
OPINION
published: 21 May 2015

doi: 10.3389/fnagi.2015.00099

Frontiers in Aging Neuroscience | www.frontiersin.org 1 May 2015 | Volume 7 | Article 99

Edited by:

Elena Galea,

Universitat Autònoma de Barcelona,

Spain

Reviewed by:

Amy Pooler,

Nestlé Institute of Health Sciences,

Switzerland

Susanne Wegmann,

Massachusetts General Hospital, USA

*Correspondence:

Jesús Avila,

javila@cbm.csic.es

Received: 06 April 2015

Accepted: 08 May 2015

Published: 21 May 2015

Citation:

Avila J, Gómez-Ramos A and BolósM

(2015) AD genetic risk factors and tau

spreading.

Front. Aging Neurosci. 7:99.

doi: 10.3389/fnagi.2015.00099

AD genetic risk factors and tau
spreading

Jesús Avila 1, 2*, Alberto Gómez-Ramos 1, 2 and Marta Bolós 1, 2

1Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain, 2Centro de Biología

Molecular "Severo Ochoa" CSIC-UAM, Madrid, Spain

Keywords: endocytosis, tau proteins, genetic factors, PICALM, BIN1 bridging Integrator 1/amphiphysin-2 gene

Development of tau pathology is associated with progressive neuronal loss and cognitive decline.
In the brains of Alzheimer’s disease (AD) patients, tau pathology propagates according to an
anatomically defined pattern with relatively uniform distribution, and contributes to cognitive
decline in age-associated tauopathy (Braak and Braak, 1991; Saito et al., 2004). Recently, it has been
revealed that tau, which is an intracellular protein, can appear in the extracellular space, likely due
to an exocytosis mechanism. Such extracellular tau could then be internalized into neighboring cells
in at least two different ways depending on its aggregation state. In the case of soluble monomeric
or small oligomeric tau protein, the endocytosis appears to be clathrin dependent (reviewed in
Rubinsztein, 2006). In contrast, larger aggregates of tau could bind heparin in the extracellular
matrix and be internalized throughmacropinocytosis (Holmes et al., 2014). As a result of exocytosis
and endocytosis, the spreading of tau can occur in various neurodegenerative diseases (tauopathies)
including AD. In this opinion article we have focused on the endocytosis mechanism.

Several genetic risk factors have been associated with a higher probability of developing sporadic
Alzheimer’s disease (SAD). The Alzheimer Association (http://www.alzforum.org/) has ranked the
top six risk genes, shown in Table 1, based on genome-wide association studies (GWAS).

Binding of SAD Genetic Risk Factors to Tau Protein

The myc box-dependent-interacting protein 1, also known as bridging integrator 1 (BIN1),
clusterin (clu), phosphatidylinositol binding clathrin assembly protein (PICALM), and
apolipoprotein E (ApoE) are encoded by the BIN1, CLU, PICALM, and ApoE genes, respectively.
These proteins are involved in the endocytosis of tau in either a direct (BIN1, CLU, and PICALM) or
an indirect (ApoE) way, and all of them can also interact directly with tau (Chapuis et al., 2013; Tan
et al., 2013; Holler et al., 2014; Moreau et al., 2014; Zhou et al., 2014). ApoE - mainly isoformApoE3
- can bind efficiently to tau protein (Strittmatter et al., 1994). For BIN1, a novel brain-specific allele
containing a 3 bp insertion has been reported that may be responsible for the interaction of BIN1
with tau (Tan et al., 2013). Intracellular clusterin interacts with brain isoforms of BIN1 and with
tau (Zhou et al., 2014). Less is known about the interaction of PICALM and tau. However, Moreau
et al. (2014) carried out groundbreaking work describing the relationship between PICALM and
tau. They showed how PICALM-dependent autophagy can modulate tau accumulation in cells.
Impaired autophagy could result in neurotoxicity and, consequently, might also be related to the
spreading of tau pathology.

ApoE and clu (ApoJ) are related proteins. They are involved in cholesterol and lipid transport
and can regulate Aβ endocytosis and Aβ clearance (Bertrand et al., 1995; Nuutinen et al., 2009).
They also share some cellular receptors (Leeb et al., 2014). For example, both ApoE and clusterin
bind to heparin (Cardin et al., 1986; Pankhurst et al., 1998), which in turn may affect endocytic
processes such as macropinocytosis. Thus, it can be hypothesized that ApoE (and ApoJ) may, in
this indirect way, regulate tau endocytosis.
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TABLE 1 | The top six AD risk genes that interact with tau.

Order Gene Location

(GRCh38.p2

assembly)

Polymorphism References

1 ApoE chr19:44905754-

44909393

ApoE 2,3,4 Strittmatter et al.,

1994; Grupe

et al., 2007

2 BIN1 chr2:127048027-

127107355

rs 744373 Schellenberg and

Montine, 2012

3 CLU chr:8: 27596917-

27615031

rs 11136000 Lambert et al.,

2009; Harold

et al., 2009

4 ABCA7 chr19:1040101-

1065572

rs 3764650 Hollingworth

et al., 2011

5 CR1 chr1:207496147-

207640647

rs 3818361 Lambert et al.,

2009

6 PICALM chr11:85957684-

86069882

rs 3851179 Harold et al.,

2009

BIN1 has been ranked as the second most important
susceptibility locus for developing SAD. It is expressed from a
single locus located on human chromosome 2 (Ren et al., 2006).
The gene is transcribed into nuclear RNA that can produce
different proteins by alternative splicing (Pineda-Lucena et al.,
2005). Some of the BIN1 isoforms, such as isoforms 1-6, are
specifically located in the brain (Butler et al., 1997; Tsutsui
et al., 1997; Wechsler-Reya et al., 1997). Furthermore, BIN1 is
mainly expressed in neurons and some brain isoforms are mainly
expressed in the axon initial segment (Holler et al., 2014).

Extracellular Tau Endocytosis

Extracellular soluble tau (monomers, small oligomers) or larger
aggregates of tau can be endocytosed by neurons in several
ways. It was shown that neurons have cell receptors for
extracellular tau, for example M1 and M3 muscarinic receptors

(Gomez-Ramos et al., 2006, 2008). Once extracellular tau is
bound to muscarinic receptors, it can be endocytosed in
a clathrin-dependent process. This uptake mechanism could
facilitate the spreading of tau from neuron to neuron, perhaps
through synaptic transmission (De Calignon et al., 2012; Liu
et al., 2012; Pooler et al., 2013). For aggregated tau, endocytosis
is mediated by macropinocytosis (Holmes et al., 2014), in
which components of the extracellular matrix, such as heparin
sulfate, seem to play a role. Thus, two clearly different endocytic
pathways have been proposed for the neuronal uptake of tau:
receptor-clathrin dependent uptake of soluble tau species versus
cell matrix-dependent endocytosis of tau aggregates.

In SAD, an increase in the expression of BIN1 and

PICALM has been described, which could induce an increase
in tau clathrin-mediated endocytosis. This could lead to the

accumulation of soluble tau in tau recipient cells and may result

in a toxic effect. On the other hand, a decrease in the level of

clusterin, which like ApoE, is a heparin-binding protein, could

enhance the binding of aggregated tau to the extracellular matrix

and hence also enhance its endocytosis, resulting in a toxic effect
in the recipient cell.

In summary, it is remarkable that four of the main genetic

risk factors for Alzheimer’s disease are tau-binding partners.
Identifying how these risk factors affect tau propagation may

unveil new therapeutic targets to stop or delay progression
of pathology. For example, one possible way to reduce tau

endocytosis and subsequent spreading of tau pathology may be
to decrease neuronal levels of BIN1 and PICALM (which are

increased in Alzheimer’s disease) in early stages of the disease.
Future research is therefore needed to better understand the

interactions of tau with these proteins.
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