009; Burns and Iliffe, 2009; Querfurth and LaFerla, 2010;
Ballard et al., 2011; Fritze et al., 2011; Todd et al., 2013). While
MCI is found to be a transitional stage between normal aging
and dementia (Schroeter et al., 2009), the detectable pathological
changes of MCI is smaller than AD. Also, there are several sub-
types of MCI (e.g., early-MCI and late-MCI; Jessen et al., 2014).
So it may increase the complexity to define a simple trend in MCI
patient group. Based on our result in Figure 3, the difficulty of the

diagnostic task has the order: NC vs. MCI > AD vs. MCI > AD
vs. NC.

The five feature extraction methods have been widely used
in machine learning area (Mocks and Verleger, 1986; Ye, 2005;
Yuan and Zou, 2013). Although the “raw features” approach suf-
fers from the “curse of dimensionality” problem, one apparent
advantage of this approach is that the method does not require
additional computation. For “global threshold,” we need to com-
pute the meanmatrix and apply the matrix to each sample, which
costs O(NxM) whereM = 6328. In “individual binary threshold,”
we also need to scan through the matrices, the costs of which is
still O(NxM). For principle components analysis approach, we
need to solve a singular value decomposition problem, which is
O(N M2) in our case. Given N is very small, the complexity can
be thought as O(M2). GLRAM uses an iterative algorithm, and in
each iteration the major computation costs are to solve two top-k
eigen-decomposition problems, where k is the dimension of the
reduced matrix. Since the size of the reduce k is typically much
smaller than D, the operation can be considered as order O(D2).
Although different algorithms have different computational com-
plexities, and all of them can be efficiently computed in modern
computers given the scale of our data. In our experiments, the dif-
ference in time costs among these algorithms cannot be noticed.
In terms of ultimate classification accuracy, there is no feature
extraction method is significantly better than others. However
for each feature extraction method, the parameter setting may or
may not affect the later result. For example, global threshold or
GLRAM is less affected by the parameter selection while the per-
formance of PCAand Individual Binary Threshold indeed change
with the parameters.

In this study, nine tractography algorithms were selected from
two categories: the deterministic approach and the probabilistic
approach. Deterministic tractography recovers fibers emanating
from a seed voxel by following the principal direction of the dif-
fusion tensor or the dominant direction of the diffusion ODF.
Although the deterministic tractography approach is very effi-
cient, it depends on the choice of initial seed points and can be
sensitive to the estimated principal directions. Probabilistic trac-
tography approaches can be computationally more intensive but
they are in some cases more robust to partial volume averaging
effects and uncertainties in the underlying fiber direction, which
are inevitable due to imaging noise. This work is part of a body of

TABLE 6B | Post hoc group comparisons.

Task (I) Tractography
algorithm

(J) Tractography
algorithm

Mean difference
(I-J)

Sig. 95% confidence interval

Lower bound Upper bound

AD vs. NC Tensor-SL ODF-FACT −0.09444 0.006 −0.1741 −0.0148

ODF-RK2 −0.09028 0.011 −0.1700 −0.0106

CMI vs. NC Probtrackx Tensor-FACT 0.10109 0.011 0.0119 0.1903

Tensor-RK2 0.10091 0.011 0.0117 0.1901

Tensor-TL 0.09339 0.030 0.0042 0.1826

ODF-RK2 0.09348 0.030 0.0043 0.1827

The “Sig.” column show the SPSS adjusted p-value; only values 0.05 are treated as significant. Only comparisons that passed Bonferroni correction are listed here.
For the task AD vs. NC, the classification performance of tensor-SL is significantly poorer than that of ODF-FACT or ODF-RK2. Interestingly, for the task MCI vs. NC,
Probtrackx has statistically better performance than the four deterministic tractography algorithms (tensor-FACT, RK2, TL, and ODF-RK2).
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TABLE 7A | One-way ANOVA testing for differences in the classification performances across different GLRAM dimension parameters for nine
tractography algorithms in three diagnostic tasks.

Degrees of
freedom

AD vs. NC AD vs. MCI MCI vs. NC

F Sig. F Sig. F Sig.

Tensor-FACT Between groups 6 1.790 0.106 0.662 0.681 1.457 0.198

Within groups 133

Tensor-RK2 Between groups 6 1.299 0.262 0.564 0.759 2.438 0.029

Within groups 133

Tensor-SL Between groups 6 1.445 0.202 0.403 0.876 3.010 0.009

Within groups 133

Tensor-TL Between groups 6 2.169 0.049 1.094 0.369 1.590 0.155

Within groups 133

ODF-FACT Between groups 6 0.384 0.888 2.540 0.023 1.398 0.220

Within groups 133

ODF-RK2 Between groups 6 1.824 0.099 0.523 0.790 1.930 0.080

Within groups 133

Probtrackx Between groups 6 1.385 0.225 3.800 0.002 0.817 0.559

Within groups 133

PICo Between groups 6 0.178 0.982 0.448 0.845 0.314 0.929

Within groups 133

Hough Between groups 6 0.536 0.780 0.661 0.681 1.083 0.376

Within groups 133

Since we have seven possible dimension parameters (5–35), the degrees of freedom for Between Groups is 7−1 = 6. Moreover, since we have 20 splits for each setting
of the dimension parameter, the number of degrees of freedom for the Within Groups comparison is 20x7−7 = 133. Thus, the critical F-value = 2.1674 at the α = 0.05
level, when the number of degrees of freedom = (6,133). Our H0 is that there is no significant difference among different dimension parameters. We were able to reject
H0 at the nominal significance level when our computed F-value > 2.1674; this included the cases where tensor-TL was used for the task AD vs. NC; ODF-FACT and
Probtrackx in task AD vs. MCI; tensor-RK2, SL in task MCI vs. NC. However, three of these cases – including tensor-TL in the task AD vs. NC, ODF-FACT for the task AD
vs. MCI, and tensor-RK2 for the task MCI vs. NC – did not pass the Bonferroni correction in the post hoc comparisons. There are therefore no significant differences in
the classification performance when changing the dimension parameters in these three cases. We marked the other two cases in red and the corresponding post hoc
results for these situations are shown in (B).

TABLE 7B | Post hoc comparisons.

Task Tractography
algorithm

(I) Dimension (J) Dimension Mean difference
(I-J)

Sig. 95% confidence interval

Lower bound Upper bound

AD vs. MCI Probtrackx 5 10 0.11181 0.016 0.0111 0.2126

25 0.10728 0.026 0.0065 0.2080

30 0.12289 0.005 0.0221 0.2236

35 0.13449 0.001 0.0337 0.2352

MCI vs. NC Tensor-SL 5 10 −0.09339 0.045 −0.1857 −0.0011

35 −0.10498 0.012 −0.1973 −0.0127

The “Sig.” column shows the SPSS adjusted p-value; only values 0.05 are treated as significant. Only comparisons that passed Bonferroni correction are listed here. Even
for the situations listed in this table, there is no consistent trend in the comparison between higher and lower dimensions. For example in the task of classifying AD vs.
MCI, using Probtrackx, the lower dimension setting (5) has better performance than higher dimensional settings (10, 25, 30, and 35), as mean differences are all positive;
however, for the task MCI vs. NC, the trend is opposite when using Tensor-SL.

work that has examined relative merits of different tractography
methods for different tasks and goals. One annual conference,
MICCAI, has held annual competitions in recent years. The
most recent, in 2014, brought together 15 international trac-
tography teams from leading academic centers. Fillard et al.
(2011) evaluated 10 fiber reconstruction methods were evalu-
ated on a specially constructed phantom dataset, with known
ground truth on the geometry of the fibers. For medium to low
SNR datasets, the authors recommended the use of a prior on
the spatial smoothness of either the diffusion model to improve
tractography results. Later work on real datasets compared how

well different methods could recover the corticospinal tract (CST)
from two diffusion imaging data from neurosurgical cases (Neher
et al., 2012). Girard et al. (2014) also compared settings in trac-
tography methods (e.g., stopping criteria and seeding techniques)
to avoid biases in over-selecting shorter fibers (Girard et al.,
2014).

Before we ran this study, we carefully examined the parame-
ter setting for each tractography to make sure the tracked fibers
are reasonable. And these parameter settings have been used
in lots of other studies in our group. We admitted there are
many factors that can affect the performance of each tractography
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TABLE 8A | One-way ANOVA on the classification performances across five feature methods for nine tractography algorithms in three diagnostic tasks.

Degrees of
freedom

AD vs. NC AD vs. MCI MCI vs. NC

F Sig. F Sig. F Sig.

Tensor-FACT Between groups 4 1.491 0.211 1.125 0.349 1.810 0.133

Within groups 95

Tensor-RK2 Between groups 4 0.850 0.497 2.029 0.097 1.528 0.200

Within groups 95

Tensor-SL Between groups 4 4.003 0.005 0.196 0.940 0.599 0.664

Within groups 95

Tensor-TL Between groups 4 0.903 0.466 3.246 0.015 1.097 0.363

Within groups 95

ODF-FACT Between groups 4 2.243 0.070 1.622 0.175 1.383 0.246

Within groups 95

ODF-RK2 Between groups 4 1.204 0.314 3.745 0.007 2.605 0.041

Within groups 95

Probtrackx Between groups 4 3.498 0.010 0.124 0.974 1.222 0.307

Within groups 95

PICo Between groups 4 0.791 0.534 0.355 0.840 2.793 0.031

Within groups 95

Hough Between groups 4 0.734 0.571 6.051 0.000 0.696 0.597

Within groups 95

Since we have five feature extraction methods, the number of degrees of freedom for the Between Groups comparison is 5−1 = 4. Moreover, as we have 20 splits for
each setting for the dimension parameter, the number of degrees of freedom for the Within Groups comparison is 20x5−5 = 95. Thus, the critical F-value = 2.4675 at
α = 0.05 with degrees of freedom = (4,95). Our H0 is that there is no significant difference among different feature extraction methods; we should therefore only reject H0
when the computed F-value > 2.4675; these nominally “significant” situations are marked in red, except for ODF-RK2 in the task MCI vs. NC as this case did not pass
the Bonferroni correction in the post hoc group tests. All “significant” cases’ corresponding post hoc results are listed in (B).

TABLE 8B | Post hoc comparisons.

Diagnostic
tasks

Tractography
algorithm

(I) Feature extraction method (J) feature extraction
method

Mean
difference (I-J)

Sig. 95% confidence interval

Lower bound Upper bound

AD vs. NC Tensor-SL Individual binary threshold PCA 0.09259 0.005 0.0186 0.1666

Probtrackx Raw feature GLRAM 0.05833 0.042 0.0011 0.1155

Global threshold GLRAM 0.06296 0.021 0.0058 0.1202

AD vs. MCI Tensor-TL Individual binary threshold Raw feature 0.09900 0.020 0.0096 0.1884

ODF-RK2 PCA GLRAM 0.10348 0.007 0.0183 0.1887

Hough Individual binary threshold Raw feature 0.10612 0.007 0.0193 0.1930

Global threshold 0.08966 0.038 0.0028 0.1765

GLRAM 0.10232 0.010 0.0155 0.1892

PCA Raw feature 0.09768 0.017 0.0108 0.1845

GLRAM 0.09388 0.025 0.0070 0.1807

MCI vs. NC PICo Individual binary threshold Raw feature 0.09697 0.036 0.0035 0.1904

The “Sig.” column show the SPSS adjusted p-value; only values 0.05 are treated as significant. Only comparisons that passed Bonferroni correction are listed here.
Although some methods show better performance for some tractography algorithms in some specific tasks, the trend is not consistent, and there is no universally optimal
method.

algorithm. All these nine whole brain tractography were com-
puted using LONI Pipeline8, which is a 306-node, dual-processor
SUN Microsystems V20z cluster. As for the computing time,
tensor-based deterministic approaches (tensor-FACT, RK2, SL,
and TL) only take less than 5 min and ODF-based deterministic
approaches (ODF-FACT, RK2) take about 6∼7 min per brain per
CPU. PICo takes about 6∼8 h and Hough takes about 22∼24 h
per brain per CPU. And for FSL PROBTRACTX, the prerequisite

8http://pipeline.loni.usc.edu/

step BEDPOSTX requires ∼6 h using 110 CPUs per brain and
PROBTRACTX requires another 2∼3 h per brain per CPU. So
the computation cost for these nine tractography algorithms are
Probtrackx > Hough > PICo > ODF-FACT, RK2 > tensor-
FACT, RK2, SL, TL. However, our results indicated that although
there may have some differences in terms of fiber length or fiber
tracking directions for each specific tractography (Figure 2), the
classification accuracy has no relationship with the computation
cost. There were no detectable differences in classification
performance among different tractography algorithms when
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using the raw matrices (Table 3), a global or individual binary
threshold (Supplementary Table S2) or the GLRAM method
(Supplementary Table S3) as feature extraction methods for
each of the three diagnostic tasks. However, when using PCA
(Table 6), for task the AD vs. NC, ODF-based deterministic
approaches are better than tensor-based deterministic approach;
for the task MCI vs. NC, Probtrackx performed better than deter-
ministic approaches, while for the task AD vs. MCI, there is no
significant difference among these nine tractography algorithms.
As a general principle, we could expect the probabilistic methods
to do better than deterministic methods, and high-order ODF
methods should perform better than tensor models, but only in
tasks where the additional information is useful. MCI vs. NC is a
relatively hard classification task and perhaps best suited to pick
up the advantages of more accurate modeling of diffusion and
connectivity. In general, the simpler methods already give good
performance on the easier classification tasks (e.g., AD vs. NC),
while more challenging task tended to benefit from more sophis-
ticated modeling. Moreover, the number of PCs chosen did affect
the classification, with a small number of PCs (such as 10) being
best in some cases, when adopting PCA as feature extraction
method in all three diagnostic tasks (Tables 5A,B).

The choice of feature extraction method depends on the prob-
lem and the level of sophistication needed for modeling the
networks. For tasks that were easier (i.e., when groups differed
more), we often failed to detect any practical difference across
methods or processing choices. But differences were evident in
performance on some of the trickier classification problems. The
optimal feature extraction method and tractography algorithm
may depend on the diagnostic task. For example, for the some-
what easy classification task of separating AD from NC, individ-
ual binary thresholding performed better than PCA for tensor-SL
and GLRAM performed worse than using the raw matrices or
a global threshold for Probtrackx. This is probably because the
AD vs. NC differences are so severe that they can even be picked
up by simply binary thresholding on the matrix elements, with-
out requiring more sophisticated data reduction. There were no
detectable differences for the rest of seven tractography algo-
rithms in terms of these five feature extraction methods. Similar
situations for the tasks AD vs. MCI andMCI vs. NC can be found
in Table 8B.

Finally, in this study we selected sparse logistic regression clas-
sification for performance evaluation and we admitted that the
choice of classification algorithm also affects the result. In fact, we
have tried different classification algorithms, such as linear sup-
port vector machine (SVM), Gaussian SVM or Random Forest,
in a separate study. We didn’t include this part here since it will
make the content too complex.

Conclusion

Here, we studied how the choice of tractography method affects
our ability to classify different diagnostic groups in aging popula-
tions, including AD, based on structural brain networks. Clearly,
the diffusion MRI-derived networks would not be the only fea-
ture used for diagnostic classification in any realistic setting, but

it is important to know which methods perform best (or worst),
and with what parameter choices. Most practically, we wanted to
know if any methods are best avoided when trying to sensitively
detect disease effects on structural brain networks.

Our study had three main findings. First, and as expected,
some diagnostic groups were easier to distinguish than oth-
ers (Figure 3). Diagnostic accuracy was higher for AD vs. NC
comparisons than for NC vs. MCI comparisons. Differences
among algorithms within a task were relatively small compared
to the differences in accuracy for different tasks. Secondly, the
best tractography algorithm for each diagnostic task differs, but
there were no universally optimal methods, or feature extrac-
tion methods. Lastly, we tested if any choice of dimensional-
ity reduction method was helpful for classification. With some
exceptions, there did not seem to be a universally helpful method
(Tables 8A,B). The optimal feature extraction method may also
depend on the diagnostic task and the choice of the tractography
algorithms.

Our study has some limitations. First, it could be argued that
the method that best classified patients from controls need not be
the most accurate method in the sense of extracting “true” fibers.
For instance, a tractography method that fails to extract fibers in
certain parts of the brain would not normally be considered the
best, even if it gave good classification performance. So an impor-
tant ancillary studymight compare the accuracy of these methods
relative to ground truth. A second limitation is that DWI would
not normally be the method of choice to classify AD stages; struc-
tural atrophy, or amyloid and tau proteins measured in the blood
or CSF tends to be favored, because of the known pathology of
the disease. Even so, our goal was not to achieve optimal classifi-
cation, but evaluate tractography features and methods likely to
contribute to classification. In the meantime, having a workflow
to classify brain networks might offer an additional diagnostic
tool for AD and might help other studies unrelated to AD. Also,
the following caveats apply. We cannot rule out that the algo-
rithm performance depends on the quality of the data used for
testing. The ADNI data is somewhat standard and makes sense to
use for evaluation, as it is typical of that collected in DWI studies
of clinical cohorts.

Finally, we concede that network analysis is an evolving field.
In this study, we chose brain parcellation based on 113 regions.
Other atlas and partitions are possible, and it is even possible
to adapt the cortical parcellation to achieve better classification.
Moreover, slightly changing the parameter setting (such as crit-
ical angle) for each tractography method could also affect the
performance. To avoid adding too many free parameters to the
study, we did not explore these issues here, but such tuning tac-
tics are plausible to improve the discriminatory power of network
analysis for any particular tractography or feature set.
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