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Elderly surgical patients frequently experience postoperative delirium (POD) and the
subsequent development of postoperative cognitive dysfunction (POCD). Clinical
features include deterioration in cognition, disturbance in attention and reduced
awareness of the environment and result in higher morbidity, mortality and greater
utilization of social financial assistance. The aging Western societies can expect an
increase in the incidence of POD and POCD. The underlying pathophysiological
mechanisms have been studied on the molecular level albeit with unsatisfying small
research efforts given their societal burden. Here, we review the known physiological and
immunological changes and genetic risk factors, identify candidates for further studies
and integrate the information into a draft network for exploration on a systems level. The
pathogenesis of these postoperative cognitive impairments is multifactorial; application
of integrated systems biology has the potential to reconstruct the underlying network
of molecular mechanisms and help in the identification of prognostic and diagnostic
biomarkers.
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Introduction

More than 40% of surgical procedures in the US are performed on patients aged 65 and
over Control Prevention Centers for Disease (2010). Elderly patients frequently experience
postoperative cognitive impairment, characterized by progressive cognitive and sensory decline.
An acute phase of cognitive impairment is postoperative delirium (POD; according to DSM-5:
293.0 ‘‘Delirium Due to Another Medical Condition’’; Rudolph et al., 2008a). Deliria are further
classified by duration and level of activity such as hyperactive, hypoactive or mixed. Patients
with POD frequently develop a chronic phase of cognitive impairment, i.e., postoperative
cognitive dysfunction (POCD; according to DSM-5: 294.10/11 ‘‘Major Neurocognitive Disorder
Due to Another Medical Condition Without/With Behavioral Disturbance’’ or 331.83 ‘‘Mild
Neurocognitive Disorder Due to Another Medical Condition’’; Rudolph et al., 2008a). POCD
is developed in 32% of patients with short delirium duration (1–2 days) and in 55% of patients
with longer delirium (Rudolph et al., 2008a). The incidence of POD/POCD varies depending
on the study and type of surgery; as illustrated on Figure 1, POD incidence ranges from 13.2%
to 41.7% and POCD incidence ranges from 8.9% to 46.1%. The prevalence of POD and POCD
is associated with higher mortality, increased incidence of postoperative complications, longer
duration of hospital stay, greater utilization of social financial assistance and earlier retirement
(Greene et al., 2009; Robinson et al., 2009; Steinmetz et al., 2009; Ansaloni et al., 2010; Liu et al.,
2013). Patients older than 65 are predisposed to POD and POCD if they have hypoalbuminemia,
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Biomarkers of postoperative delirium and cognitive dysfunction

FIGURE 1 | Incidence and time-course of postoperative delirium
(POD) and postoperative cognitive dysfunction (POCD) incidence.
Y-axis denotes the percentage on POD/POCD incidence registered by the
different studies. X-axis denotes the number postoperative days on

logarithmic scale. The graph does not include the data of POD/POCD
incidence, if it was measured only once postoperatively, if measurement
time was not precisely stated or the study includes less than 140 patients.
CABG, coronary artery bypass grafting; NCS, noncardiac surgery.

abnormal preoperative serum sodium, potassium, glucose or
blood sugar levels as well as psychopathological symptoms,
alcohol abuse or co-morbidities (Moller et al., 1998; Abildstrom
et al., 2000; Newman et al., 2001; Chang et al., 2008; Monk
et al., 2008; Deiner and Silverstein, 2009; Ansaloni et al., 2010;
Kazmierski et al., 2014b). The cognitive status of elderly patients
including depression, dementia or cognitive impairment is a
significant risk factor for development of POD (Elie et al., 1998;

Leung et al., 2005; Minden et al., 2005; Inouye, 2006; McAvay
et al., 2007; Greene et al., 2009; Kosar et al., 2014). For instance,
dementia is a significant risk factor that increases delirium
occurrence risk by fivefold (Elie et al., 1998); vice versa, delirium
itself may lead to dementia and long-term cognitive deterioration
(Jackson et al., 2004).

Postoperative delirium is defined in DSM-5 by several
criteria including clouding of consciousness with reduced
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awareness of environment and difficulty in sustaining and/or
shifting attention. In addition, POD is characterized by
changes in cognition that affect memory, language and
orientation in time/space (American Psychiatric Association,
2013). The impairment of memory, perceptual-motor abilities,
language and attention are transit characteristics between
POD and POCD. Memory impairment significantly affects
cognitive decline and leads to impaired social and professional
functioning in POCD patients. Memory deterioration lasting
more than 1 month signifies the entry into the chronic
phase of the cognitive impairment (American Psychiatric
Association, 2013). POCD following delirium might increase
the rate of cognitive deterioration in Alzheimer’s disease
(Gross et al., 2012). Specific characteristics of POCD include
decline in speed of processing the information and disturbance
in executive functioning but the patient typically remains
oriented to person, time and space (Tsai et al., 2010). The
decline in POCD is mostly recognized by comparison to the
patient’s pre-operative capabilities (Deiner and Silverstein, 2009).
Delirium is usually measured by standardized clinical tests
such as the Confusion Assessment Method (Inouye et al.,
1990).

To improve diagnosis and treatment of POD/POCD, research
aimed to identify prognostic and diagnostic biological markers.
Biomarkers can determine severity and phase of the cognitive
impairment, stratify patients who are likely to respond to
specific treatment and monitor the efficiency of the treatment.
Genetic markers (Papadopoulou et al., 2006), RNA (Sørensen
and Ørntoft, 2010) and microRNA (Scherzer et al., 2007) levels,
proteins (Wang et al., 2005), and post-translational changes such
as glycosylation (Norton et al., 2008; Drake et al., 2010) and
phosphorylation (Deguchi et al., 2002), have been demonstrated
as prognostic biomarkers in a variety of diseases including
disorders of the central nervous system (CNS) and these
biochemical entities should be considered as possible markers for
POD and POCD.

The most prominent hypothesis for the molecular
mechanisms of POD and POCD is a central cholinergic
deficiency caused by deregulation of cholinergic anti-
inflammatory pathways leading to increased inflammation
(Inouye, 2006). Despite detection of decreased acetylcholine
levels, several studies reported contradictory findings regarding
levels of serum anticholinergic activity (SAA; see Section
Biological Markers of Postoperative Delirium). Another
suggestion is that delirium is caused by a combination of
dopamine excess and acetylcholine deficiency (Trzepacz,
2000). Low tryptophan levels can be associated with delirium
via decreased synthesis of brain serotonin or alteration of
melatonin production, which has been challenged (see Section
Biological Markers of Postoperative Delirium). The association
between POD/POCD and pro-inflammatory cytokines such
as tumor necrosis factor-α, interleukin-1beta, interleukin-6
and interleukin-8, neuronal injury marker and C-reactive
protein was shown by several studies and questioned by
others (see Sections Biological Markers of Postoperative
Delirium and Common Biomarkers of Postoperative Delirium
and Cognitive Dysfunction for Details). Some POD/POCD

patients have elevation in serum cortisol levels that may be
explained by genetic variation of the glucocorticoid receptor
gene (Perroud et al., 2011). The isoforms of apolipoprotein E
can provoke cholinergic deficiency and acetylcholinesterase
unblocking (Soininen et al., 1995), although some results
are contradicting. The amyloid beta peptide associated with
Alzheimer’s disease was also observed in the serum of POCD
patients. These and other findings are discussed in details
in Sections Biological Markers of Postoperative Delirium,
Common Biomarkers of Postoperative Delirium and Cognitive
Dysfunction and Biological Markers of Postoperative Cognitive
Dysfunction.

Here we review the known genetic risk factors and
physiological and immunological changes that have been
associated with POD and POCD. Deiner and Silverstein reviewed
the postoperative delirium and cognitive dysfunction in 2009.
More recent reviews discussed biomarkers and genetic variance
for delirium alone (Khan et al., 2011; Stoicea et al., 2014).
This article comprises a literature review on both POD and
POCD biomarkers with a focus on recent findings. The current
knowledge about the contributing biomarkers to postoperative
delirium and cognitive dysfunction is summarized in Figure 2.
POD and POCD have a wide range of contributing mechanisms
and some biomarkers are overlapping. A more detailed
description of the known and potentially novel biomarkers is
provided below.

Biological Markers of Postoperative
Delirium

The leading hypothesis suggests that delirium can be caused by
a central cholinergic deficiency (Inouye, 2006) and is based on
treatment with drugs which impair cholinergic function (Tune
et al., 1981). The impact on muscarinic anticholinergic burden
can be measured by SAA (Plaschke et al., 2007b). Increase
of SAA levels is correlated with greater number of delirium
symptoms, whereas SAA decrease is correlated with delirium
resolution (Mach et al., 1995; Flacker et al., 1998; Mussi et al.,
1999). Several studies questioned the association between SAA
and delirium, considering that a temporal profile of SAA can
be influenced by pre-existing cognitive impairment, infection
or illness (Flacker and Lipsitz, 1999; Plaschke et al., 2007a; van
Munster et al., 2012). The impact of drugs on the cholinergic
system was addressed in detail by Fox et al. (2014) and Praticò
et al. (2005).

Acetylcholine plays an important role in memory, associative
learning and selective attention (Hasselmo, 1995; Everitt
and Robbins, 1997). Impairment of its receptors, such as
nicotinic and muscarinic acetylcholine receptors, might lead to
cholinergic deficiency and delirium development (Hshieh et al.,
2008). Postsynaptic M1 muscarinic receptors are predominantly
expressed in hippocampus, cerebral cortex and striatum (Hersch
et al., 1994; Levey, 1996) and play a role in cognitive functioning,
memory and learning (Anagnostaras et al., 2003; Volpicelli and
Levey, 2004; Fisher, 2008). Inhibition of the M1 muscarinic
receptor was hypothesized to cause POD and POCD (Praticò
et al., 2005). Inhibition of postsynaptic nicotinic receptors by
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FIGURE 2 | Biomarkers of postoperative delirium (POD) and
postoperative cognitive dysfunction (POCD). Biomarkers identified in
POD or POCD patients are in blue and pink area respectively. The
common POD/POCD biomarkers are presented in the violet area. Font
color denotes a marker type: red—dopamine-related marker,
green—glucocorticoid-related marker, yellow—cholinergic marker,
blue—inflammation-related marker, black—others. 6-SMT,
6-sulfatoxymelatonin; ACh, acetylcholine; AchE, acetylcholinesterase; AMPK,
5′ adenosine monophosphate-activated protein kinase; APOE,
apolipoprotein E; BDNF, brain-derived neurotrophic factor; BuChE,
butyrylcholinesterase; CD68, cluster of differentiation 68; CRP, C-reactive

protein; DRD2, dopamine receptor D2; HLA-DR, human leukocyte
antigen-DR; IGF-1, insulin growth factor-1; IgM, immunoglobulin M; IL,
interleukin; MCP-1, monocyte chemotactic protein 1; MMP9, matrix
metalloproteinase-9; NF-kappaB, nuclear factor kappa B; NR3C1, nuclear
receptor family 3, group C, member 1; NSE, neuron specific enolase; PCT,
procalcitonin; S100A8, S100 calcium binding protein A8 (myeloid-related
protein-8, calgranulin A); S100B, S100 calcium binding protein B; SAA,
serum anticholinergic activity; SLC6A3, solute carrier family 6, member 3;
Th17, T helper 17 cells; TLR4, toll-like receptor 4; TNF-α, tumor necrosis
factor-α; TNFR1, tumor necrosis factor receptor-1; Treg, regulatory T cells;
α-syn, alpha-synuclein.

isoflurane and nitrous oxide results in learning and memory
impairment after surgery (Culley et al., 2003; Kong et al., 2015).
Vice versa, agonists of the nicotinic receptors can improve
cognitive function (Wagner et al., 2013): activation of the
nicotinic acetylcholine receptor alpha 7 prevents the cognitive
decline after surgery by inhibition of NF-kappaB (nuclear factor
kappa B) activation and suppression of macrophage migration
into the hippocampus (Terrando et al., 2011). This phenomenon
shows the bidirectional communication between the nervous and
the immune system (Ader et al., 1995). Therefore, acetylcholine
and its receptors are likely contributors to the onset of POD and
POCD.

The cholinergic anti-inflammatory pathway, mediated
by acetylcholine, is associated with neurocognitive decline
(Ramlawi et al., 2006). It suppresses NF-kappaB activation
and inhibits the release of inflammatory cytokines (e.g., tumor
necrosis factor, interleukin (IL)-1β, IL-6, and IL-18) but not
IL-10, an anti-inflammatory cytokine (Borovikova et al., 2000;
van Gool et al., 2010). Septic and aseptic inflammation can
trigger acute cognitive deficits in patients with cholinergic

system depletion (Field et al., 2012). Acetylcholinesterase
and butyrylcholinesterase inactivate acetylcholine through
hydrolysis, possibly enhancing inflammation. Decreased
cholinesterase activity in delirious patients was correlated with
elevated levels of C-reactive protein and IL-6 (Cerejeira et al.,
2012). C-reactive protein (CRP) is a marker of nonspecific
acute-phase response in inflammation, infection and tissue
damage (Pepys and Hirschfield, 2003), correlated with cognitive
decline (Tilvis et al., 2004). The association between high CRP
levels and delirium was shown by several studies (Beloosesky
et al., 2004; Macdonald et al., 2007; Burkhart et al., 2010;
Pol et al., 2014; Ritchie et al., 2014; Zhang et al., 2014b),
and questioned by others (Lemstra et al., 2008; Girard et al.,
2012).

An inflammatory response to postoperative stress may
contribute to delirium via disruption of the blood-brain barrier
(Rudolph et al., 2008b). The increased risk is correlated with
elevated monocyte chemotactic protein 1, procalcitonin, human
leukocyte antigen-DR, CD68, IL-1β, IL-6, IL-8, IL-18 and anti-
inflammatory IL-1 receptor antagonist (van Munster et al., 2008,
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2011a; van den Boogaard et al., 2011; Cape et al., 2014). Elevated
levels of the pro-inflammatory cytokines IL-2 and tumor necrosis
factor-α (TNF-α) were detected in the POD patients who had
undergone coronary artery bypass graft surgery (Kazmierski
et al., 2014a,b). Inhibition of inflammatory IL-12/IL-23-mediated
pathways may reduce Alzheimer’s disease pathology and reverse
cognitive deficits in aged mice (Vom Berg et al., 2012). van
Munster et al. (2011b) observed high levels of IL-8 and cortisol
before a delirium onset and high levels of IL-6 and S100
calcium-binding protein B (S100B) in the course of delirium
but functional genetic variations in interleukin-6 gene (IL6),
interleukin-6 receptor gene (IL6R) and interleukin-8 gene (IL8)
were not associated with delirium (van Munster et al., 2011b).
Likewise, the association between delirium and higher IL-1,
IL-6 and TNF-α plasma levels was not confirmed (Adamis
et al., 2007, 2009). The lower plasma concentrations of the
coagulation marker protein C together with elevated plasma
concentrations of soluble tumor necrosis factor receptor-1 were
associated with increased risk for delirium (Girard et al.,
2012).

S100B is an indicator of the direct neuronal injury, e.g., by
cerebrovascular accidents and traumatic brain injury (Berger
et al., 2005). Several studies consistently demonstrated highly
elevated levels of S100B in patients with delirium (Pfister et al.,
2008; van Munster et al., 2009b, 2010a,c; van den Boogaard
et al., 2011). Grandi et al. (2011) found no difference in
levels of S100B in delirious and control patients. The same
study indicated that neuron-specific enolase and brain-derived
neurotrophic factor (BDNF) could be potential biomarkers
for delirium in intensive care unit patients (Grandi et al.,
2011). BDNF plays role in synaptic plasticity, neuronal survival,
differentiation and growth (Acheson et al., 1995; Huang and
Reichardt, 2001). Similarly to BDNF, insulin growth factor-1
(IGF-1) promotes neuronal proliferation, development, survival
and enhanced synaptic transmission in CNS (Frost et al.,
2003; Shcheglovitov et al., 2013; Huat et al., 2014). Tumor
necrosis factor-α (TNF-α) can be involved in neurodegeneration
through inhibition of IGF-1 (Frost et al., 2003; Bassil et al.,
2014). Low baseline levels of IGF-1 were associated with an
increased risk of delirium incidence (Wilson et al., 2005; Adamis
et al., 2007, 2009). Due to the neuroprotective function, low
levels of IGF-1 may have a significant effect on delirium
severity (Adamis et al., 2009). Understanding the complex
connection between the cholinergic system and increased
pro-inflammatory response as well as neurodegeneration is
likely to shed light on the molecular and cellular causes of
delirium.

Another popular hypothesis suggests that delirium can be
caused by dopamine excess and acetylcholine deficiency relative
and/or absolute to each other (Trzepacz, 2000). Cytokines
can disrupt the neurotransmitter system balance, leading
to reduced acetylcholine release (Willard et al., 1999) and
increased dopamine and norepinephrine release (Stefano et al.,
1994). Delirium, related to anticholinergic mechanisms, was
successfully treated with the dopamine receptor antagonists
(Alagiakrishnan and Wiens, 2004). One of such receptors
is dopamine receptor D2 (DRD2); its dysfunction leads to

hallucinations, impairment of motor and frontal lobe functions
(Volkow et al., 1998; Makoff et al., 2000). The gene encoding
for D2 subtype of dopamine receptor (DRD2) was associated
with schizophrenia andmovement disorders (Kukreti et al., 2006;
Koning et al., 2012). Seven single nucleotide polymorphisms
(SNPs) in the SLC6A3 (solute carrier family 6, member 3)
gene and three genetic polymorphisms in the DRD2 gene
are associated with delirium (van Munster et al., 2010d). The
SLC6A3 gene is coding for the dopamine transporter, hence
variation of this gene can lead to a lower concentration of
cerebral basal dopamine, diminishing the risk of delirium
(van Munster et al., 2010b). One of the detected genetic
polymorphisms in SLC6A3 was associated with pediatric bipolar
disorder (Mick et al., 2008); although no connection was
found between bipolar disorder in adults and postoperative
delirium.

Apolipoprotein E (ApoE) regulates the cholesterol
metabolism, participates in repairing and maintaining of
neuronal membranes and myelin during development and
after injury (Ignatius et al., 1986). It is responsible for
cholinergic neuron destruction by increased synthesis and
defective clearance of amyloid beta (Kowall et al., 1991).
Different isoforms of APOE gene can provoke cholinergic
deficiency and acetylcholinesterase unblocking (Soininen
et al., 1995). The carriers of APOE ε4 allele have greater
risk of delirium development (Adamis et al., 2007; Leung
et al., 2007; van Munster et al., 2009a) and are more
predisposed to cellular damage within the brain (Olivecrona
and Koskinen, 2012). The APOE ε4 allele was found to be
correlated with longer duration of delirium in mechanically
ventilated critically ill patients (Ely et al., 2007). There
might be a connection between neurodegeneration due to
pro-inflammatory response and enhanced APOE activity
that causes cholinergic deficiency in POD patients. Even
so, some studies question the association of APOE ε4 with
delirium (Adamis et al., 2009; Bryson et al., 2011; Abelha et al.,
2012).

Elevated serum cortisol levels were correlated with POD
risk and degree, being dependent on hypothalamic-pituitary-
adrenal axis hyperactivity at preexisting cognitive and functional
impairment (van Munster et al., 2010a; Bisschop et al.,
2011; Cerejeira et al., 2013; Colkesen et al., 2013; Kazmierski
et al., 2013). A possible epigenetic explanation of cortisol
sensitivity is the methylation of the glucocorticoid receptor
gene NR3C1 (nuclear receptor family 3, group C, member
1; Perroud et al., 2011). The increased diurnal cortisol and
higher sensitivity to glucocorticoids were associated with
homozygous NR3C1 haplotype 4 (Manenschijn et al., 2011).
The carriers of this haplotype had a 92% decreased risk of
developing POD independently of age, cognitive and functional
state (Manenschijn et al., 2011). This study concluded that
development of delirium and its pathogenesis is correlated with
glucocorticoid signaling. High levels of glucocorticoids affect
working memory and thereby explain the cognitive deficits and
inattention (Lupien et al., 1999). Mild cognitive impairment was
further associated with increased cortisol levels and POD risk
(Kazmierski et al., 2014b).
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The neurometabolic pathway facilitates communication
between brain and metabolic organs and consequently
influences various neurodegenerative disorders, normal and
pathophysiological aging (Siddiqui et al., 2012). Alteration in
the neurometabolic status of the hippocampus can potentially
impair growth and survival of neuronal cells, which is a
common neuropathology of Alzheimer’s disease (Wenk, 2003;
Cong et al., 2013). Metabolic syndrome (e.g., hyperglycemia,
diabetes) together with inflammation can contribute to cognitive
decline (Yaffe et al., 2004). Prevention of metabolic syndrome
by preoperative conventional glucose control might reduce
the incidence of POD/POCD (Yaffe et al., 2004; Finfer et al.,
2009).

The changes of amino acid concentrations in serum and
urine have been associated with POD pathogenesis. An increased
risk of delirium development was associated with decreased
plasma tryptophan and the ratio of tryptophan as well as
the increased or decreased ratio of tyrosine to large neutral
amino acids (van der Mast et al., 2000; Robinson et al., 2008;
Pandharipande et al., 2009). It was hypothesized that high levels
of tyrosine lead to dopamine and norepinephrine excess that
are involved in delirium pathogenesis (Pandharipande et al.,
2009).

The low tryptophan levels might be associated with delirium
via decreased synthesis of brain serotonin (van der Mast et al.,
2000; Robinson et al., 2008; Pandharipande et al., 2009). de
Jonghe et al. (2012) questioned the association between lower
levels of tryptophan and delirium. Following the inflammatory
response, tryptophan catabolisation via the kynurenine pathway
is increased (Adams Wilson et al., 2012). Elevated plasma
kynurenine and kynurenine/tryptophan ratio were correlated
with fewer days without acute brain dysfunction in form
of delirium or coma (Adams Wilson et al., 2012). Another
suggested connection of tryptophan with delirium is alteration
of melatonin production via serotonin synthesis (Pandharipande
et al., 2009). Melatonin participates in regulation of circadian
rhythms and quality and duration of sleep (Brzezinski, 1997).
POD patients frequently have disrupted sleep-wake cycle,
decreased delta melatonin concentrations (Yoshitaka et al., 2013)
and abnormal circadian postoperative patterns of melatonin
secretion (Shigeta et al., 2001).

Sunwoo et al. (2013) observed a higher frequency of
normal and phosphorylated α-synuclein-positive pathologies in
16 delirious patients that underwent gastrostomy for stomach
cancer. Sunwoo and colleagues concluded that POD clinical
characteristics are analogous to the core features of α- as
dementia with Lewy bodies, Parkinson disease dementia; patients
experience altered sleep-wake cycles, visual hallucinations,
disorganized thinking and attention impairment (Sunwoo et al.,
2013). α-synuclein may be involved in the neurotransmitter
release controlling through the SNARE complex (Kang et al.,
1987; Tanzi et al., 1987). The delirious state is strongly
influenced by the balance between cholinergic and dopaminergic
systems, pro-inflammatory signaling, apolipoprotein E isoform,
glucocorticoid signaling and the neurometabolic state. Many
additional contributors at genetic, proteomic, metabolic and
immune levels are to be expected.

Common Biomarkers of Postoperative
Delirium and Cognitive Dysfunction

Postoperative delirium correlates with early postoperative
cognitive dysfunction (at 7 days; Rudolph et al., 2008a; Hudetz
et al., 2009) and delirious patients have 14 times greater chance
of POCD development (Hudetz et al., 2009). In this chapter, we
will discuss the common biomarkers found in both cognitive
impairments, which are summarized in Figure 2.

Among the above-discussed genetic markers, the APOE ε4
allele was associated with greater risk to develop postoperative
delirium (Adamis et al., 2007; Leung et al., 2007; van Munster
et al., 2009a) and cognitive dysfunction at 7 days postoperatively
(Cao et al., 2014). The association with POCD was however
not detected by other studies of APOE ε4 variation at 1 week,
1–3 months and 1 year postoperatively (Abildstrom et al., 2004;
Rentowl andHanning, 2004;McDonagh et al., 2010; Bryson et al.,
2011; Cao et al., 2014).

The elevated cortisol levels were detected in both POD
(van den Boogaard et al., 2011; Cerejeira et al., 2013) and
POCD patients (Zhang et al., 2014a). The magnitude of cortisol
elevation correlated with levels of anti-inflammatory cytokine
IL-10 and pro-inflammatory cytokine IL-6. Similarly to POD,
POCD is associated with elevation of other pro-inflammatory
markers including IL-1β, IL-8 and TNF-α (Rothenburger
et al., 2001; Hudetz et al., 2011; Li et al., 2012; Bi et al.,
2014). TNF-α stimulates IL-1β production in the brain and
causes postoperative cognitive decline via peripheral cytokine
cascade (Terrando et al., 2010). Reducing IL-1 release by
peripheral TNF-α blockade might prevent POD, POCD and
neuroinflammation (Terrando et al., 2010). Nonspecific acute-
phase response in inflammation is present during POD and
POCD. POCD patients have elevated levels of CRP following
coronary artery bypass grafting (Hudetz et al., 2011), liver
transplantation (Li et al., 2013b) and lumbar discectomy (Zhang
et al., 2014a). Contradictory to previous findings, plasma levels of
inflammatorymarkermatrixmetalloproteinase-9 were decreased
in POD patients and elevated in POCD patients (Girard et al.,
2012; Zhang et al., 2014a).

Elevated levels of S100B were associated with POD (Pfister
et al., 2008; van Munster et al., 2009b, 2010a,c; van den Boogaard
et al., 2011). Likewise, POCD patients have increased serum
levels of S100B, which is an indicator of neuronal injury
(Rasmussen et al., 2000; Li et al., 2012; Lili et al., 2013). S100B-
induced neuroinflammation mediates the RAGE (receptor for
advanced glycation end product) signaling in microglia (Bianchi
et al., 2007). The RAGE signaling pathway may up-regulate pro-
inflammatory cytokines via NF-kappaB signaling, indicating its
possible role in surgery-induced cognitive decline pathogenesis
(Li et al., 2013a). Yet McDonagh et al. (2010) did not find an
association between POCD and S100B or CRP.

BDNF showed correlation with POD occurrence in patients
(Grandi et al., 2011) and POCD occurrence in aged mice (Tian
et al., 2015). It was associated with other neuropsychiatric
disorders such as schizophrenia, depression, bipolar disorder and
has been suggested as early marker of brain injury (Chiaretti
et al., 2003; Muglia et al., 2003; Teixeira et al., 2010).
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Copeptin is correlated with severity of the illness and is
presumed to be a prognostic measure of outcome prediction
in acute illness (Katan and Christ-Crain, 2010). Postoperative
plasma copeptin level can be an independent predictor of
POD and POCD after coronary artery bypass graft surgery
(Dixson et al., 2014). This study observed higher levels of
postoperative copeptin in POD and POCD patients compared to
controls.

A significant fluctuation of urinary 6-sulfatoxymelatonin
(6-SMT), a major metabolite of melatonin, was detected in
POCD patients compared to controls (Wu et al., 2014). Clinical
subtypes of POD are differently related to the urinary levels of
6-sulfatoxymelatonin: hypoactive patients have higher 6-SMT,
whenever hyperactive patients have lower 6-SMT (Balan et al.,
2003). However, the association between melatonin and delirium
has been challenged by independent studies after failure to
confirm these findings (de Jonghe et al., 2014).

As mentioned above, postoperative delirium and cognitive
dysfunction may have common contributing factors and
biomarkers such as apolipoprotein E isoforms, cortisol signaling,
pro-inflammatory cytokines, neurodegenerative marker S100B,
copeptin and 6-sulfatoxymelatonin levels.

Biological Markers of Postoperative
Cognitive Dysfunction

Patients with postoperative cognitive dysfunction display
biomarkers distinct from delirious patients, which might be
related not only to pathology but also postoperative time.
The majority of the detected POCD biomarkers are related to
inflammation. A recent study reported a positive association
between the pro-inflammatory protein S100A8 and POCD
development (Lu et al., 2015) and imbalance between T helper 17
cells, a pro-inflammatory subset of CD4+T cells, and regulatory
T cells, an anti-inflammatory subset of CD4+T cells, was
observed in POCD patients (Tian et al., 2015).

Postoperative cognitive dysfunction can be predicted by
lower preoperative endotoxin immunity following cardiac
surgery (Mathew et al., 2003). Lower preoperative levels
of immunoglobulin M (anti-endotoxin core antibody) are
associated with the greater incidence and severity of POCD
(Mathew et al., 2003). A similar study by Rothenburger
et al. (2001) suggested an association between lower levels of
immunoglobulin M and elevated levels of endotoxin together
with IL-8 (Rothenburger et al., 2001).

5′ adenosine monophosphate-activated protein kinase
(AMPK) protects CNS by inhibition of inflammatory responses
through various mechanisms, including NF-kappaB pathway
(Sag et al., 2008; Salminen et al., 2011). This pathways includes
NF-kappaB activation by chemokines, cytokines or adhesion
molecules and activation of inflammatory cytokines IL-1 and
TNF-α (Renard et al., 1997; Chandel et al., 2000). A significant
elevation of NF-kappaB, IL-1β and AMPK was shown to
result in Toll-like receptor 4 signaling on microglia in the
hypothalamus of a POCD rat model (Wang et al., 2013; Bi et al.,
2014). Interleukin-1β and NF-kappaB levels gradually decreased
over postoperative days (Wang et al., 2013; Bi et al., 2014).

Interleukin-1β can be a viable target to interrupt the POCD
pathogenesis, as IL-1β-mediated inflammation was triggered by
peripheral surgery-induced innate immune response (Cibelli
et al., 2010). Another study demonstrated experimentally that
inhibition of IL-1 receptors prevents development of POCD and
neuroinflammation (Barrientos et al., 2012).

Le et al. (2014) suggested that hippocampus impairment leads
to POCDdevelopment after they observed a significant reduction
of neuronal dendritic spines and neuroinflammation signified
by activated microglia, elevation of TNF-α and interleukin-1β in
the hippocampi of aged rats. Amyloid beta 1–42 oligomers can
impair cognitive and metabolic processes in the hippocampus
(Pearson-Leary andMcNay, 2012). The elevated levels of amyloid
beta 1–42 were associated with a cognitive impairment caused
by its interference with insulin signaling in the hippocampus
(Pearson-Leary and McNay, 2012). The amyloid hypothesis
suggests that amyloid beta peptide is deposited in the brain of
Alzheimer’s dementia patients and can form the senile plaques
that perturb various signaling mechanisms (Cras et al., 1991).
Old mice that developed short-term POCD upon abdominal
surgery had Alzheimer’s dementia-like changes: gliosis in brain,
enhanced transcriptional and translational activity of the β-
amyloid precursor protein, enhanced production of amyloid beta
peptide, and hyper-phosphorylation of tau in the hippocampus
(Wan et al., 2010). POCD patients after liver transplantation
had significantly elevated levels of serum amyloid beta peptide,
suggesting similarmechanisms as in Alzheimer’s disease (Li et al.,
2013b).

Urinary biomarkers could be promising diagnostic and
prognostic indicators of postoperative cognitive dysfunction. A
high ratio of trypsin inhibitor/creatinine was suggested to be
an independent risk factor of POCD in lumbar discectomy
patients (Zhang et al., 2014a). Urinary excretion levels of 8-
isoprostane/creatinine were elevated as well in POCD patients at
7 days postoperatively compared to control patients (Cheng et al.,
2013).

The major POCD biomarkers include inflammation-related
molecules, imbalance between pro- and anti-inflammatory
signaling and metabolic levels in urine.

Potential Biomarkers of Postoperative
Delirium and Cognitive Dysfunction

At present, there is no standard biomarker for diagnosis and
prognosis of postoperative cognitive impairments. Some findings
on biomarker association with POD/POCD are contradictory.
Thus, generation of genomic, proteomic and metabolomics
data as well as implementation of imaging techniques such
as MRI are required. In this section, we review the potential
biomarkers possibly involved in occurrence and/or progression
of postoperative delirium and cognitive dysfunction.

S100A8 (myeloid-related protein-8, calgranulin A), S100A9
(myeloid-related protein-14, calgranulin B), S100A12 (EN-
RAGE, calgranulin C) are reliable markers of inflammation
(Foell et al., 2004) and potential markers of plaque instability
(Abbas et al., 2012). Inhibition of S100A9 significantly
improved learning and memory, and reduced neuropathology of
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Alzheimer’s disease (Chang et al., 2012). Thus, it is promising
to investigate potential connection between the calgranulins and
POD/POCD.

As mentioned above, inflammation is associated with both
POD and POCD. The pro-inflammatory cytokine IL-18 was not
studied yet in the context of POD/POCD. Alzheimer’s patients
have increased levels of IL-18 in different regions of the brain
(Ojala et al., 2009). Being co-localized with tau-protein and
amyloid beta plaques, IL-18 mediates the hyperphosphorylation
of tau (Ojala et al., 2009; Sutinen et al., 2012). IL-18 can influence
the integrity of neurons and increase neuroinflammation in the
brain (Bossù et al., 2010; Sutinen et al., 2012), thus contributing
to cognitive decline in Alzheimer’s disease (Bossù et al., 2008).
IL-18 receptor complex (IL-18Rα/β) expression is perturbed in
preclinical state of mild cognitive impairment and Alzheimer’s
disease (Salani et al., 2013). Specifically, IL-18Rα might play
role in autoimmune brain damage (e.g., encephalomyelitis) via
production of IL-17-producing T helper cells (Gutcher et al.,
2006). A splice variant of IL-18Rβ encodes a putative truncated
soluble protein that might be a regulator of IL-18 functioning
(Andre et al., 2003).

SIGIRR (also called TIR8) is a potential inhibitor of pro-
inflammatory IL-18, IL-1 and Toll-like receptor signaling
(Thomassen et al., 1999; Wald et al., 2003; Mantovani et al.,
2004). The anti-inflammatory effect of SIGIRR might be
extended to the brain, as it inhibits inflammation in cooperation
with IL-1F5 (a potential anti-inflammatory cytokine; Costelloe
et al., 2008). TIGIRR receptor might be an accessory chain
for mature IL-37a (Boraschi et al., 2011). IL-37a isoform is
exclusively located in the brain and might be a potential anti-
inflammatory cytokine (Boraschi et al., 2011). Another isoforms
of IL-37 can bind to IL-18Rα and IL-18-binding protein,
enhancing IL-18 inhibition (Boraschi et al., 2011).

IL1RAPL (IL-1 receptor accessory protein-like) gene was
identified as a X-linked mental retardation locus (Carrié et al.,
1999). IL1RAPL gene encodes a protein homologous to the IL-
1/Toll receptor family. Patients with cognitive impairment had
a nonsense mutation and deletions in IL1RAPL gene (Carrié
et al., 1999). IL1RAPL gene might have a potential role in
memory and learning functioning due to its over-expression in
brain structures responsible for memory development such as
hippocampus, dentate gyrus and entorhinal cortex (Carrié et al.,
1999).

Several studies have reported a possible disruption of
the blood-brain barrier integrity during POD (Pfister et al.,
2008; Rudolph et al., 2008b). Blood-brain barrier disruption is
associated with cognitive, behavioral and mood disturbances
(Shalev et al., 2009). Zonulin is a protein that modulates
the intercellular tight junction integrity and increases blood-
brain barrier permeability (Fasano et al., 2000). Zonulin is
involved in movement of macromolecules, fluid and leukocytes
between intestinal lumen and bloodstream (Lu et al., 2000;
Fasano, 2011). Since zonulin can increase intestinal and bovine
brain microvessel endothelial cells permeability, the elevated
circulating levels of zonulin can indicate blood-brain barrier
pathologies (Karyekar et al., 2003; Fasano, 2011). Zonulin has
been already associated with several diseases: celiac disease

(Fasano et al., 2000; Fasano, 2011), schizophrenia (Wan et al.,
2007), Devic’s disease (Bai et al., 2009), multiple sclerosis
(Takeoka et al., 1983) and Guillain-Barré syndrome (Jin et al.,
2007; Yang et al., 2008).

Cholinergic-nicotinic genes can be implicated in POD/POCD
pathology. Genetic variation within exon 5 of the α4 subunit
of nicotinic acetylcholine receptor (CHRNA4) gene can
modulate the attention network function (Winterer et al.,
2007) and was implicated in nicotine dependence (Feng
et al., 2004; Li et al., 2005). Several rare CHRNA4 SNPs were
negatively associated with nicotine dependence indicating
its protective effect (Wessel et al., 2010; Xie et al., 2011).
Nicotine can improve attention, memory and efficiently treat
cognitive impairments (Rezvani and Levin, 2001). Patients
with genetic variation of CHRNA4 might abuse nicotine as
self-medication of attention deficits in autosomal dominant
nocturnal frontal lobe epilepsy (Hirose et al., 1999; Cho et al.,
2003), schizophrenia (Winterer et al., 2007; Winterer, 2010) and
attention deficit/hyperactivity disorder (Lambert and Hartsough,
1998). In addition, variants on the CHRNA5-CHRNA3-
CHRNA4 gene cluster, implicated in nicotine dependence,
are associated with cognitive performance (Winterer et al.,
2010).

System Biology Approaches for Biomarker
Discovery

To identify, prevent or treat postoperative delirium and cognitive
dysfunction we need to connect the incidental findings into
an encompassing model and relate the pathomechanisms
underlying POD/POCD with clinical outcomes. The biomarkers
discussed so far are conceptually linked by the known
molecular interactions and pathways and illustrated in Figure 3.
Many findings are contradictory between cohorts and studies,
which further complicates the investigation of underlying
mechanisms. The toolbox of integrated systems biology can
help to model the complex dependencies and conceptualize the
unknown pathomechanisms contributing to POD/POCD origin
and progression. Due to the sparse knowledge on cognitive
impairments, we are limited in the choice of methodologies.
Predictions of novel targets for study cannot utilize the
simulations as appropriately large training and test data needs
yet to be collected.

Knowledge maps formed by an integration of large-scale
experimental data and text-mining results enable specialists
to collaborate on highly detailed information. The dissection
of the knowledge map into functionally/pathway enriched
modules can reduce the overall complexity and indicate the
sub-network(s) deregulated in POD/POCD. Networks built on
the list of the seed genes/proteins reviewed in this article
may indicate enriched pathways that are related directly or
indirectly to POD/POCD. We can proceed with prediction of
the upstream regulators, hubs and bottlenecks of the given
pathways and sub-networks. Such regulators are potentially
interesting as targets since they could modulate the network state
and dampen imbalance and deregulation. Network approach
enables us to study dynamical changes of the system such as
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FIGURE 3 | Systems-level interaction of POD and POCD biomarkers.
Biomarkers identified in POD and POCD patients are in blue and pink
area respectively. The common POD/POCD biomarkers are presented in
the violet area. 6-SMT, 6-sulfatoxymelatonin; ACh, acetylcholine; AchE,
acetylcholinesterase; AMPK, 5′ adenosine monophosphate-activated
protein kinase; APOE, apolipoprotein E; BDNF, brain-derived neurotrophic
factor; BuChE, butyrylcholinesterase; CD68, cluster of differentiation 68;
CRP, C-reactive protein; DRD2, dopamine receptor D2; HLA-DR, human
leukocyte antigen-DR; IGF-1, insulin growth factor-1; IgM, immunoglobulin

M; IL, interleukin; MCP-1, monocyte chemotactic protein 1; MMP9, matrix
metalloproteinase-9; NF-kappaB, nuclear factor kappa B; NR3C1, nuclear
receptor family 3, group C, member 1; NSE, neuron specific enolase;
PCT, procalcitonin; S100A8, S100 calcium binding protein A8
(myeloid-related protein-8, calgranulin A); S100B, S100 calcium binding
protein B; SAA, serum anticholinergic activity; SLC6A3, solute carrier
family 6, member 3; Th17, T helper 17 cells; TLR4, toll-like receptor 4;
TNF-α, tumor necrosis factor-α; TNFR1, tumor necrosis factor receptor-1;
Treg, regulatory T cells; α-syn, alpha-synuclein.

responsiveness, adaptation and stability. For example, network
analysis of the metabolic positron emission tomography scans
from Parkinson’s disease patients identified two distinct disease-
related patterns (Eckert et al., 2007). One of the patterns is
related to motor manifestations of Parkinson’s disease, the
other pattern is correlated with the patients’ performance on
memory and executive functioning tests. In case of POD/POCD,
networks can initially be based on the literature mining results
where large-scale human experimental data is not accessible.
Networks based on experimental data and supported by literature
evidence may give stronger results and reflect the network
dynamics.

Systems biology methods, applied to Parkinson’s disease,
made a significant contribution for integration of known
pathomechanisms. Parkinson’s disease is a multi-factorial
condition with complex interplay between genetic and
environmental factors (Calne et al., 1986). A recently
published Parkinson’s disease map is able to capture the
known contributing mechanisms, integrate the underlying
pathways and visualize large experimental data on top of the

solid, literature derived and reviewed network (Fujita et al.,
2014). The principle of the Parkinson’s disease map could be well
applied to investigate other complex diseases including POD and
POCD.

Magnetic resonance imaging revealed the vulnerable regions
in brain of POD patients (Root et al., 2013) as well
as white-matter hyperintensities (Hatano et al., 2013) and
brain atrophy (Gunther et al., 2012). Integration of imaging
results with information at different levels (i.e., DNA, RNA,
proteins, etc.) gives a rise to mathematical/computational
modeling of POD and POCD states. Iterative prediction
and cross-validation steps improve such models and system
behavior and response to perturbations can be predicted.
For instance, neuroimaging integration with genetic and
demographic information by a Support Vector Machine
algorithm successfully differentiated Alzheimer disease and mild
cognitive impairment from controls (Kohannim et al., 2010).
The integrated systems biology approaches in the context of
POD/POCD lead a step forward to personalized medicine and
effective clinical trials.
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Conclusion

Postoperative delirium and cognitive dysfunction has been
elucidated on the molecular basis and many biomarkers have
been identified. Hypotheses to explain the major features of the
disease onset and pathology were formulated but at this point,
we understand little how much the markers and mechanisms
explain the pathology. In particular, we know little about
possible molecular influences on POD/POCD sub-types such as
slow and fast progression or hypo- and hyperactive delirium.
Common molecular mechanisms with other syndromes, in
particular schizophrenia, promise further insights but have not
been investigated on a sufficient scale. As neuropsychiatric
syndromes present themselves in the most complex manner, we
require global standardization efforts and patient cohorts for
comparative investigations.

We have reviewed the knowledge about molecular
mechanisms underlying POD and POCD and described
many biomarkers associated with these postoperative
complications, and it is clear that postoperative delirium
and cognitive dysfunction are multifactorial conditions.
Among the identified pathomechanisms, some biomarkers
were common, such as elevation of TNF-α, interleukin-1β,
interleukin-6, interleukin-8, interleukin-10, CRP, S100B, matrix
metalloproteinase-9, BDNF, copeptin and cortisol levels as well
as presence of ApoE ε4 allele. The application of integrated

systems biology approaches may elucidate the unknown
pathomechanisms contributing to POD/POCD origin and
progression. Combining experimental measurements, imaging
techniques and mathematical/computational modeling can give
a potential to reconstruct the underlying network of molecular
interactions and predict reliable biomarkers of postoperative
delirium and cognitive dysfunction.

PubMed Search Strategy
We reviewed the pertinent literature retrieved by a search
in the PubMed database (on November 20, 2014) using the
following query: ‘‘(biomarker OR marker) AND [(postoperative
delirium) OR delirium OR (postoperative cognitive dysfunction)
OR POCD] AND (hasabstract[text] AND Humans[Mesh])
NOT (Alzheimer OR Parkinson)’’. The search yielded 254
publications. The ones cited in the review are those that,
in the author’s view, make a substantial contribution to
the knowledge about existing and potential biomarkers of
POD/POCD.
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