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Background: Identification of stage-specific changes in brain network of patients with

Alzheimer’s disease (AD) is critical for rationally designed therapeutics that delays the

progression of the disease. However, pathological neural processes and their resulting

changes in brain network topology with disease progression are not clearly known.

Methods: The current study was designed to investigate the alterations in network

topology of resting state fMRI among patients in three different clinical dementia rating

(CDR) groups (i.e., CDR = 0.5, 1, 2) and amnestic mild cognitive impairment (aMCI) and

age-matched healthy subject groups. We constructed density networks from these 5

groups and analyzed their network properties using graph theoretical measures.

Results: The topological properties of AD brain networks differed in a non-monotonic,

stage-specific manner. Interestingly, local and global efficiency and betweenness of the

network were rather higher in the aMCI and AD (CDR 1) groups than those of prior stage

groups. The number, location, and structure of rich-clubs changed dynamically as the

disease progressed.

Conclusions: The alterations in network topology of the brain are quite dynamic with

AD progression, and these dynamic changes in network patterns should be considered

meticulously for efficient therapeutic interventions of AD.

Keywords: Alzheimer’s disease, complex network, resting state fMRI, functional connectivity, graph theory

Introduction

Alzheimer’s disease (AD) is the most common type of dementia, affecting about 5–10% of the
population above the age of 65 (Sunderland et al., 2006). Clinical symptoms of AD are characterized
by progressive amnesia, followed by a gradual decline in all cognitive functions, resulting in
dementia (Sunderland et al., 2006). AD usually exhibits a typical clinical course reflecting the
underlying progressing neuropathology (Bianchetti and Trabucchi, 2001; Storey et al., 2002). In
the early stage, memory impairment is the prominent feature because the pathology initiates near
the medial temporal cortex. In the moderate stage, language problems or visuospatial dysfunctions
become conspicuous as the pathology propagates to the other temporal and parietal cortices (Förstl
and Kurz, 1999; Bianchetti and Trabucchi, 2001). In the late stage of the illness, most cognitive
functions are severely impaired, including frontal executive functions such as judgment, abstract,
or logical reasoning, and planning (Braak and Braak, 1991; Fox et al., 2001). The mild cognitive
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impairment (MCI) is accompanied by mild memory
deterioration but does not disrupt the activities of daily
living. Although MCI is very heterogeneous and has multiple
subtypes, it is considered to represent an intermediate stage
between normal and dementia. MCI has been shown to be more
likely to develop AD than cognitively normal (Boyle et al., 2006).
Among MCI subtypes, Anmestic MCI (aMCI) is considered as
a prodromal stage of AD, having a high-risk for progression to
AD (Fischer et al., 2007). In addition, aMCI has been intensitvely
investigated for early diagnosis of AD (Petersen, 2004).

Identification of clinical stages in Alzheimer’s patients is
crucial for the development of appropriate therapeutics that may
delay the progression of the disease (Trojanowski et al., 2010).
Several studies have attempted to determine the characteristics of
each clinical stage of AD based on the distributions and patterns
of the neuropathology (Braak and Braak, 1991), cognitive and
behavioral performance (Folstein et al., 1975) and severity of
clinical features such as the clinical dementia rating (CDR)
(Hughes et al., 1982). For example, studies using structural MR
imaging have shown that the regional patterns and rate of atrophy
differ across AD stages (Scahill et al., 2002; Thompson et al.,
2003). Atrophy in the medial temporal lobe commences prior
to symptom onset, and is then followed by a reduction in gray
matter in the limbic and other neocortices with relative sparing
of primary sensory areas. These results are generally consistent
with the tau accumulation and the corresponding clinical features
(Scahill et al., 2002; Thompson et al., 2003).

In another aspect, there have been several studies supporting
the hypothesis that AD is a “disconnection syndrome” (Delbeuck
et al., 2003). According to this hypothesis, AD results from the
disruption of neuronal connections due to synaptic loss and
eventually neuronal death. This feature can be approached by
adopting the concept of functional or structural connectivity. As
the severity of the disease increases, the functional connectivity
among brain regions is assumed to be gradually reduced. Indeed,
prior neuroimaging studies have shown that AD patients show
disrupted white matter integrity and functional connectivity
among distant brain regions (Celone et al., 2006; Zhang
et al., 2007). However, how different degrees of disruptions
of connectivity in AD across clinical stages influence global
information processing of the brain is not clearly understood yet
(Wang et al., 2006; Zhou et al., 2008; Bai et al., 2011).

To address this question, the current study employed complex
network analysis methods and investigated brain network
properties from resting state fMRI in AD, aMCI, and healthy
subjects (HS) (Strogatz, 2001; Bullmore and Sporns, 2009).
Complex network analysis has shown that the brain has non-
random network properties including small world and scale free
features and exhibits hierarchical organization with modularity
(Achard et al., 2006; Hagmann et al., 2008). Several fMRI and
MEG studies have reported that AD and aMCI patients have
reduced small-worldness characterized by a longer characteristic
path length than that of HS (Stam et al., 2007, 2009; Kendi
et al., 2008; Lo et al., 2010). However, we should note that some
network properties in AD are not consistent across studies (for
reviews, Xie and He, 2011; Tijms et al., 2013), for example,
different studies have found increases (Kendi et al., 2008),

decreases (Stam et al., 2009), or no significant changes in the
clustering coefficient of the brain network in AD patients (Stam
et al., 2007; Lo et al., 2010; Sanz-Arigita et al., 2010). Moreover,
some studies have reported conflicting results regarding the
characteristic path length; one study showed a decrease in the
characteristic path length in AD brains (Sanz-Arigita et al.,
2010), whereas another study reported no change (Supekar et al.,
2008). This discrepancy regarding the change in the network
topology of the AD brain might result from the heterogeneity
of patient populations at different clinical stages of AD or the
different strategy of generating network in the previous studies.
To overcome this, we attempted to use the uniformly measured
data sets and to raise the stability of network topology during
the constructing networks. The parameters of realignment and
segmentation of MR images were chosen based on the previous
neuroimaging studies using SPM (Della-Maggiore et al., 2002;
Maldjian et al., 2003). The density threshold values were also
determined as to show the clear features of the brain network as
the density value changes in a wide range. The threshold values
for the same density network are in Supplementary Table 1.

To the best of our knowledge, there have been no previous
studies using graph theoretical measures to investigate the
consecutive changes in brain network topology with AD
progression. Therefore, the current study investigated and
compared topological properties of the brain networks in AD
patients in three different CDR stages, patients with aMCI, and
age-matched HS.

Materials and Methods

Participants
A total of 278 subjects (112AD, 87 aMCI, and 79HS) were
recruited consecutively at the memory disorder clinic in
the Department of Neurology at Samsung Medical Center
in Seoul, South Korea between March 2008 and February
2009. Each participant underwent MR scans, clinical
interviews, neurological examinations, and comprehensive
neuropsychological assessments. Patients with aMCI met the
criteria proposed by Petersen et al. (1999). We diagnosed aMCI
based on criteria of −1.5 to −1 SD of SVLT score. Patients
with AD fulfilled the criteria for probable AD proposed by
the National Institute of Neurological and Communicative
Disorders and Stroke and the AD and Related Disorders
Associations (NINCDS-ADRDA) (McKhann et al., 1984). AD
patients were subdivided into three groups according to their
CDR (Morris, 1993), 36 with a CDR of 0.5, 55 with a CDR
of 1, and 22 with a CDR of 2. The HS group was comprised
of 79 subjects with no history of cognitive impairment or
neurological or psychiatric illness, and the subjects exhibited
normal performance during neuropsychological testing. During
various phases, 126 subjects were excluded from the study, and
data from 152 subjects was included in the analysis.

While reviewing their neuropsychological tests, we excluded
31 subjects (5NL, 6 aMCI, 3AD patients with a CDR score of 0.5,
10AD patients with a CDR score of 1, and 7AD patients with a
CDR score of 2 whose clinical information was incomplete on
at least one neuropsychological item. We then constructed an
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individual brain network according to the method described in
the following Section Construction of a Brain Network Using
Resting State fMRI, but with a threshold of 0.8. We excluded
outliers with network degrees below [the first quartile −1.5
times the interquartile range] or above [the third quartile +1.5
times the interquartile range]. The networks with small degrees
during the measurement were considered to be noisy data, and
the networks with large degrees could be affected by artifacts.
The number of outliers excluded in this step was 82. We then
again checked group-wise average ages. To match the average
age among groups, we additionally excluded 13 subjects in the
HS group. Every participant or their caregivers in this study
provided written informed consent. This study was approved
by the Institutional Review Board of Samsung Medical Center,
Seoul, South Korea.

Neuropsychological Assessments
Each participant underwent neuropsychological testing using
the Seoul Neuropsychological Screening Battery (SNSB), a
standardized neuropsychological battery that includes validated
tests for a variety of cognitive functions such as attention,
language, visuospatial function, verbal, and visual memory,
frontal executive function, and CDR (Kang and Na, 2003).
Among these evaluations, scorable tests included the Digit Span
Backward, the Korean version of the Boston Naming Test
(K-BNT) (Kim and Na, 1999), the Rey-Osterrieth Complex
Figure Test (RCFT) (Lezak, 1983), the Seoul Verbal Learning
Test (SVLT; three learning-free recall trials of 12 words, a
20min delayed recall trial for these 12 items, and a recognition
test), motor tests (Contrasting program, a Go/NoGo test), the
phonemic and semantic Controlled Oral Word Association Test
(COWAT), and the Stroop Test (Color reading of 112 items
during 2min).

Acquisition and Preprocessing of MRI
MR images were acquired using a 3 Tesla MR scanner (Philips
Intera Achieva, Philips Healthcare, The Netherlands). T1-
weighted anatomical MR images (TR = 9.9ms; TE = 4.6ms;
flip angle = 8◦; FOV [FH, AP, RL] = 240 × 240 × 180mm2;
matrix= 480× 480; 360 slices [sagittal]; voxel size= 0.5× 0.5×
0.5mm3) and T2∗-weightedMR images (resting state fMRI) were
obtained using a gradient echo planar imaging pulse sequence
(TR = 3000ms; TE = 35ms; flip angle = 90◦; FOV [RL, AP,
FH] = 220 × 220 × 140mm2; matrix = 128 × 128; 35 slices
[transverse]; voxel size [RL, AP, FH]= 1.72× 1.72× 4mm3).

Pre-processing steps for resting state fMRI included
slice-timing correction, motion correction, co-registration,
segmentation, spatial normalization into Montreal Neurological
Institute (MNI) space, and smoothing as described previously
(Yoo et al., 2013). Pre-processing was performed using Statistical
Parametric Mapping software 8.0 (SPM, http://www.fil.ion.ucl.
ac.uk/spm/) in MATLAB R2011a (7.12).

Construction of a Brain Network Using Resting
State fMRI
We selected 90 brain regions as nodes to construct a brain
network using an Automated Anatomical Labeling (AAL)

parcellation scheme (Tzourio-Mazoyer et al., 2002). To determine
the functional connectivity (i.e., the edges) between the nodes,
we calculated mutual information for each pair of 90 fMRI time
series extracted from each node. We then constructed a network
with the same density for each individual and containing the
same number of edges in every individual graph to facilitate
comparison of network properties. This allows the comparison
between groups with a controlled number of nodes and edges,
because network properties with the same threshold change
dramatically with their number of degrees.

Mutual information =

∑

y

∑

x

p(x, y)log

(

p(x, y)

p (x) p
(

y
)

)

where p(x,y) is the joint probability distribution function of X
and Y, p(x) and p(y) are the marginal probability distribution
functions of X and Y, and X, Y are the serial values of fMRI from
selected two regions in this study.

The various density values were tested to construct brain
networks. Among them, we finally selected the lowest fixed
density that provided a sufficiently sparse network with a lower
bound of density, minimizing the number of isolated nodes.
The threshold of each network was applied separately for fixed
density, 7%. The density equals the number of edges divided by
possible connections in the network,

Density =
2E

N(N − 1)

wherein the number of nodes N and edges E. This allows
the controlled comparison of network structure and properties
among different groups.

Graph Theoretical Analysis of the Brain Network
After constructing an individual brain network for each
subject, graph theoretical analysis was performed to obtain the
topological information of the network. We then compared
the whole brain network properties among the five groups
(HS, aMCI, CDR 0.5, CDR 1, and CDR 2, ANOVA, and
post-hoc). We compared seven network parameters, including
the characteristic path length, clustering coefficient, global
efficiency, local efficiency, betweenness centrality, assortativity,
and modularity. The characteristic path length is the average of
the minimum number of edges that have to be passed through
between nodes. The clustering coefficient of a node is the rate
of existing edges between the nearest neighbors vs. possible
connections. Global and local efficiency indicate the information
transfer between nodes. Global efficiency is the average of the
inverse of the shortest path lengths of individual nodes. The local
efficiency of an individual node is the inverse of the shortest path
length connecting all neighbors of that node. The betweenness
centrality of a single node is the number of shortest paths
between nodes that must pass through the selected node dividing
by the number of all paths to normalize. Assortativity is the
correlation between the degrees of connected nodes. A positive
assortativity indicates that high-degree nodes tend to connect to
each other. The modularity is the fraction of the edges that fall
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within the given groups minus the expected fraction if edges were
distributed at random. This analysis was performed using the
Brain connectivity toolbox (Rubinov and Sporns, 2010). We also
investigated the network properties of each brain lobe (frontal,
parietal, occipital, and temporal lobes and the subcortical area).
To do this, we first calculated nodal values for each of the 90AAL
ROIs and then took the average of these values within each lobe or
area. We compared these lobar or areal properties across the five
groups with ADprogression (ANOVA and post-hoc). In this lobar
analysis, we supposed that tests for each lobe are independent,
hence no correction was applied.

Correlation Analysis between Network Topology
and Clinical Information
We tested whether network properties were correlated with
clinical measures by two methods. First, we examined whether
a significant correlation existed between network properties and
clinical information within each of the five groups. Second, we
performed the same correlation analysis including all subjects
regardless of groups. We calculated the Pearson’s correlation
coefficient between the network properties and clinical measures
and determined the significance of correlation based on the
p-value (p < 0.05). For the correlation analysis, uncorrected
p-value was used.

Rich-club organization
The rich-club in a complex network is a group of hubs
having dense connections among themselves. The rich-club
organization provides important information on the higher-
order hierarchical backbone structure of networks (Colizza et al.,
2006; McAuley et al., 2007). The rich-club phenomenon in
networks is designed tomeasure when the hubs of a network tend
to be more densely connected among themselves than nodes of a
lower degree (Colizza et al., 2006). Networks having a relatively
high rich-club coefficient show the rich-club effect and have
many links between high degree nodes. The rich-club coefficient
of a network is can be a measurement of the robustness. The
networks are usually resilient with high rich-club coefficient,
because the densely connected hubs can maintain the network
structure easily. The rich-club coefficients of networks were also
calculated in each group. We computed the rich-club coefficients
8(k) of the networks over a range of degrees (k). For a degree
(k), the edges and nodes with a smaller degree than k were
removed from the network. In the remaining network, the rich-
club coefficient 8(k) is the ratio of the current edges and possible
number of edges among remaining nodes,

8
(

k
)

=
2E>k

N>k (N>k − 1)

whereN is the number of remaining nodes and E is the number of
current edges. The rich-club coefficient 8(k) can be normalized
with a set of random networks of the same size and similar degree
distribution. A normalized rich-club coefficient 8norm of >1 can
be described as a rich-club organization in a network (Colizza
et al., 2006). We calculated the rich-club curve comparing the
rich-club coefficient between subject groups and 1000 random

networks by rewiring edges with a similar degree distribution for
each level of k,

8norm

(

k
)

=
8
(

k
)

8random

(

k
)

We also determined whether the permutation test from the
1000 random networks was statistically significant. We showed
that 8

(

k
)

was significantly greater than the distribution of
8random

(

k
)

, with a p < 0.05.

Statistical Test
For the statistical tests, we used One-Way ANOVA for group
difference of each property, and the Tukey’s honest significant
difference (HSD) test for post-hoc test in every comparison. The
Tukey’s HSD was optimal for One-Way ANOVA and similar
procedures with equal sizes originally. As you already know, it has
been confirmed to be conservative for One-Way ANOVA with
the different sample sizes as well.

Results

The demographics and neuropsychological results of subjects in
the current study are listed in Table 1. There were significant
differences among groups, with the higher CDR group showing
poorer performance in every cognitive domain.

We investigated changes in the topology of brain networks
spanning from HS, to subjects with aMCI, to subjects in the
AD spectrum. Figure 1 shows the reorganization of the network
from the HS to AD patients with a CDR of 2 (ANOVA and
post-hoc) with respect to three parameters: global efficiency,
local efficiency, and betweenness centrality. We found a non-
monotonic change in the brain network as AD progressed; these
3 network properties are higher in aMCI and CDR 1 groups than
other three groups. In common, these three network properties
were significantly lower in the CDR 0.5 group compared with
the aMCI group or the CDR 1 group (p < 0.05, uncorrected).In
addition, we estimated the characteristic path length, clustering
coefficient, modularity, and assortativity and found similar
fluctuating patterns with AD progression (see Supplementary
Figure 1).

We then determined whether the topology of the brain
network correlated with the performance of particular cognitive
functions. We performed a correlation analysis between
network measures and neuropsychological test scores for each
group separately (Table 2 and Supplementary Table 2). We
found significant correlations between network properties and
neuropsychological test scores primarily in the aMCI group
(p < 0.05, uncorrected). The aMCI group showed a
negative correlation between the scores of the Digit Span
Backward, Naming K-BNT, RCFT copy, Go/NoGo, and COWAT
Semantic tests and network properties. The HS showed
significant correlations between the Stroop Test scores and
network measures (global efficiency, betweenness centrality, and
characteristic path length). In addition, the CDR 0.5 group
showed significant positive correlations between the COWAT
Phonemic score and betweenness centrality and characteristic
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TABLE 1 | Demographics and clinical information.

HC aMCI AD CDR 0.5 AD CDR 1 AD CDR 2

Subjects 31 (26F) 50 (28F) 25 (15F) 36 (20F) 10 (6F)

Age 67.6 (±6.3) 70.4 (±7.6) 70.0 (±8.4) 72.6 (±7.7) 70.9 (±6.9)

Digit span backward 4.3 (±1.5) 3.5 (±1.0) 2.9 (±1.3)aaa 2.8 (±1.3)aaa 2.9 (±1.1)a

K-BNT 48.5 (±7.5) 40.6 (±9.3)aa 35.0 (±12.5)aaa 36.5 (±10.1)aaa 30.6 (±11.7)aaab

RCFT copy 32.2 (±5.0) 29.9 (±5.2) 23.8 (±11.4)aab 23.4 (±9.9)aaabb 21.4 (±10.9)aab

SVLT delayed 7.4 (±2.0) 2.5 (±2.4)aaa 1.0 (±1.9)aaab 0.6 (±1.1)aaabbb 0.4 (±1.3)aaab

RCFT delayed 15.0 (±3.9) 7.9 (±5.2)aaa 2.6 (±2.8)aaabbb 1.7 (±3.0)aaabbb 1.1 (±1.9)aaabbb

Contrasting program 19.9 (±0.2) 19.7 (±1.4) 18.4 (±4.5) 15.4 (±7.2)aaabbb 11.4 (±8.6)aaabbbccc

Go/NoGo test 19.6 (±1.1) 18.7 (±3.1) 16.1 (±5.3) 12.0 (±6.7)aaabbbcc 8.2 (±6.7)aaabbbccc

Stroop test color reading 87.7 (±23.3) 73.8 (±23.9) 48.8 (±29.5)aaabbb 39.5 (±25.1)aaabbb 20.6 (±16.0)aaabbbc

MMSE 28.6 (±1.9) 26.5 (±2.2)a 22.4 (±3.9)aaabbb 19.6 (±4.0)aaabbbcc 17.0 (±3.4)aaabbbccc

CDR sum of boxes (SNSB) 0.7 (±0.5) 1.3 (±0.8) 3.1 (±1.3)aaabbb 5.2 (±1.4)aaabbbccc 10.8 (±1.9)aaabbbcccddd

COWAT semantic 32.4 (±7.5) 24.4 (±7.5)aaa 21.4 (±6.9)aaa 18.2 (±6.9)aaabbb 12.9 (±5.3)aaabbbc

COWAT phonemic 28.1 (±10.8) 18.4 (±9.7)aaa 17.6 (±11.1)aaa 13.5 (±8.3)aaa 11.8 (±8.8)aaa

ANOVA and post-hoc analysis was performed.

Significantly different when compared to normal (a: p < 0.05, aa: p < 0.01, aaa: p < 0.001).

Compared to aMCI (b: p < 0.05, bb: p < 0.01, bbb: p < 0.001).

Compared to AD CDR 0.5 (c: p < 0.05, cc: p < 0.01, ccc: p < 0.001).

Compared to AD CDR 1 (ddd: p < 0.001).

path length. In contrast, no significant correlations were found
between neuropsychological test performances and network
measures in the CDR 1 and CDR 2 groups. All significant results
were negative correlations (except those found in the CDR 0.5
group) and are shown in Table 2 and Supplementary Table 2.
In addition, we performed the same analysis for all subjects
and found a significant negative correlation of the COWAT
semantic score with network topologies (betweenness centrality,
characteristic path length, and clustering coefficient, p < 0.05,
uncorrected, Supplementary Table 3).

Next, we examined whether the changes in the network
properties of each lobe were reflected in whole-brain topology as
AD progresses. For each of the three network measures, global,
and local efficiency and betweenness centrality, the bilateral
temporal lobe and right subcortex showed a non-monotonic
reorganization with AD progression (Figure 2). Particularly, the
left frontal lobe exhibited this reorganization pattern for global
efficiency and betweenness centrality, whereas the left subcortex
exhibited this reorganization with respect to local efficiency and
betweenness (Figure 2). In addition, the right frontal and parietal
lobes displayed similar non-monotonic reorganization only for
betweenness centrality.

We determined if there were significant changes in lobar
network properties among AD groups. For global efficiency,
the right parietal lobe showed significantly lower efficiency in
the CDR 0.5 and CDR 2 groups compared to the HS group
(p < 0.05), and the right temporal lobe showed an higher in
the CDR 1 group compared with the CDR 0.5 group (p <

0.05). For local efficiency, the right parietal lobe showed lower
efficiency in the aMCI compared to the HS group (p < 0.05),
and the right temporal lobe was higher in the CDR 1 group
compared to its preceding group, CDR 0.5 (p < 0.05). In left
hemisphere, the temporal lobe was higher in the aMCI and CDR

1 groups compared to the HS and CDR 0.5 groups, respectively
(p < 0.05). All significant results are shown in Figure 2. Other
network properties, i.e., the characteristic path length, clustering
coefficient, modularity, and assortativity, also exhibited a similar
pattern of change with AD progression (see Supplementary
Figure 2).

Lastly, we examined the rich-club organization of the brain
networks with AD progression. Figures 3A–D) shows the rich-
club coefficient, normalized rich-club coefficient, number of
nodes, and number of edges as a function of degree threshold
k from 1 to 15 for AD patients in different CDR stages and
HS. For k-values larger than 9, the largest normalized rich-club
coefficient was observed in the HS group, followed by the CDR
1 group. The remaining groups showed similar normalized rich-
club coefficients within a range of 1–1.5. For k-values equal to
9, the aMCI and CDR 1 groups exhibited higher original and
normalized rich-club coefficients and a greater number of links
within the rich-club organization relative to the other AD stages.

We observed varying distribution patterns of rich-club nodes
for the degree threshold k = 9 across AD stages (Figure 3E).
For a k of 9, the numbers of nodes of the rich-clubs were 21, 28,
25, 22, and 25, and the numbers of edges were 68, 124, 70, 93,
and 88 from the HS to the CDR 2 group. The original rich-club
coefficients for k = 9 were 0.32, 0.33, 0.23, 0.4, and 0.29, and the
normalized rich-club coefficients were 1.41, 1.42, 1.05, 1.76, and
1.30 from the HS to the CDR 2 group. The rich-club coefficients
of the original and normalized values and the number of edges
within the rich-club varied non-monotonically, similar to the
change of the whole brain network properties as AD progresses.
Within the rich-club core of the brain, frontal regions were not
connected with posterior regions in the HS group. In contrast, in
the aMCI group, the rich-club consisted of an increased number
of frontal regions, and those were well-connected with the other
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FIGURE 1 | Topological properties of the AD brain networks with the

disease progression. (A) Global efficiency, (B) local efficiency, and (C)

betweenness centrality changed stage-specifically in a non-monotonic

manner. Significance is represented by an asterisk (p < 0.05, ANOVA and

post-hoc).

posterior (parietal and occipital) regions. Interestingly, these
frontal regions and their connectivity gradually decreased and
disappeared in the CDR 1 group before increasing again in the
CDR 2 group.

Discussion

We investigated changes in network properties from HS to
subjects with prodromal and intermediate stages of AD by
comparing topological measures of the brain network and
determining their relationship with behavioral and clinical test
scores. The current study first examined the whole process of
alterations in brain networks from the time before AD onset
to a severe AD stage. To properly examine and compare the
topological reorganization of the brain network, it was necessary
to construct networks with similar size. In the current study, we
constructed a brain network with the same density (sparsity),
avoiding the use of a specific threshold value. Because the density
network contains the same number of edges, we were able to
compare brain networks of the same size among groups.

We demonstrated the ongoing reorganization process of
the brain network with AD progression. However, we did not
observe a correlation between any network measure and clinical
deterioration, e.g., CDR. Unexpectedly, this reorganization
occurred stage-specifically in a non-monotonic manner
(Figure 1 and Supplementary Figure 1). It has been proposed
that the progression of AD follows a sigmoidal curve (Jack and
Holtzman, 2013). However, the smooth progressive change
in each parameter is rather presumptive and mainly based on
interpolation or extrapolation of limited evidence. Given the five
stages of AD progression, we revealed that network topological
properties, including network efficiency and betweenness
centrality, were higher in the aMCI and CDR 1 groups compared
to other AD groups or HS. First, the brain network in the aMCI
group exhibited significantly higher efficiency compared to that
of the previous stage, the HS group. Higher network efficiency
and betweenness centrality would result from the presence
of additional hub regions. In addition, the results from the
correlation analysis between neuropsychological test scores and
network properties support a stage-specific non-monotonicity.
We found that correlations between neuropsychological scores

TABLE 2 | Correlation between network properties and clinical information within each group (p < 0.05, uncorrected, p/R2/r).

Global efficiency Local efficiency Betweenness centrality

HS Stroop test color-reading correct 0.035/0.145/−0.381 – 0.025/0.162/−0.402

aMCI Digit span backward – – 0.028/0.096/−0.310

Naming K-BNT – 0.021/0.106/−0.325 0.022/0.104/−0.323

RCFT copy – 0.028/0.096/−0.310 –

Go/NoGo – 0.010/0.131/−0.361 0.025/0.100/−0.317

COWAT semantic 0.029/0.096/−0.310 0.010/0.131/−0.361 0.010/0.132/−0.363

AD CDR 0.5 COWAT phonemic – – 0.031/0.187/0.433

HS, healthy subject; aMCI, amnestic mild cognitive impairment; AD, Alzheimer’s disease; CDR, clinical dementia rating.

R2: goodness of fit by coefficient of determination; r: Person’s correlation coefficient.
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FIGURE 2 | Lobar network properties with AD progression. (A) Global efficiency, (B) local efficiency, and (C) betweenness centrality changed stage-specifically

in a non-monotonic manner. Significance is represented by an asterisk (p < 0.05, ANOVA and post-hoc).

and network properties were distinguishable among each group
of AD progression (Table 2, and Supplementary Tables 2, 3).
The speculation for this finding is described in Supplementary
Material.

It is interesting and unusual that an advanced disease stage
has higher network efficiency than a previous stage. We speculate
that this finding is in line with previous studies reporting
hyperactivation in the hippocampus and other memory-related
areas during cognitive and memory-related tasks in MCI patients
(Dickerson et al., 2005; Hämäläinen et al., 2007) compared to

HS and AD patients. In addition to the task-induced activation,
increased resting state connectivity in aMCI patients compared
to HS has also been reported (Sohn et al., 2014). Another
study demonstrated that MCI patients exhibiting faster cognitive
decline have greater hippocampal activation (Miller et al., 2008).
Given that the resting state connectivity and the brain activation
show a positive correlation with each other (Mennes et al., 2011),
our result of increased brain network efficiency in aMCI patients
is consistent with the aforementioned studies. The reorganization
process of the rich-club core with AD progression is speculated
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FIGURE 3 | Changes in rich-club organization as a function of k.

Changes of the (A) rich-club coefficient, (B) normalized rich-club coefficient,

(C) number of nodes within the rich-club, and (D) number of links within the

rich-club are displayed with varying k-values ranging from 0 to 15. (E)

Rich-club organization with AD progression. Representative networks for

each stage are shown for k = 9.

in detail with other possibilities and scenarios of non-monotonic
changes in AD brain networks in Supplementary Material.

We should be cautious in interpreting the results, because
there are several limitations and ambiguous outcomes from
these analyses. Moreover, we should note that these results
appear to contrast with those of other previous studies. Based
on this discrepancy, it is likely uncertain whether the non-
monotonic changes in network parameters are generated by
disease progression or not.We alsomention that themechanisms
underlying the connections between network parameters and

disease progression are not clear, because the parameters
tended to be non-monotonic. Another recent study showed
increasing path length and decreasing small-worldness of the
density network with AD progression (Sun et al., 2014). This
can be seen as opposite contrasting result with our study,
although that study used different group stratification and
different measurements of network construction compared with
this study. We chose mutual information as a measure of
functional connectivity, whereas the most common measure is
the Pearson’s correlation coefficient. The Pearson’s correlation
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provides information about the linear relationship between
regions but does not detect non-linear interactions among
regions. Therefore, as an alternative approach that accounts for
non-linear interactions, we usedmutual information to construct
the information transmission network of the brain. However, the
path length used in the current study showed a mildly significant
increase with the disease progression, whereas Sun et al. showed
some regional betweenness centrality changes in non-monotonic
values with disease progression. This discrepancy in the results
between the studies using similar data and methods suggest
that other elements may influence these network properties
and indicate our limited understanding of the innate causal
relationship between network parameters and AD. Based on
these potential explanations for the observed non-monotonic
network parameter changes in the current study, the possibility
that our conclusions are incorrect or produced from other
influences may not be excluded.

Rich-club organization also plays an unclear role in these
results. Differences in rich-club network structure were observed
not only between the groups exhibiting significantly different
network parameters but also between groups exhibiting similar
values. This makes our results difficult to interpret because the
innate cause of rich-club structure changes remains still unclear.
We should admit that the post-hoc analysis did not produce
significant results in the analysis of lobar parameters. Because
of the insufficient number of subjects in some groups, it is
likely assumed that the lobar parameters are independent of
each other. The post-hoc tests were calculated only for group
dependency. This limitation suggests that we should interpret
our major finding of the non-monotonic changes in the lobar
parameters with extreme caution. In addition, we noted that HS,
aMCI and AD severity in each CDR category were continuous
variables in this analysis; however, since this study was a cross-
sectional study, a longitudinal analysis is required to investigate

the changes in each patient over time. The diagnoses of AD and
aMCI were based on clinical criteria without any pathological or
amyloid imaging data. Thus, dementia of other origins may have
been included in these diagnoses, particularly aMCI. The large
number of excluded subjects due to age-matching and abnormal
correlation values between regions is another limitation of this
study.

The change of brain network by AD progression and the
innate principles are not fully uncovered. The diverse and
even opposed results are reported through attempting various
methods and measurements. This can be a good time to
investigate this issuemore seriously to find the causal relationship
between brain network and disease progress of AD.
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