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The functional and structural integrity of the brain requires local adjustment of blood flow

and regulated delivery of metabolic substrates to meet the metabolic demands imposed

by neuronal activation. This process—neurovascular coupling—and ensued alterations

of glucose and oxygen metabolism—neurometabolic coupling—are accomplished by

concerted communication between neural and vascular cells. Evidence suggests that

neuronal-derived nitric oxide (•NO) is a key player in both phenomena. Alterations in the

mechanisms underlying the intimate communication between neural cells and vessels

ultimately lead to neuronal dysfunction. Both neurovascular and neurometabolic coupling

are perturbed during brain aging and in age-related neuropathologies in close association

with cognitive decline. However, despite decades of intense investigation, many aspects

remain poorly understood, such as the impact of these alterations. In this review, we

address neurovascular and neurometabolic derailment in aging and Alzheimer’s disease

(AD), discussing its significance in connection with •NO-related pathways.
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Introduction

The proper function of the brain depends critically upon constant and regulated blood supply.
Despite representing only 2% of total body mass in the adult human, the brain is an energy
expensive organ, consuming circa one fifth of the available oxygen and glucose (Zlokovic, 2011).
Upon neural excitation, local metabolic rate may increase as much as 50% relative to basal
values depending on the intensity of stimulation (Shulman and Rothman, 1998). Paradoxically,
the intrinsic energy reserves are minimal (Kealy et al., 2013), which implies that, to assure an
appropriate balance, changes in blood supply must be attuned to the physiological demands
imposed by neural activation with high temporal and regional precision. The accomplishment of
such interplay depends on the complex and concerted communication between neurons, astrocytes,
pericytes, microglia, and vascular cells. Active neurons generate signals that are transduced at blood
vessels to locally adjust blood flow and guarantee efficient delivery of bioenergetic substrates—
a process termed neurovascular coupling. Furthermore, the profile of neuronal activity is closely
associated with glucose and oxygen metabolism—neurometabolic coupling.

Neurovascular coupling has been a matter of intense investigation over the last decades and is
yet not fully understood. Nonetheless, there are generally accepted propositions, such as (1) the
process relies on glutamate-dependent pathways, in a feed-forward mechanism; (2) likely several
molecules and/or pathways cooperate to translate the need for substrates imposed by the neuronal
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activity into changes in cerebral blood flow, and (3) the
underlying mechanisms can be distinct throughout the brain
areas, reflecting specificities of the neuronal networks. Amongst
several molecules proposed to mediate neurovascular coupling,
nitric oxide (•NO), a free radical intercellular messenger, has
emerged as an attractive candidate (Iadecola, 1993). In the brain,
•NO is produced upon glutamatergic activation by the neuronal
isoform of nitric oxide synthase (nNOS), which is physically
anchored and functionally coupled to the NMDA-type glutamate
receptor (Christopherson et al., 1999). Nitric oxide is endowed
with peculiar physicochemical properties (radical nature, small
size, diffusibility, hydrophobicity), that determine a diversity of
biological targets and pathways in which it is involved (for review
Winkler and Luer, 1998; Guix et al., 2005).

Despite some inconsistent observations, ample evidence
suggests that •NO plays a critical role in neurovascular coupling,
particularly in the hippocampus and cerebellum (Rancillac
et al., 2006; Lourenço et al., 2014a). Direct and in vivo data
show that •NO is a direct mediator of the process, bridging
neurons and blood vessels. The simultaneous monitoring of •NO
fluctuations and CBF changes during glutamatergic activation,
coupled to pharmacological approaches, strengthens the notion
that •NO produced by neurons can diffuse toward neighboring
blood vessels and promote vasodilation via activation of
soluble guanylate cyclase (sGC). In turn, the involvement of
endothelial-derived •NO appears to be negligible (Lourenço
et al., 2014a). In addition to participating in neuron-to-blood
vessel signaling pathways, •NOmay be involved in the regulation
of ensued processes, such as neurometabolic coupling. Nitric
oxide can regulate energy metabolism/cellular respiration by
interfering with several signaling pathways. For instance, at
low nM concentrations •NO regulates mitochondrial respiration
by inhibiting cytochrome c oxidase (CcO) in competition
with O2 (Rossignol et al., 2003; Moncada and Bolaños, 2006;
Antunes and Cadenas, 2007). This competitive process allows
not only for the fine tuning of mitochondrial respiration, but
may also facilitate O2 distribution from the microvasculature
to sites of up-regulated energetic demand (Giulivi, 2003; Victor
et al., 2009) or modulate production of mitochondrial-derived
signaling molecules such as superoxide and hydrogen peroxide
(Cadenas, 2004). Nonetheless, when •NO fluxes are increased
in biological systems in concurrence with an unbalanced redox
environment, production of •NO-derived reactive species such
as peroxynitrite can significantly perturb mitochondrial function
by inhibiting complex I of the mitochondrial respiratory chain,
aconitase and Mn-superoxide dismutase (Brown, 2007). This Dr.
Jekyll and Mr. Hyde type of bioactivity can also be observed
for glycolysis, where •NO has been shown to boost glycolytic
turnover in a cGMP dependent mechanism in astrocytes (but not
neurons) (Bolanos et al., 2008) while gluteraldehyde-3-phosphate
dehydrogenase can be inhibited by nitration (Palamalai and
Miyagi, 2010).

Interestingly, the impact of •NO on brain metabolic status
can reflect upon neurovascular coupling. Variations in O2

concentration can alter vascular tone, both by affecting the
synthesis of the vasoactive messengers (including •NO itself),
and by altering the levels of lactate and adenosine, which

modulate pathways underlying neurovascular coupling (Gordon
et al., 2008; Attwell et al., 2010).

In sum, neuronal activity produces •NO, a messenger that
diffuses to blood vessels inducing vasodilation. Consequently,
increased delivery of energy substrates impacts local neuronal
metabolism and function. Therefore, the two processes,
neuronal activity-dependent CBF increase and oxygen and
glucose utilization by active neural cells are inextricably
linked, establishing a functional metabolic axis in brain, the
neurovascular-neuroenergetic coupling axis. Nitric oxide is a
master regulator of this axis. The perturbation of this •NO-
driven regulatory cycle can trigger a sequence of events that
may ultimately lead to neuronal dysfunction. Ample evidence
supports the notion that alterations of the regulatorymechanisms
involved in neurovascular and neurometabolic coupling lead to
neuronal dysfunction and disease, as discussed in the following
sections.

Dysfunction in Neurovascular Coupling
During Brain Aging and Alzheimer’s
Disease

It is increasingly accepted that brain aging and age-associated
diseases, such as Alzheimer’s disease (AD), share some
common histological and pathophysiological alterations
that, ultimately, underlie compromised cognitive status. The
possible contribution of abnormal cerebrovascular function to
progressive functional decline has been vigorously emphasized
and is nowadays well recognized. However, the putative triggers
of this dysfunction remain amatter of extensive debate (Zlokovic,
2011; Kalaria, 2012; de la Torre, 2012). Age is the most relevant
risk factor for the sporadic form of AD, the leading cause of
dementia in the elderly. Although AD results predominantly
from neurodegenerative changes, there is a growingly recognized
contribution of well-defined decline in cerebrovascular
parameters (Girouard and Iadecola, 2006). Between 60 and 90%
of AD patients exhibit cerebrovascular pathologies including
cerebral amyloid angiopathy, microinfarcts and ischemic lesions,
blood–brain barrier disruption,and microvascular degeneration
(Jellinger and Mitter-Ferstl, 2003; Bell and Zlokovic, 2009).
Converging on this idea, the ethiopathogenetic role of a
spectrum of chronic vascular disorders such as hypertension,
hypercholesterolemia and type 2 diabetes has been proven to be
present in the pathogenesis of AD (Kalaria, 2012).

The alterations in cerebrovascular function in aging and
AD can be reflected by both chronic brain hypoperfusion and
altered neurovascular coupling. Numerous clinical studies, based
on evaluation of resting CBF in human subjects, unanimously
recognize a negative correlation between global CBF and age
(Krejza et al., 1999; Schultz et al., 1999; Fisher et al., 2013; Fabiani
et al., 2014). Also, several lines of evidence support cerebral
hypoperfusion as a preclinical condition in AD and one of the
most accurate predictors for developing AD. Studies of brain
function during behavioral tasks suggest age-related differences
in activation, as well as differences between patients with AD and
age-matched control subjects, revealing a close correlation with
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cognitive decline (Alsop et al., 2000; Ruitenberg et al., 2005; Xu
et al., 2007). A significant observation is that the BOLD signal
evaluated by fMRI during an associative encoding task is reduced
in individuals carrying the APOE-ε4 allele, a recognized risk
factor for sporadic AD (Fleisher et al., 2009).

However, whereas the correlation between cerebrovascular
changes and cognitive decline has been firmly established,
the neurobiological link between the two is still poorly
defined, as is the causality (Iadecola, 2004). Evidence for
cerebrovascular changes resulting in neuronal damage, hastening
neurodegeneration, is clear but it is also known that neurogenic
factors can underlie cerebrovascular dysfunction. Amyloid β

peptide (Aβ), the main component of the amyloid plaques found
in AD, may play a major role in cerebrovascular impairment, as
it is known to disrupt the physiological mechanisms regulating
CBF. Elevations of Aβ levels in rodent models of AD are
associated with lower resting CBF and impaired vasodilatory
responses in cerebral circulation (Iadecola et al., 1999; Niwa et al.,
2002), including neurovascular coupling (Niwa et al., 2000a).
Additionally, Aβ peptides can impair endothelium-dependent
relaxation and enhance vasoconstriction (Thomas et al., 1996;
Niwa et al., 2000b, 2001) by either promoting oxidative stress
in the vascular cells (Hamel et al., 2008) and/or inhibiting
the production of neuronal-derived vasodilating messengers
(Iadecola, 2004) such as •NO (Venturini et al., 2002).

In an attempt to help clarify this controversy, we have
observed age-dependent impairment of •NO-dependent
neurovascular coupling both in rodent models of AD and aging.
Furthermore, we found that this dysfunction appears to be
primarily of cerebrovascular rather than neuronal origin. These
studies were carried out in a triple transgenic mouse model
of AD (3xTg-AD mice) and in Fisher 344 rats (widely used in
brain aging studies). By simultaneously measuring •NO and
CBF in the hippocampus, we observed that glutamate-evoked
increase in CBF was diminished during aging and AD, despite
the fact that •NO signaling remains almost unaltered. The effect
of aging/AD on •NO-dependent CBF changes is summarized
in Figure 1. Data obtained in 3xTg-AD mice revealed a shift
in the CBF changes coupled to the •NO temporal dynamic
elicited by glutamatergic activation. This is reflected by the
increased delay on the onset of CBF increase (Figure 1C), as
well as by the decrease in the amplitude of CBF change. The
later leads to the abolishment of the correlation between •NO
and CBF observed in control animals (Figure 1B). Similar
observations were obtained during aging in F344 rats, with
CBF changes declining 39% from 6 to 12 months, and a further
36% from 12 to 23 months, with no significant decrease in
•NO signaling (unpublished data). Of note, the deterioration of
the neurovascular coupling in both cases preceded an obvious
impairment in cognitive function as accessed by behavior tests.

Overall, these results strengthen the notion of cerebrovascular
dysfunction as a fundamental process underlying AD
pathophysiology and brain aging. That is, while neuronal •NO
signaling remains functional it is not conveniently transduced
into vasodilation at blood vessels. Amongst the potential causes,
changes of the redox environment in blood vessels may result
in the quenching of •NO, impeding it’s binding to sGC. In fact,

FIGURE 1 | Impairment of nitric oxide-dependent neurovascular

coupling in AD. (A) Representative recordings of the simultaneous

measurements of •NO concentration dynamics and CBF changes in the

hippocampus of 12 months-old Non-Tg mice and 3xTg-AD mice in response

to L-glutamate. L-glutamate (0.5 nmol, 1 s) was locally applied at time

indicated by the black vertical arrow. The measurements were performed

using •NO selective microelectrodes and Laser Doppler flowmetry as

previously described (Lourenço et al., 2014a). The temporal dynamic of •NO is

roughly identical in both strains and thus only a representative trace is

presented (gray line). The CBF change coupled to the transient •NO increase

showed a temporal delay and decrease in amplitude in 3xTg-AD mice (light

red line) as compared to Non-Tg mice (dark red line). (B) The linear relationship

between •NO peak amplitude and the amplitude CBF change observed in

Non-Tg mice (p = 0.003) was lost in 3xTg-AD mice (p = 0.981). In the former,

the linear regression showed an R2 = 0.735 and a slope of 24% CBF/fmol s−1

•NO. (C) Delay between the onset of •NO transient and the onset of the CBF

change in 12-months old 3xTg-AD mice and Non-Tg mice. Values represent

the mean ± SEM (p = 0.001).

previous reports show that vascular oxidative stress may have
serious implications in cerebrovascular function (reviewed in
Hamel et al., 2008).

A deep understanding of the underlying mechanisms
by which altered cerebrovascular function influences AD
neuropathology has not yet been achieved. Nevertheless, in
accordance with the hypothesis prompted by the vascular-
driven theory of AD, cerebrovascular dysfunction and
consequent hypoperfusion is suggested to be linked to (1)
enhanced β-secretase protein expression, which potentiates Aβ

overproduction and altered phosphorylated tau (Velliquette
et al., 2005; Koike et al., 2010); (2) faulty clearance of Aβ

peptides, favoring accumulation in the brain (Girouard and
Iadecola, 2006) and (3) reduced supply of metabolic substrates
and neurometabolic dysfunction.

Altered Neurometabolism in Brain Aging
and Alzheimer’s Disease

Brain aging is accompanied by widespread metabolic
alterations associated with cognitive decline that connect
with the so called “metabolic syndrome” (Barzilai et al., 2012).
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Components of metabolic syndrome such as insulin resistance
or hypercholesterolemia are predictors of accelerated cognitive
decline and dementia, particularly AD (Haralampos et al., 2008).
The pathways linking thesemetabolic alterations and the decay of
cognitive function are still poorly understood, but mitochondrial
dysfunction has been identified as a link between the two.
Besides changes in neurotransmission processes (decrease in
glutamate and GABA), brain aging and AD are associated with
perturbations of primary energy metabolism (use of glucose and
lactate) as well as in the turnover of lipid membranes (Castegna
et al., 2004; Mohmmad Abdul and Butterfield, 2005; Bader
Lange et al., 2008; Duarte et al., 2014). Mitochondria play an
essential role in cellular respiration and are responsible not
only for the production of ATP, but also for Ca2+ buffering,
production and removal of reactive oxygen species, as well as
of signaling molecules that regulate cell cycle, proliferation and
apoptosis (for review Yin et al., 2014). The brain’s consumption
of glucose is primarily driven by the constant need to maintain
ionic gradients in pre- and post-synaptic compartments in order
to sustain excitability, as well as to maintain transmembrane
lipid asymmetries (Harris et al., 2012). Considering the high
energetic demand of this organ and it’s excitability requirements,
deregulation of optimal mitochondrial performance can
significantly impact neurometabolism and function.

During the past decades, intensive research has shown that
brain energy metabolism in impaired during the progression of
AD (de Leon et al., 1983; Mosconi et al., 2005; Reiman et al.,
2005; Scholl et al., 2011; Yin et al., 2014). Amyloidosis, or more
specifically plaque pathology (Gearing et al., 1995), although
present in roughly 90% of AD patients, is not in itself sufficient
to account for the disease and many authors have reported
that amyloid load may not necessarily correlate with dementia
(Gearing et al., 1995; Hsia et al., 1999; Mucke et al., 2000;
Swerdlow et al., 2014). As the amyloid cascade hypothesis of AD
has evolved over the years, the concept of plaque as the causal
factor of disease has given way to the notion that soluble forms
of Aβ oligomers are in fact the toxic moiety (Lesne and Kotilinek,
2005; Walsh et al., 2005; Lesne et al., 2006). These oligomers have
been shown to compromise the function of organelles such as the
mitochondria.

Thus, the concept that mitochondrial dysfunction is a key
contributor to the onset and progression of AD has become
firmly consolidated and the “mitochondrial cascade hypothesis”
has gained significant ground, especially with regards to late-
onset AD (Chaturvedi and Flint Beal, 2013; Swerdlow et al.,
2014). This hypothesis is sustained not only on the fact
that both Aβ and hyperphosphorylated tau are capable of
altering mitochondrial function, but also takes into account
the major risk factor for sporadic AD—age. One important
consequence of biological aging is the accumulation of somatic
mtDNAmutations, which contribute to physiological decline and
neurodegenerative disease (Lin et al., 2002). The impact of these
point mutations on each individual as they age will be influenced
by inherited and environmental factors (Wallace, 1992; Swerdlow
et al., 2014).

Studies in both animal models and AD patients have
shown that Aβ is capable of inhibiting the complexes of the

mitochondrial respiratory chain, as well as the TCA cycle enzyme
α-ketogluterate dehydrogenase (Casley et al., 2002; Manczak
et al., 2006). Impairment of oxidative phosphorylation (OxPhos)
is mainly due to the inhibition or decreased activity of CcO,
which, along with ATP synthase, is known to be oxidized in the
brains of AD patients (Kish et al., 1992; Mutisya et al., 1994;
Maurer et al., 2000). Furthermore, mitochondrial dysfunction
promotes tangle formation in AD by contributing to tau
phosphorylation (Melov et al., 2007).

Using high resolution respirometry for evaluation of O2

consumption rates (OCR) in intact hippocampal slices obtained
from 3xTg-AD mice and age-matched controls (Figure 2A) we
have observed an age-dependent impairment of OxPhos in old-
aged animals which tends to be more evident in old-aged 3xTg-
AD (Figure 2B). Both basal and maximal O2 consumption rates
decrease as a function of age in both genotypes. More relevantly,
the sparing capacity has diminished in both old-age groups,
implying a lower capacity to respond to energy-demanding
situations (such as increased excitability) with adequate increase
OxPhos to supply ATP. Decrease in basal tissue OCR was
further revealed when we determined the drop in [O2] from
the surrounding media to the tissue core (Figure 2C), which
was significantly smaller in old-age 3TgAD animals. This drop
in [O2] is expected to positively correlate with the metabolic
activity state of the tissue. Of note is the fact that this 3xTg-
AD model, although expressing a progressive AD phenotype as
expected to occur in humans (Oddo et al., 2003), is a model of
familiar AD and not sporadic AD. As such, it is not surprising
to us to find that the major contributor to changes in OxPhos is
actually age and not genotype. Sporadic AD is not associated with
deterministic gene mutations, although some genetic influences
have been identified, such as the APOE-ε4 variant (Corder et al.,
1993; Swerdlow, 2007).

Hypometabolism in AD is most likely more than a
mere consequence of the cellular and functional degeneration
(decreased brain function would obviously require less energy
substrate supply)—recent observations suggest that optimal
glucose utilization is impaired in early asymptomatic stages of the
disease and may contribute or precipitate AD neuropathology.
Data collected from both clinical and animal model research
strongly suggest that significant decrease in brain metabolism
occurs well before any clinical manifestation of AD, namely
measurable cognitive decline (for review Petrella et al., 2003).

Changes in the concentration dynamics of •NO in the brain
may contribute to altered neurometabolism in aging and AD.
In structures of the CNS intimately linked to memory and
learning, such as the hippocampus, •NO is produced by neurons
upon activation of glutamatergic synapses (Ledo et al., 2005,
2015; Lourenço et al., 2011, 2014b). Besides its obvious role
as a neuromodulator, acting namely as a retrograde messenger
in plasticity phenomena associated with memory and learning
(Prast and Philippu, 2001), •NO has been looked upon as
a master regulator of neurometabolism, as discussed above.
Alongside or as a consequence of inhibition of the mitochondrial
electron transporting chain (Antunes and Cadenas, 2007), •NO
has also been shown to boost glycolytic rate and glucose uptake
(reviewed in Almeida et al., 2005). One can hypothesize that
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FIGURE 2 | Changes in mitochondrial oxidative phosphorylation in

intact hippocampal slices from 3xTg-AD mice and Non-Tg mice

show significant effect of aging on basal and maximal

respiratory rates as well as sparing capacity. We developed a

protocol that enabled us to evaluate OxPhos in intact hippocampal

slices obtained from young and old-aged mice. Using a high-resolution

respirometer (Oxygraph-2K, by Oroboros Instruments, Austria) we

determined O2 consumption rates (OCR) or O2 flux (red line in A).

Due to high O2 requirement of hippocampal slices, experiments were

performed at high [O2] and chambers were re-oxygenated throughout

the experiment (blue line in A). Basal OCR was obtained in

BSA-supplemented media containing 10 mM glucose+pyruvate.

Carboxyatractyloside and oligomycin (CAT+Omy; 12.5µM and

20µg/mL) were then added to determine OCR not dependent on ATP

production (leak). Maximal respiratory rate was achieved by titration

with FCCP (20µM), following which non-mitochondrial respiration was

determined by adding rotenone (Rot, 2.2µM). From each recording we

determined the OCR values presented in (B). Two-Way ANOVA

analysis revealed a significant effect of age on both maximal (F = 4.69;

P = 0.0368) and sparing capacity (F = 7.39; ***p = 0.01). In (C) one

can observe that the drop in [O2] from the medium bathing the

hippocampal slice (aCSF bubbled with 95%O2/5%CO2 gas mixture, at

32◦C) is significantly decreased in old-aged 3xTg-AD, further

supporting respirometry data showing decrease in basal metabolic rate.

This drop was determined electrochemically using carbon fiber

microelectrodes held at −0, 8 V vs. Ag/AgCl and lowered from the

perfusion media into the slice core gradually (see Ledo et al., 2005

for detailed description).

changes in either •NO concentration dynamics or cellular redox
environment toward a more oxidative status (which promotes
production of reactive oxygen and nitrogen species), not only
detours •NO from its physiological role but also precipitates
the production of highly oxidative and nitrosative sprecies such
as peroxynitrite and dinitrogen trioxide (Heinrich et al., 2013).
In line with this hypothesis, increase in tyrosine nitration is
observed in the brains of AD patients when compared to healthy
age-matched individuals, indicating changes in •NO bioactivity
(Fernandez-Vizarra et al., 2004).

Using hippocampal slices to measure both NMDA-evoked
•NO production and changes in O2 profiles in the CA1
subregion, we have previously shown that •NO may act
as a modulator of neurometabolic rate upon stimulation of
glutamatergic transmission (Ledo et al., 2010). In hippocampal

slices obtained from old-age 3xTg-AD mice, and looking
specifically at the CA1 pyramidal layer, we observe decreased
•NO upon activation of NMDA receptor (unpublished data),
which most likely results from changes in •NO bioavailability
due to its rapid reaction with species such as superoxide radical
to produce peroxynitrite. As a consequence, we also observed
that the tight coupling between neuronal-•NO and inhibition of
O2 consumption as shown in healthy subjects is lost, suggesting
that •NO is no longer capable or available to act as the master
regulator of neurometabolic coupling.

Conclusion

An increasing amount of evidence supports the notion that
Alzheimer’s disease is a multifaceted pathology that goes far
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beyond the amyloid pathology. As a major risk factor for
AD, aging shares many common features associated with
functional decline, namely neurovascular and neurometabolic
alterations. Although the causal role of these changes in AD
pathology remains controversial, it seems increasingly certain
that they significantly impact the progression of neuronal
dysfunction. Furthermore, the imbalance in the regulation
of the neurovascular and neurometabolic coupling, resulting
from cerebrovascular dysfunction, appear to be precocious
events in neurodegeneration and brain aging. This shift in
paradigm and the role of vascular redox status of brain
microcirculation may be crucial for development of adequate

therapeutically strategies that hamper cognition defects and
neurodegeneration.
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