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Aging is the main risk factor for neurodegenerative diseases. In aging, microglia
undergoes phenotypic changes compatible with their activation. Glial activation can
lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis
of neurodegenerative diseases, including Alzheimer’s disease (AD). We hypothesize
that in aging, aberrant microglia activation leads to a deleterious environment and
neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines
and an exacerbated inflammatory response to pathological changes. Whereas LPS
increases nitric oxide (NO) secretion in microglia from young mice, induction of reactive
oxygen species (ROS) predominates in older mice. Furthermore, there is accumulation of
DNA oxidative damage in mitochondria of microglia during aging, and also an increased
intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor
kappa B, which promotes more neuroinflammation, and can be translated in functional
deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are
also necessary for the microglial cell production of interleukin-1β, a key inflammatory
cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the
aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have
reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory
stimulation are reduced in adult mice. Other protective functions, such as phagocytosis,
although observed in aged animals, become not inducible by inflammatory stimuli
and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal
dysfunction could at least partially mediate age-associated microglial cell changes, and,
together with the impairment of the TGFβ1-Smad3 pathway, could result in the reduction
of protective activation and the facilitation of cytotoxic activation of microglia, resulting in
the promotion of neurodegenerative diseases.

Keywords: Alzheimer’s disease, glia, mitochondria, neurodegenerative diseases, neuroinflammation, oxidative
stress, reactive oxygen species, transforming growth factor-βββ

Introduction

Aging is a complex process of cumulative changes. A key hallmark is the progressive decline in
physiological functions and behavioral capacity, which is observed at various levels of the organism,
in particular at the central nervous system (CNS; Smith et al., 2005). These changes can lead to
altered behavior, memory impairment, or loss of several control functions (Lipsitz and Goldberger,
1992; Lipsitz, 2002; Glenn et al., 2004). In addition, some responses of the immune system, in special
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related to adaptive immune system, also decline with age,
increasing the susceptibility to infections and cancer. By contrast,
other immune responses are exacerbated, facilitating the onset
of autoimmune diseases (Yung and Julius, 2008) or the
generation of a mild chronic neuroinflammationmediated by the
dysregulation of the innate immune system, as will be discussed
here. Therefore, aging can affect several tissues and processes,
leading to highly complex functional changes.

Microglia undergoes several age-related changes that
contribute to the generation of a chronic mild inflammatory
environment, including an increased production of
inflammatory cytokines and the production of reactive oxygen
species (ROS). These changes have been linked to the appearance
of cognitive deficits and the onset of chronic neurodegenerative
diseases. Therefore, it has been proposed that aging of microglia
could contribute to other age-associated brain changes and
cognitive decline (Conde and Streit, 2006a,b; Streit, 2006;
von Bernhardi, 2010; Aguzzi et al., 2013; Kettenmann et al.,
2013).

Normal Brain Aging

Several structural and functional changes associated with normal
brain aging have been reported. Brain mass decreases in the
order of 2 to 3% per decade after the age of 50. Individuals
that are 80 years or older, brain mass is reduced by 10%
compared with that of young adults (Drachman, 2006). Magnetic
resonance imaging (MRI) and voxel-based morphometry (VBM)
show that age specially affects the volume of gray and white
matter at prefrontal, parietal, and temporal areas (Ge et al.,
2002; Sowell et al., 2003; Salat et al., 2004). Complex learning
abilities, such as dual tasks (ea. memorizing a word list
while walking), show a progressive decrease during aging
(Lindenberger et al., 2000; Salat et al., 2005). Nevertheless,
cognitive decline in aging is highly variable; many older people
keep intact their cognitive abilities (Shock et al., 1984) until
advanced ages.

At the cellular level, shortening of telomeres and activation
of tumor suppressor genes, as well as accumulation of DNA
damage, oxidative stress, and mild chronic inflammatory activity
are characteristic of aging cells. Various tissues, including the
brain show an imbalance between pro- and anti-inflammatory
cytokine levels. In addition, potentially damaging mediators,
such as cytokines, radical species (Figure 1), and eicosanoids
among others, are produced in response to the exposure to
physical, chemical or biological agents, such as ionic radiation,
pollutants, pathogens, etc. (Dröge and Schipper, 2007; Vijg and
Campisi, 2008). Both humans and mice show decreased levels
of interleukin 10 (IL10; Ye and Johnson, 2001), and increased
levels of tumor necrosis factor α (TNFα) and IL1β in the
CNS (Lukiw, 2004; Streit et al., 2004a), and IL6 in plasma (Ye
and Johnson, 2001; Godbout and Johnson, 2004). In addition,
increased transforming growth factor β1 (TGFβ1) mRNA a key
cytokine regulator, has been observed in the brain of aged mice
and rats (Bye et al., 2001).

At the same time, several changes induced by an aged
micro-environment, such as increased systemic inflammation,

increased permeability of the blood-brain barrier (BBB), and
degeneration of neurons and other brain cells, could contribute
to the production of ROS. It has been proposed that BBB
permeability increases in aged animals (Blau et al., 2012; Enciu
et al., 2013), facilitating perhaps infiltration by monocytes
releasing mitochondria-generated ROS. An age-related increase
in the number of CD11b+ CD45high cells, compatible with
infiltrated monocytes, has been reported in the brain of aged
rats (Blau et al., 2012). Likewise, expression levels of chemotactic
molecules, such as interferon-inducible protein 10 (IIP10) and
monocyte chemotactic protein-1 (MCP-1), are increased in the
hippocampal region (Blau et al., 2012).

Glial Cells, Neuroinflammation and
Oxidative Stress

Neuroinflammation is choreographed by microglia and
astrocytes, and is defined by increased levels of a complex
arrangement of mediators, including IL1β, TNFα and TGFβ,
all of which are increased in aged individuals (McGeer and
McGeer, 2001; von Bernhardi, 2007; von Bernhardi et al., 2010).
Microglia are the brain resident macrophages (Hemmer et al.,
2002; Ransohoff and Perry, 2009; Rivest, 2009) providing its
first line of defense. In the brain of healthy adults, microglia are
slender ramified cells that constantly survey brain parenchyma
(Davalos et al., 2005; Nimmerjahn et al., 2005). When stimulated,
microglia activate, enlarge their cell body (Nimmerjahn et al.,
2005; Frank-Cannon et al., 2009) and change their functional
properties (Liu et al., 2001; von Bernhardi and Eugenín, 2004;
Lue et al., 2010). Microglia sense and act on a broad range
of stimuli, including autoimmune injury, infection, ischemia,
toxic insults and trauma (Streit, 2002; Kim and de Vellis, 2005;
Schwab and McGeer, 2008; Lue et al., 2010; von Bernhardi
et al., 2010). They recognize a broad spectrum of molecular
targets, such as glycolipids, lipoproteins, nucleotides, peptides,
(Nakamura, 2002; van Rossum and Hanisch, 2004; Pocock
and Kettenmann, 2007), abnormally processed, modified or
aggregated proteins (e.g., Aβ), inflammatory cytokines, and
damaged neurons, which are the strongest inducers of microglia
activation (Nakamura, 2002; Hanisch and Kettenmann, 2007;
Ransohoff and Perry, 2009; Lue et al., 2010; Schuitemaker
et al., 2012). Depending on the stimuli, microglia undergoes
different activation patterns (Gordon, 2003; Martinez et al.,
2008; Mosser and Edwards, 2008). They include (i) classical M1
activation, which can associate with cytotoxicity, (ii) alternative
phagocytic/neuroprotective M2 activation (Gordon, 2003;
Martinez et al., 2008) or (iii) regulatory activation (Mosser and
Edwards, 2008). Thus, activated microglia show a continuum
spectrum of activation patterns, resulting in the expression
of different cytokines and cytokine receptors (Town et al.,
2005).

Commitment to the M1 macrophage lineage (Satoh et al.,
2010) is defined by the activation of a member of the
interferon-regulatory factor (IRF) family. IRF5 activates genes
encoding for inflammatory cytokines, such as TNFs, IL6,
IL12 and IL23, and tumor suppressors (Ouyang et al., 2007;
Krausgruber et al., 2011). M2 polarization is controlled by IRF4
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FIGURE 1 | Reactive species participate in normal cellular function or
in pathological mechanisms depending on their overproduction.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS), are
produced through several mechanisms by the cell: the electron transport
chain in mitochondria, various cytosolic and membrane enzymes (i.e.,
xanthine oxidase (XO), nitric oxide synthase (NOS), NADPH oxidase
complex, etc.), as well as exogenously provided by the environment. At the
same time, cells have several antioxidant defense mechanisms for detoxifying
ROS and RNS, including enzymes (i.e., superoxide dismutase (SOD),
catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR)
and nonenzymatic antioxidants (i.e., reduced glutathione (GSH), vitamins E
and C. The main generation pathways of ROS and RNS are also shown: the
reduction of O2 occurs by diverse mechanisms (i.e., mitochondria, XO,
NADPH-oxidase complex) leading to formation of superoxide anion (O2

•−);
which is easily transformed to hydrogen peroxide (H2O2) either
nonenzymatically or by SOD. H2O2 is converted to H2O by CAT, or by GPx,
which together with the GR regenerate GSH. In addition, under stress
conditions and high concentration of transition metal (i.e., iron ions—Fe), O2

•- can generate hydroxyl radical (OH•), which in turn can react with
polyunsaturated fatty acids (PUFAs) and generate peroxyl radical (ROO•).
Finally, O2 •- can react with nitric oxide (NO; depending on NOS), producing
the highly reactive peroxinitrite (ONOO•) anion, whereas H2O2 is converted
to hypochlorous acid (HOCl) by myeloperoxidase (MPO). The balance
between oxidants compounds and antioxidant defense determines the end
result. Optimal physiologic levels leads to beneficial effects, with ROS and
RNS acting as second messengers in intracellular signaling cascades
(modulation of gene regulation and signal transduction pathways, mainly by
activation of NFκB), regulating several physiological functions (i.e., cognitive
and immune functions). However, when overproduction of ROS/RNS is
higher than the antioxidant system, the equilibrium status favors oxidant vs.
antioxidant reactions, leading to oxidative stress, in which ROS/RNS have
harmful effects, because of their reaction with various macromolecules (lipids,
proteins and nucleic acids), contributing to cellular and tissue oxidative
damage, and the development of age-related impairments. Oxidation
products: 3-NT, 3-nitrotyrosine; 8-OHdG, 8-hydroxy-2-deoxyguanosine;
malondialdehyde (MDA); alkoxyl radical (RO•).

(Satoh et al., 2010; Krausgruber et al., 2011). Cyclic AMP-
response element binding protein (CREB)–mediated induction
of transcription factor C/EBPβ upregulates M2-specific genes
(Ruffell et al., 2009), whereas activation of transcription
factor nuclear factor kappa-light-chain-enhancer of activated
B cells (NFκB)-p50 is associated with the inhibition of M1-
activation genes (Porta et al., 2009). Secretion of IL4, IL10
and TGFβ by M2-activated macrophages, promote humoral
immune responses and down-regulate M1-mediated responses,
inhibiting several inflammatory functions (Town et al., 2005).
Originally, it was thought that M2 activation resulted in
protective functions. However, there is evidence that M2
cytokines such as IL4, IL5, IL9, and IL13 also result in the
induction of some chronic inflammatory processes (Wynn,
2003). As for regulatory macrophages; they appear to arise

at later stages of adaptive immune responses, being their
primary role limiting inflammatory activation (Mosser, 2003).
Regulatory macrophages appear to be generated through several
signaling pathways, involving extracellular signal-regulated
kinases/mitogen-activated protein kinases (ERK/MAPK; Lucas
et al., 2005; Mosser and Edwards, 2008).

Microglia are activated in nearly all CNS diseases (Kreutzberg,
1996; Hanisch and Kettenmann, 2007; Neumann et al., 2009),
producing and secreting a broad spectrum of inflammatory
mediators, such as eicosanoids, cytokines (Nakamura, 2002;
Kim and de Vellis, 2005; Tichauer et al., 2007), chemokines,
ROS, nitric oxide (NO·), small metabolites, proteases (ea. α-
antichymotrypsin and α-antitrypsin), and inflammatory markers
(ea. serum amyloid P and C-reactive protein; Li et al., 2007;
Tichauer et al., 2007; Neumann et al., 2009; Lue et al., 2010).
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Those inflammatory mediators regulate innate immune defense
and have profound effects on neuronal properties, modifying
synaptic function (Selkoe, 2002; Di Filippo et al., 2008).
In addition, microglia can also induce bystander damage of
neurons, especially under conditions of strong or long lasting
stimulation, and depending on the environmental context (Li
et al., 2007; von Bernhardi, 2007). In fact, cytotoxic activation of
microglia is associated with neuronal loss and decline of cognitive
and neurobehavioral function (Cagnin et al., 2001; Kim and
de Vellis, 2005; Block et al., 2007). Nevertheless, microglia also
secretes trophic factors and modulator cytokines, being active
partners in neuroprotection.

Neuroinflammation establishes a complex interaction with
oxidizing agents through redox sensors present in enzymes,
receptors, and transcription factors. Those factors affect neuron-
glia crosstalk and neuronal function (Liu et al., 2012),
resulting later in neurodegenerative changes (Raj et al., 2014).
Signal transduction of various cytokines, themselves critical
mediators of oxidative stress, neuroinflammation, and even
neurodegenerative changes, are modified by the redox status
(Mrak and Griffin, 2005; Kierdorf et al., 2010). Oxidative stress, a
result of the equilibrium between production and detoxification
of radical species (Figure 1), further increases inflammatory
cytokines, creating a vicious cycle (Rosales-Corral et al., 2010),
and affects the maintenance of cellular homeostasis and cell
survival (Satoh and Lipton, 2007).

Mitochondria were often thought to be the main responsible
for ROS overproduction and oxidative stress. However, NADPH
oxidase (NOX) enzymes participation is also an important
ROS-generating system (Bordt and Polster, 2014). Activation
of the phagocyte NADPH oxidase (NOX2) in microglia, plays
a role in neuroinflammation, but appears also to contribute to
neuronal death under pathologic conditions (Qin et al., 2013;
Jiang et al., 2015). Moreover, ROS production can also depend
on other NOX isoforms, which are detected also in astrocytes
and neurons (Nayernia et al., 2014). Whereas ROS derived
from normal NADPH oxidase function is required for processes
such as neuronal signaling, memory, and central homeostasis
(Jiang et al., 2015), overproduction of ROS contributes to
excessive oxidative stress, resulting in neuronal dysfunction
and neurotoxicity (Zhang et al., 2014). ROS regulates several
signal transduction pathways, including for some trophic
factors and hormones. NFκB is a transcription factor activated
by ROS and inflammatory mediators that participates both
in protective and deleterious responses, depending on the
context of stimulation that will result in the co-activation of
various signaling pathways. It activates genes regulating cellular
survival, growth, differentiation, inflammation, and cell death.
Under non-stimulated conditions, NFκB is kept inactive by
IκB (inhibitor of κB) in the cytoplasmic compartment. High
concentrations of ROS inactivate NFκB through oxidation of
its p50 subunit, inhibiting its DNA binding. In contrast to the
inhibitory effect of high ROS levels, moderate levels of ROS
lead to the sequential phosphorylation, polyubiquitination
and degradation of IκB, allowing the activation of NFκB
(Figures 1, 2). Once activated, and depending on the context,
NFκB plays a pro-survival role by inhibiting c-Jun N-terminal

kinases/stress-activated protein kinase (JNK) and caspase cell
death pathways and upregulating transcriptional activation
of anti-apoptotic proteins and genes involved in decreasing
mitochondrial ROS (mtROS), especially those coding for
manganese superoxide dismutase (MnSOD; Patten et al., 2010).
TNFα also activates NFκB associated with neuroprotection
against β-amyloid (Aβ) neurotoxicity in vitro (Barger et al.,
1995), and NFκB activates anti-apoptotic responses and
protects neurons from excitotoxicity and ischemic brain
injury (Pennypacker et al., 2001; Bhakar et al., 2002; Mattson,
2005).

On the other hand, NFκB activation can also be detrimental.
NFκB has a key role in the initiation and amplification of
inflammation through its response to inflammatory stimuli
mediated by TNFα or IL1, leading to the induction of several
cytokines and chemokines. Activation of NFκB and MAPK
pathways are conspicuous in oxidative stress- (Chen et al.,
2009; Chongthammakun et al., 2009) and Aβ-induced (Song
et al., 2004) neuronal cell death. In addition to NFκB, other
transcription factors are activated by inflammatory conditions,
such as peroxisome proliferator-activated receptor gamma
(PPARγ) and signal transducer and activator of transcription
(STAT-1) and have also been implicated in Alzheimer’s disease
(AD; Sastre et al., 2006; Cho et al., 2007).

The brain is particularly vulnerable to oxidative stress.
Vulnerability depends on its: (i) high oxygen metabolic rate
(consumes approximately 20% of the total consumption of
oxygen of a mammal), (ii) high dependence on oxidative
metabolism for obtaining energy, (iii) high content of iron, an
endogenous catalyzer for the generation of ROS and reactive
nitrogen species (RNS), (iv) lower content of antioxidant
enzymes compared with other organs (Floyd and Hensley, 2002;
Mattson et al., 2002); and (v) low ability to eliminate mutations
not removed by cell replacement as consequence of the post-
mitotic nature of neurons. Aged, or injured brains of any sort,
show oxidative modifications in nucleic acids, proteins, lipids,
and sugars (Figure 1). Several of those oxidative damage and
changes result in a loss of function (Lovell et al., 2001; Halliwell,
2006).

Age-Related Changes of Microglia

Microglial cell changes have been documented in aging.
However, many of those changes are also observed in
neurodegenerative conditions. Thus, it is still unclear whether
these changes are reactive to the underlying pathophysiology.
Although there is an agreement on the fact that degenerative
diseases are not the natural continuous progression of age-related
decline, both aging and neurodegenerative disease appear to be
highly multifactorial conditions that also share many relevant
factors. Aging is a mayor risk factor for the development of many
neurodegenerative diseases. Furthermore, neuroinflammation
and oxidative stress (both reportedly associated with non-
pathological aging in humans and animal models) are common
features for several disease phenotypes. Studies in cell cultures
and animal models suggest the existence of altered activation
states and cellular senescence in the aged brain. Not only aging
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FIGURE 2 | Reactive oxygen species and inflammation in the aged
microglia. Representation of the participation of mitochondria and
lysosomes in the increased production of ROS and inflammatory cytokines
by aged microglia. Increased intracellular ROS activate redox-sensitive NFκB
through a pathway mediated by mitochondrial ROS (associated with
decreased energetic production and increased release of ROS by the
electron transport chain) and a ROS-independent pathway, potentiating
neuroinflammation. The activation of NFκB induces production of pro-CatB

and pro-IL1β, and the activation of inflammasome in the cytoplasm.
Pro-CatB is processed into CatB in the lysosome, which in turn, mediates
the activation of pro-caspase-1 to caspase 1 and increases the processing
of pro-IL1β, releasing increased amounts of IL1β both in the phagolysosome
and the cytoplasm, as well as potentially potentiate apoptosis. Changes on
the expression of pattern recognition receptors, like TLR4 CD14 and SRA,
result in changes on neuroinflammatory activation and oxidative stress by
activating NFκB and the release of ROS.

appears to be a key risk factor for neurodegenerative as well
as other chronic diseases (Mosher and Wyss-Coray, 2014; Cho
et al., 2015), but the presence of those diseases potentiate also the
appearance of aging and senescence relatedmarkers (Baron et al.,
2014; Mosher and Wyss-Coray, 2014; Bachstetter et al., 2015).

There is high heterogeneity of microglia in various
neurodegenerative diseases and those phenotypes share
common characteristics with aging (Bachstetter et al., 2015)
as well as the pattern of microglia gene expression is shared by
aging and neurodegenerative conditions (Holtman et al., 2015).
Moreover, many of the changes described in aged microglia
represent changes that occur during aging; meaning that, they
do not appear when reaching a certain age threshold, but
they change through life, as the individual ages. Analysis of
transcriptome data from postmortem studies of frontal cortex
from 381 healthy individuals with ages spanning from young
teenagers to people older than 80 years of age, show that
microglia gene markers assemble into a transcriptional module
in a gene co-expression network (Wehrspaun et al., 2015),
whose expression pattern show a negative correlation with
age. Genes that encode microglia surface receptors for neuron
and/or microglia crosstalk are especially affected. In addition,
they found that microglia are controlled by brain-expressed

transcription factors, including RUNX1, IRF8, PU.1, and
TAL1 (Kierdorf and Prinz, 2013), which are master regulators
for the age-dependent microglia module. As the authors
highlighted, identification of age-dependent gene modules
in adulthood are relevant for understanding critical periods
for susceptibility to late-onset diseases (Wehrspaun et al.,
2015).

Senescent microglia display morphological changes
(Figure 3), with fewer and shorter processes, increased soma
volume, and formation of spheroid swellings, which is referred
as ‘‘dystrophic microglia’’ (Streit et al., 2004b; Conde and Streit,
2006a,b; Streit, 2006; Flanary et al., 2007). Microglia co-localize
with neurodegenerating neurons, and show clumping, with loss
of their homogeneous tissue distribution, and accumulation
of phagocytic inclusions (Hart et al., 2012; Tremblay et al.,
2012; Hefendehl et al., 2014). Live imaging shows that the
dynamic response of microglia to injury changes with age.
Young microglia increase their motility and extend ramifications
rapidly when exposed to ATP, an injury-associated signal, or
to a focal tissue injury. In contrast, aged microglia are less
dynamic and ramified and further reduce their dynamism
when exposed to ATP. On the other hand, disaggregation of
aged microglia from the site of injury becomes slow, indicating
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FIGURE 3 | Aging-related morphological changes of microglia. Microglial
cell morphology changes with aging. Immunohistochemistry for Iba-1 (a
constitutive identity marker for monocyte-macrophage cells) and
counterstaining with hematoxylin of hippocampal sections from animals of

different ages (1- to 18-month old). Microglia obtained from young mice have a
small cell body and very long and slender ramifications. As mice age, microglia
gradually show bigger cell bodies and progressively shorter and thicker cell
processes.

that aged microglia tend to show sustained responses (Damani
et al., 2011). Both in aging (Flanary and Streit, 2004) and in AD
(Flanary et al., 2007), microglia show telomere shortening and
decreased telomerase activity, which are speculated to be one
of the factors underlying the diminution of some functional
activities, such as clearance (phagocytosis plus effective removal
of the compounds) and basal proliferation (Harry, 2013).
Reduced microglia replication could also result in a depletion
of healthy microglia, favoring the participation of more
senescent and dysfunctional cells (Mosher and Wyss-Coray,
2014).

Activated microglia are the primary cellular source of both
inflammatory molecules and oxidative products (Figure 4).
(Pawate et al., 2004; Qin et al., 2005b; Hayashi et al., 2008).
Microglia from aged brains show increased basal production of
IL6 and enhanced lypopolysaccharide (LPS)-induced IL6 and
IL1β, compared with microglia from young mice brains in
culture (Ye and Johnson, 1999; Sierra et al., 2007). They appear
to be activated also under normal physiological conditions.
In aging, mild stimulatory events or minor injuries, otherwise
easily solved, could induce damage and initiate a disease
process. TGFβ1 is a strong regulator of neuroinflammation and
cytotoxicity and its signaling pathway could be part of the
switch mechanism from protective to deleterious activation of
microglia. Its downstream canonical signaling involves the Smad
pathway, which transduce extracellular signals from ligands
acting as transcription factors (Derynck and Zhang, 2003),
as well as a complex Smad independent signaling (Weiss
and Attisano, 2013). TGFβ1 secreted by hippocampal neurons
and astrocytes regulates microglial cell activation, attenuating
the release of inflammatory cytokines and reactive species
(Chen et al., 2002; Mittaud et al., 2002; Herrera-Molina and
von Bernhardi, 2005; Herrera-Molina et al., 2012), protecting
neuronal cells in vitro (Hu et al., 1995; Lieb et al., 2003;
Herrera-Molina and von Bernhardi, 2005) and promoting

microglia-mediated Aβ phagocytosis and degradation (Wyss-
Coray et al., 2001). These regulatory effects of TGFβ1 are
mediated by Smad3-dependent mechanisms (Flores and von
Bernhardi, 2012; Tichauer and von Bernhardi, 2012), as well
as the reported inhibition of lipopolysaccharide (LPS)-induced
macrophage and microglial activation (Werner et al., 2000;
Le et al., 2004). TGFβ1 Smad3 pathway also participates in
the inhibition of the production of radical species induced
by inflammatory stimuli and in the induction of amyloid-
β (Aβ) phagocytosis in vitro (Tichauer and von Bernhardi,
2012).

TGFβ1 levels are elevated in aged individual (Blobe
et al., 2000; Tichauer et al., 2014). However, recent reports
show that induction of the Smad3 pathway by inflammatory
conditions is decreased in normal aging (Tichauer et al., 2014).
Interestingly, this signaling pathway is impaired in AD patients
and mouse models for AD, resulting in Aβ accumulation,
Aβ-induced neurodegeneration, and neurofibrillary tangle
formation (Tesseur et al., 2006; Ueberham et al., 2006).
Evidence gathered over the last two decades indicate that
TGFβ signaling impairment often lead to neuroinflammation,
neuronal dysfunction and neurodegenerative changes, and
could be involved in the pathogenesis of neurodegenerative
diseases (Tesseur and Wyss-Coray, 2006). Given the complex
signaling pathway activated by TGFβ, which in addition to
the Smad pathway also activates Smad-independent signaling,
including ERK/MAPK, P38 MAPK, JNK, and PI3K (Derynck
and Zhang, 2003; Weiss and Attisano, 2013), a decreased
activation of Smad3 in an environment presenting elevated
levels of TGFβ, as observed in aging, could result in an increased
activation of MAPKs and PI3K, which are signaling pathways
also involved in inflammatory activation. Such an imbalance on
the signaling activated by TGFβ could explain, at least partially,
the maintenance of increased levels of microglial cell activation,
oxidative stress and mild neuroinflammation, although TGFβ1,

Frontiers in Aging Neuroscience | www.frontiersin.org 6 June 2015 | Volume 7 | Article 124

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


von Bernhardi et al. Microglia dysregulation in brain aging

FIGURE 4 | Age-related changes of microglial cell function. In aged
brains, there is an increased number, size and activation of microglia. This is
affected by additional systemic pathophysiological changes associated with
other age related changes, environmental factors and disease processes, such
as cardiovascular risk factors and metabolic syndrome or injuries. Deleterious
processes further promote an inflammatory environment, increasing cytotoxic
microglial cell activation, whereas risk factor management and pharmacological

interventions can promote a healthy aging. Aged microglia changes depend
both on gained and lost functions. They have increased basal phagocytic
activity, although a reduced capacity to induce phagocytosis when stimulated,
together with reduced lysosomal activity, resulting in a decreased clearance
activity. Microglia also shows an increased production of inflammatory cytokines
and reactive species. Those changes result in a shift of balance towards
decreased protective functions and an increased neurotoxicity.

one of the main regulatory cytokines decreasing inflammatory
activation, is increased in aged mice (Tichauer et al., 2014).
Those results indicate that TGFβ1-Smad3 signaling could be a
therapeutic target for AD treatment.

Another alternative is that stimuli that normally would
trigger a protective response, in conditions of age-related
impairment of normal homeostatic mechanisms result in a
persistent activation, which is associated, for example, to a
robust induction of oxidative stress (Figures 4, 5; von Bernhardi,
2007; Herrup, 2010), or to the upregulation of NFκB. In fact,
NFκB response is age-dependent, and it is another candidate
for age-dependent changes due to its role in the regulation of
immunity, inflammation, and cell death (Adler et al., 2007).
Blockade of NFκB in aged mice has been reported to reverse the
gene expression program and cell morphology, ‘‘rejuvenating’’
old mice (Adler et al., 2008). TNFα signaling involves NFκB,
resulting in a beneficial or detrimental response depending on
the age and the type of stimuli. Stimulation of 24 month-old
rat neurons with TNFα plus Aβ is toxic, whereas those same
stimuli are protective for 10 month-old neurons (Patel and

Brewer, 2008). The down-regulation of TNFs receptors TNFR1
and TNFR2 signaling observed in aging results in defective
NFκB activation and fails to provide a neuroprotective response
against Aβ toxicity by TNFα (Patel and Brewer, 2008). NFκB
accumulates in the nuclei of old neurons; an effect that is
also produced by blocking TNFR2. An alternative explanation
for the failure of NFκB to activate protective pathways could
depend on high concentrations of ROS (Parihar and Brewer,
2007), and the oxidized redox state of aged cells (Parihar
et al., 2008). The redox state of NFκB could be a control
mechanism regulating its availability (Sulciner et al., 1996).
It is unclear whether the over-production of ROS, through a
vicious cycle in the aging mitochondria, may activate redox-
sensitive NFkB, thereby provoking excessive inflammation in
the aged brain (Hayashi et al., 2008; Nakanishi and Wu, 2009;
Figure 2).

When exposed to endotoxins like LPS, microglia derived from
adult mice secrete high amounts of ROS, whereas young animals
microglia predominately produce NO·, with little ROS (Tichauer
et al., 2014). Aged microglia become more inflammatory
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FIGURE 5 | Aging of the nervous and immune system and the
neuroimmune crosstalk. Healthy aging of the nervous and immune systems
depend both on genetic and environmental (lifestyle) factors. Aging is
associated with a state of low grade chronic oxidative stress and inflammation
(with production of reactive mediators and inflammatory compounds and a
decreased antioxidant and anti-inflammatory capacity), which appear to be the
cause of an important part of age-related deterioration of the nervous and the
immune systems, as well as of the neuroimmune communication. Because of
their complex functions, the central nervous system (CNS) and the immune
system are especially vulnerable to oxidative damage (i.e., lipid peroxidation,
protein oxidation, DNA damage), which contributes to oxidative stress and
inflammation. Age-related changes in the immune function, known as

immunosenescence, results in increased susceptibility to infections and cancer,
inflammation and autoimmune diseases. In the CNS, oxidative stress has a
negative impact on function, leading to mitochondrial dysfunction and impaired
energetic metabolism, altered neuronal and glial signaling. There may be
disruption of the cycle glutamate-glutamine and increased levels of neuronal
calcium, which are involved in mechanisms of neuronal damage leading to loss
of function, excitotoxicity and apoptosis. In addition, dysfunction of the
neuron-glia crosstalk leads to a chronic neuroinflammation, which promotes a
prolonged activation of microglia and further induction of dysfunction and
degenerative changes. All these alterations contribute to functional decline and
the development of neurodegenerative diseases. NO, nitric oxide; NOS, nitric
oxide synthase; RNS, reactive nitrogen species; ROS, reactive oxygen species.

than their younger counterparts upon systemic inflammatory
stimulation; thus exacerbating neurodegenerative changes
(Combrinck et al., 2002; Cunningham et al., 2005; Godbout et al.,
2005; Sierra et al., 2007). Systemic inflammation also causes aged
microglia to become more responsive than young microglia,
increasing production of inflammatory cytokines (IL1β, IL6 and
TNFα). The resulting exacerbated response to inflammatory
challenges appears to depend on the priming of microglia by
previous activation experience. Primed microglia undergoes
a phenotypic shift towards a sensitized state, responding to a
secondary ‘‘triggering’’ stimulus more rapidly and robustly than
non-primed cells (Harry, 2013). Therefore, the exacerbated
response to stimuli of aged microglia can contribute to neuronal
damage (Figure 5) and the onset of chronic diseases (Perry et al.,
2003, 2007; Perry, 2004).

Age-related changes on cell response involve changes on
microglia receptors (Figures 2, 4). Aged microglia show
upregulation of Toll-like receptors (TLRs), and TLR4 co-
receptor CD14 (Letiembre et al., 2007), as well as age-related

changes in signal transduction of TLR4. There are changes in
the expression profile of scavenger receptors (SRs; Yamamoto
et al., 2002; Hickman et al., 2008). TLRs, CD14, and SRs
are pattern recognition receptors (PRRs), key participants of
the host defense response and the phagocytosis of pathogen-
associated molecules pattern (PAMPs) and damage-associated
molecules pattern (DAMPs), being crucial for the innate immune
response The activation of these receptors by diverse ligands
is associated with activation of microglial cell (Godoy et al.,
2012; Murgas et al., 2012, 2014), production of inflammatory
mediators, and uptake of pathogens and macromolecules,
including Aβ (Alarcón et al., 2005). Thus, changes on their
expression pattern affect cell activation (Cornejo and Von
Bernhardi, 2013). In addition, aged microglia also express some
surface antigens that are not normally expressed by their young
counterparts, including the major histocompatibility complex
II (MHCII), associated with antigen presentation, and ED1,
the rodent equivalent of CD68, associated with phagocytosis.
Regardless of the increased CD68, aged microglia are not better
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phagocytes than young microglia (Floden and Combs, 2011).
In fact, aged microglia appear to have a decreased ability to
phagocytose Aβ compared with microglia from young mice
(Floden and Combs, 2011). We observed that although basal
phagocytosis by microglia obtained from 1-year old mice is
slightly increased compared with young mice, phagocytosis
fails to be induced by TGFβ (Tichauer et al., 2014) or LPS
(Cornejo et al., 2014), and is not coupled to an effective
clearance machinery (Figure 5). Moreover, in addition to
phagocytosis, protein homeostasis is impaired at several levels,
including chaperone-mediated protein folding and stability,
protein trafficking, protein degradation and autophagy. A major
consequence of these impairments is the aggregation of abnormal
proteins, which is an important neuropathological finding
in several neurodegenerative diseases, such as Parkinson’s
disease (PD) and AD (Taylor and Dillin, 2011). Taken
together, age-related changes in receptors expression could
account for alterations observed in microglial cell function,
providing insight on cell phenotypes that could play a role
in the pathophysiological changes leading to neurodegenerative
diseases.

Autophagy capacity can regulate mitochondrial integrity,
ROS production, and subsequent NLR family, pyrin containing 3
(NLRP3) inflammasome activation (Nakahira et al., 2011; Zhou
et al., 2011; Salminen et al., 2012). NLRP3 activation is negatively
regulated by autophagy, because damaged mitochondria
producing high amounts of ROS are removed by autophagy. In
fact, inhibition of autophagy triggers accumulation of damaged
mitochondria (Zhou et al., 2011), which produce more ROS.

Mitochondrial DNA (mtDNA), which encodes components
of the mitochondria electron transfer complexes, is highly
susceptible to ROS-mediated damage, due to its close proximity
to the ROS generated by the respiratory chain and to its decreased
number of protective histones and DNA-binding proteins.
Aging-related accumulation of mtDNA damage results in a
reduced expression of mitochondria electron transfer complexes,
in especial complexes I and IV, because they contain a relatively
large number of mtDNA-encoded subunits. The reduced activity
of complex I further facilitates the generation of ROS (Lin
et al., 2002), establishing a vicious cycle (Kang et al., 2007;
Figure 2). Most cells have protective mechanisms, depending
on enzymatic breakdown or scavenging of ROS (Figure 1).
However, antioxidant systems appear to be less functional in
the brain, which can lead to persistent increased levels of ROS
and RNS reacting with the various target molecules (Halliwell,
2006).

Functional decline of lysosomes and mitochondria in
microglia produces an exacerbated generation of ROS and
inflammatory mediators, which could further promote microglia
aging (Hayashi et al., 2008). Accumulation of mitochondrial
DNA oxidative damage in microglia during aging, increases
ROS production. The increased intracellular ROS, in turn,
activates the redox-sensitive nuclear factor kappa B, inducing
neuroinflammation (Nakanishi and Wu, 2009), which in turn
also promotes oxidative stress. Mitochondria-derived ROS and
cathepsin B, are also involved in the microglial production of
interleukin-1β (Figure 2).

During aging, autophagy efficiency declines and becomes
dysfunctional, resulting in the accumulation of waste materials
within cells (Salminen et al., 2012). On the other hand, induction
of phagocytosis on LPS-primed microglia can cause lysosomal
damage. The release of cathepsin B (CatB), a lysosomal cysteine
protease, into the cytoplasm triggers the activation of the NLRP3,
leading to the production and secretion of IL1β (Figure 2) and
IL18 (Halle et al., 2008; Hornung et al., 2008). Interestingly, a
NLRP3-deficient AD mice model show improvement of their
spatial memory deficits, a reduced expression of brain caspase-
1 and IL1β, and enhanced Aβ clearance (Heneka et al., 2013). In
addition of Aβ, cholesterol crystals is also amajor causative factor
of age-related diseases such as atherosclerosis, and also shows
activation of the inflammasome in a CatB-dependent manner
(Duewell et al., 2010; Masters et al., 2010).

Aged Microglia-Related Neuronal
Impairment and Neurodegenerative
Diseases

Age-dependent changes gradually have a toll on brain
homeostasis and function (Herrup, 2010; von Bernhardi
et al., 2010), changing glial cell reactivity (von Bernhardi, 2007).
Cytotoxic activation of microglia, increased production of
inflammatory cytokines, and ROS combined with impaired
ability to regulate increased oxidative stress in the aging brain
(Conde and Streit, 2006b; von Bernhardi et al., 2010). Those
changes appear to be causative factors for neurodegenerative
processes, (Figure 5; Block et al., 2007) and the associated decline
in motor and cognitive functions (Forster et al., 1996; Navarro
et al., 2002).

Chronic inflammation induces deficits in long-term
potentiation (LTP), the major neuronal substrate for learning
and memory, in middle-aged but not in young rats (Liu et al.,
2012). Similarly, in vivo microinjection of fibrillary Aβ in the
cortex of aged rhesus monkeys showed neurodegeneration,
tau phosphorylation, and microglial cell proliferation, but
not in young monkeys, suggesting that Aβ neurotoxicity
is a pathological response of the aging brain (Geula et al.,
1998). In this context, microglia upregulated production
of IL1β, is possibly implicated in age-associated cognitive
impairments (Rachal Pugh et al., 2001; Maher et al., 2006). As
mentioned above, aged microglia actively participate in the
genesis of neuronal damage in neurodegenerative diseases,
through production of inflammatory mediators and ROS
(Block et al., 2007), but also because of the impairment of
their neuroprotective functions (Figure 5). Thus, microglia
contribute to the death of dopaminergic neurons in PD,
forebrain neurons in AD, and motor neurons in amyotrophic
lateral sclerosis (ALS; Boillée et al., 2006; Mount et al., 2007).
Similarly, TNFα promotes PD progression (McCoy et al.,
2006), whereas the absence of TNFR1 protects against AD-
and PD-like disease in mice (Sriram et al., 2002; He et al.,
2007).

Neurodegenerative diseases often have increased generation
of RNS and ROS as an early event (Perry et al., 2002; Shi
and Gibson, 2007), which can contribute to neuronal cell
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injury via various redox reactions (Figure 1). Deficiency
in antioxidant enzymes, such as superoxide dismutase
(SOD), increases disease associated phenomena (Li et al.,
2004a), increasing tau phosphorylation (Melov et al., 2007),
and amyloid and tau aggregation (Li et al., 2004a), and
accelerates behavioral impairment (Esposito et al., 2006).
Thus, oxidative damage in the brain of AD patients and
animal models is more abundant than that observed in age-
matched control individuals. Conversely, increased expression of
antioxidant enzymes attenuates AD phenotype (Dumont et al.,
2009).

There are additional mechanisms for reactive species-related
impairment, NO· target cysteine residues of proteins to form
S-nitrosothiols (SNOs). The interaction with proteins that are
targets of S-nitrosylation represents NO· signal transduction
(Hess et al., 2005). S-nitrosylation switches the on-off functions
of receptors, GTPases, and transcription factors, and can affect
mitochondrial function. NO· reversibly inhibits complexes I
and IV (Clementi et al., 1998), further increasing release
of ROS by mitochondria, further promoting dysfunction
of mitochondrial dynamics (Bossy-Wetzel and Lipton, 2003;
Barsoum et al., 2006). Moreover, S-nitrosylation modulates
GTPase activity of the mitochondrial fission protein dynamin-
related protein 1 (Drp1), favoring altered mitochondrial
dynamics, synaptic damage, and eventually neuronal death
(Cho et al., 2009). Other examples relevant for aging and
neurodegeneration are: (i) the S-nitrosylation of protein-
disulfide isomerase (PDI, an enzyme relevant for the maturation
and transport of unfolded secretory proteins), which abolishes
PDI-mediated inhibition of neurodegenerative changes triggered
by endoplasmic reticulum (ER) stress, misfolded proteins,
or proteasome inhibition (Uehara et al., 2006); and (ii) the
S-nitrosylation of ApoE, resulting in changes of its interaction
with low-density lipoprotein (LDL) receptors (Abrams et al.,
2011).

Microglia and Alzheimer’s Disease

Neurodegenerative diseases, including AD, involve several
converging disease mechanisms, generating a functional
interplay between neurons and glial cells (Figure 5). The
AD brain is characterized by the presence of senile plaques,
constituted by aggregated Aβ, and neurofibrillary tangles
(NFTs), formed by hyper-phosphorylated tau, as well by
synapse and neuronal loss (Uylings and de Brabander, 2002),
and glial cell activation (Kim and de Vellis, 2005; Jellinger,
2006; Heneka and O’banion, 2007; von Bernhardi, 2007; von
Bernhardi et al., 2010). Interestingly, Alzheimer, on his original
descriptions, already stated that these lesions were markers
of an upstream process rather than the disease cause (Davis
and Chisholm, 1999). The fact that brain innate immune
response could be involved in the genesis of neurodegenerative
diseases (Nguyen et al., 2002; Björkqvist et al., 2009; von
Bernhardi et al., 2010), lead to re-consider the role of Aβ and
propose glia to be a leading factor in the pathology of AD
(von Bernhardi, 2007). The hippocampus, one of the regions
affected early by neurodegeneration in AD, is one of the most

densely populated by microglia together with the Substantia
nigra. However, most scientists who adhere to the ‘‘amyloid
cascade hypothesis’’ of AD, view Aβ as the cause of AD and
neuroinflammation just as a consequence of glia activation
(Akiyama et al., 2000; Heneka and O’banion, 2007; Hirsch and
Hunot, 2009).

Microglia are intimately associated with Aβ plaques in
AD, but not with the diffuse Aβ plaques of the normal
aged brain (Itagaki et al., 1989; von Bernhardi et al., 2001;
von Bernhardi, 2007; Hashioka et al., 2008; Heurtaux et al.,
2010). The trigger for microglia activation is unclear, but the
invasion of plaques by active microglia has been reported
in AD transgenic mice models, when Aβ is injected into
the brain or in in vitro experiments (von Bernhardi et al.,
2001; Alarcón et al., 2005; Reed-Geaghan et al., 2009; Njie
et al., 2012; Thanopoulou et al., 2010). Their activation by Aβ

(Simard et al., 2006; Hashioka et al., 2008; Koenigsknecht-Talboo
et al., 2008) results in cell transformation (Husemann et al.,
2001). Microglia aging is associated with several mechanisms
underlying the formation and accumulation of Aβ aggregates.
Microglia clearance (phagocytosis plus degradation) of Aβ is
reduced leading to its initial accumulation (Floden and Combs,
2011; Zhao et al., 2014), as well as its capacity to migrate
(Sheng et al., 1998; Damani et al., 2011) and shift among
inflammatory activation patterns towards a more phagocytic
stage (Sierra et al., 2007; Streit et al., 2009; Schuitemaker
et al., 2012). Similar results have been reported on AD patients
(Mawuenyega et al., 2010). There is an age-related impairment
of phagocytosis (Harry et al., 2000; Zhao et al., 2014) and
clearance. Clearance by both microglia and astrocytes appears
to depend on peroxisome proliferator-activated receptor-γ
(PPARγ) and apolipoprotein E (apoE) levels, which promote
the proteolytic clearance of soluble forms of Aβ (Mandrekar-
Colucci et al., 2012). In addition, human genetic studies
indicate that coding variants of TREM2, a regulator of microglia
activation and phagocytosis, are suggestive of microglia immune
senescence (Guerreiro et al., 2013), and results in a substantial
risk for AD. Plaque-associated reactive microglia in these
animals show enhanced staining for TNFα and IL-1β (Benzing
et al., 1999). Neuroinflammation as well as other stressors
promote production and release of Aβ (Lee et al., 2007;
Mosher and Wyss-Coray, 2014) as well as its amyloidogenicity,
favoring its aggregation. However, acute increased levels of
various inflammatory factors, including IL1β and IL6 are
associated with activation of glial cells and reduced amyloid
pathology (Chakrabarty et al., 2010; Jiang et al., 2015), although
chronic neuroinflammation fails promoting amyloid removal.
Promotion of Aβ production and aggregation has been also
observed secondary to microglia-related ROS through a stress
response or depending on oxidative modifications of the peptide
(Giasson et al., 2002).

Importantly, Aβ is also clearly indicated as a source of
oxidative stress (Varadarajan et al., 2000), as Aβ activates
microglia to produce extracellular superoxide radical (O2·-; Qin
et al., 2002; Bamberger et al., 2003), and can be a potent inducer
of NFκB via the induction of intracellular ROS (Lee et al., 2005;
Valerio et al., 2006) as well as through the TNFR1 signaling,
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which results in neuronal apoptosis (Li et al., 2004b; Valerio et al.,
2006).

In addition to the role of oxidative stress in neuron
dysfunction and degeneration, secondary to Aβ neurotoxicity,
excitotoxicity, aggregation of proteins, and impaired calcium
metabolism (Kuchibhotla et al., 2008; Lopez et al., 2008; Santos
et al., 2010a,b), ROS appears to be a common mediator
unifying the spectrum of cellular mechanisms leading to AD
(Figure 6). Oxidative damage of the brain of AD patients and
animal models include lipid peroxidation (Praticò et al., 1998;
Butterfield and Lauderback, 2002; Butterfield, 2002; Butterfield
et al., 2002), and oxidation of proteins and nucleic acids
(Nunomura et al., 2001, 2004). RNA and DNA oxidation could
impair protein synthesis, DNA repair, and transcription, and
could eventually lead to cell death (Figure 1; Ding et al.,
2006). Oxidation of mtDNA is 10-fold more abundant than
that of nDNA. Increased mtDNA oxidation could lead to the
reported mitochondrial abnormalities, which may contribute
to the increase of O2·- leakage, ultimately resulting into

FIGURE 6 | The “Glial Cell Dysregulation Hypothesis” of Alzheimer’s
disease (AD). The glial cell dysregulation hypothesis proposes that AD has its
cause on changes on the activation of microglia and on impaired regulation,
which become increasingly cytotoxic decreasing their defensive functions.
Impaired activation results in oxidative stress, persistent neuroinflammation
and neuronal dysfunction, all of which can also induce production and
aggregation of Aβ, and additional neuronal dysfunction. Inflammatory
activation, secondary to aging and to various forms of stimuli or injury through
life, can result in glial cell dysregulation. Dysregulated activation of glia,
through the abnormal release of cytokines, reactive species, and other
mediators, contributes to the increased expression of Aβ as well to functional
and degenerative changes of neurons, perpetuating abnormal activation of
glia, synaptic dysfunction and cell damage.

elevated oxidative stress (Swerdlow, 2007; Swerdlow et al.,
2010).

Glia actively promote neuronal dysfunction and
neurodegeneration (von Bernhardi, 2007) through oxidative
stress mechanisms by: (i) modifying intracellular proteins and
lipids (Lovell et al., 2001; Halliwell, 2006; Zhu et al., 2007);
(ii) inducing mitochondrial dysfunction, which increases
production of ROS, and activates caspases, activating cell
death pathway (Baloyannis, 2006; Lin and Beal, 2006a,b)
and ATP depletion (Baloyannis, 2006); (iii) facilitating
formation of ubiquitinated aggregates of misfolded proteins
(Oddo, 2008) as consequence of the impairment of energy-
dependent ubiquitin–proteasome pathway and abnormal
phosphorylation of cytoskeleton components (Arnaud et al.,
2006); (iv) inhibiting glial cell excitatory amino-acid transporter
2 (EAAT2) activity (Tian et al., 2010) inducing release of
glutamate by astrocytes (Lauderback et al., 2001). Overactive
glutamate receptors increase intracellular free calcium, causing
mitochondrial toxicity (Mahad et al., 2008; Kawamata and
Manfredi, 2010) and affect several calcium-dependent enzymes
leading to dysfunction and initiation of apoptosis (Mattson
and Chan, 2003); and (v) activating microglia (Figure 4) and
astrocytes to produce and release inflammatory cytokines (von
Bernhardi, 2007; Agostinho et al., 2010; Lee et al., 2010; von
Bernhardi et al., 2010) and other reactive mediators (NO·,
ROS; Zhu et al., 2007; von Bernhardi, 2007; Block, 2008;
Agostinho et al., 2010; von Bernhardi et al., 2010). These
factors activate signaling pathways of cytokines as well as of
eicosanoids produced by cyclooxygenase-2 (COX-2; Wang
et al., 2004; Trepanier and Milgram, 2010). Aging and AD also
present changes in enzymes involved in glutathione (GSH)
metabolism (Figure 1; comprehensive view on glutathione
peroxidase (GPx), in Toppo et al. (2009). glutathione S-
transferase (GST) activity is decreased in the AD amygdale,
hippocampus, parietal lobe, and nucleus basalis of Meynert
(Lovell et al., 1998). Decreased glutathione S-transferase
omega-1 (GSTO1; Li et al., 2003), can be involved in the
activation of IL1β (Laliberte et al., 2003), a fundamental
component in the early inflammatory response of AD
(Grimaldi et al., 2000; Griffin and Mrak, 2002).

Recapitulating, we consider that neurodegenerative changes
in AD are consequence of ‘‘mis-activated’’, dysfunctional
microglia, proposing the ‘‘glia dysregulation hypothesis’’
(Figure 6; von Bernhardi, 2007). The innate immune response,
normally protective, becomes abnormally activated, contributing
to cytotoxicity (Figure 5; Nguyen et al., 2002; Wyss-Coray
and Mucke, 2002; Saud et al., 2005; von Bernhardi, 2007).
Normally activated microglia are important as the scavenger
cells of the CNS. However, if they fail responding to their
normal regulatory feedback and/or they show an impaired
ability to clear Aβ (Paresce et al., 1997; von Bernhardi,
2007), glial cells could become predominantly cytotoxic.
The distinction is relevant when developing therapeutic
approaches. The aim of therapy should be oriented to potentiate
a protective pattern of microglial cell function rather than
functionally inhibiting microglia as it is most often proposed
now.
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Treatment Strategies for
Neurodegenerative Diseases

Modulation of Microglial Cell Activation
Microglia are important actors for maintenance, repair and
defense, although dysregulated microglia have deleterious
effects. An effective microglia/neuroinflammation based therapy
should target regulation of microglial cell response towards a
beneficial pattern of activation, rather than their elimination.
Because microglial function, as well as the deleterious effect of
oxidative damage are associated with the activation of NADPH
oxidase and the production of ROS that will act on both
intracellular and extracellular targets (Block et al., 2006, 2007),
this enzyme complex appears as a relevant therapeutic target.
Originally linked only to respiratory burst in phagocytes, over
the last decade it has been reported that NADPH oxidase
homologues on diverse cells including neurons also play roles
in normal function. Several peptides and small molecules,
have been reported to inhibit NADPH oxidase, with potential
neuroprotective effect over the last decade (Choi et al., 2005;
Qin et al., 2005a). Because inhibition of NADPH oxidase
activation targets the major generator of high amounts of ROS
by microglia, its inhibition would reduce several inflammatory
factors, including eicosanoids like PGE2 (Wang et al., 2004). The
challenge is to develop tools targeting NADPH oxidase isoforms
responsible for overproduction of ROS by phagocytes like
microglia. The efficacy as neuroprotector of the NADPH oxidase
inhibitor diphenyleneiodonium has been reported in both
LPS- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated
mice (Wang et al., 2015). Diphenyleneiodonium attenuates
progressive dopaminergic degeneration, with high efficacy in
protecting the remaining neuronal population and restoring
motor function even at late stages of disease progression
in PD mouse models. Neuroprotection is associated with
inhibition of microglial cell activation, decreased α-synuclein
aggregation, and reduction of inflammatory mediators (Wang
et al., 2015).

Also some inflammatory cytokines have been considered
as possible therapeutic targets for AD (Greig et al., 2004;
Heneka and O’banion, 2007; Lee et al., 2010). However,
a side effect on therapies blocking inflammatory cytokines
is the immune suppression caused by these drugs that
leaves the patient prone to suffer grave infections. Systemic
administration of the anti-inflammatory antibiotic minocycline,
which inhibits microglia activation (Kohman et al., 2013a)
affects strongly microglia, but also astrocytes, perivascular,
meningeal, and infiltrating macrophages. It has been reported
that minocycline restores LTP deficits, while normalizing
the level of IL1β. These beneficial effects indicate that
neuroinflammation could contribute to the deficits in synaptic
plasticity, learning and memory observed during normal aging.
However, minocycline use reveals the complexity of the effects
of microglia function in neurodegenerative disease models.
Minocycline show different effects on microglial cell activation
and cognitive function along different phases of the life
spans of animal models (Kohman et al., 2013a) suggesting
that although inhibition of microglia can be beneficial at

one stage of disease progression, it becomes detrimental at
others.

Activation of Antioxidant Pathways
Reduction of ROS and oxidative stress could be also achieved
through the activation of antioxidant pathways. In addition
to the relatively weak antioxidant defenses of the brain, brain
aging also determines loss of the endogenous mechanisms of
free radical scavenging. Among cellular antioxidant defenses,
heat shock proteins have been regarded as cytoprotector for
oxidative damage-dependent mechanisms in neurodegenerative
diseases. Among the stress proteins, the redox-regulated heme-
oxygenase 1 (HO-1) gene, and its activation represents a
protective system potentially active against brain oxidative
injury. HO-1 polymorphisms have been associated with
increased AD susceptibility, and dysregulation of the HO system
has been associated with brain aging and the pathogenesis of
AD (Markesbery, 1997; Pappolla et al., 1998). AD patients’
brains present microglia recruitment by neurons with tau
abnormalities. Those cell clusters correlate with increased
levels of NRF2 and HO-1, suggesting an attempt of the
diseased brain to limit microgliosis. Microglial cells HO-1
could be especially relevant for the regulation of neurotoxic
mediators, being responsible of the antinflammatory effect
of compounds such as schizandrin C (Park et al., 2013)
and several other compounds (Foresti et al., 2013). Lastres-
Becker et al. recently showed that fractalkine activated AKT
in microglia, upregulating the transcription factor NRF2,
and its target genes including HO-1. Fractalkine regulates
microglial cell activation in neurodegenerative diseases. In
a mouse model of tauopathy, they confirmed that NRF2-
and fractalkine receptor-KO mice did not express HO-
1 in microglia and showed they played a crucial role in
the attenuation of neuroinflammation. Those observations
suggest that NRF2-dependent induction of HO-1 could limit
over-activation of microglia (Lastres-Becker et al., 2014). In
vitro studies report a decreased HO-1 expression in HIV-
infected macrophages. HO-1 deficiency correlates with increased
glutamate and neurotoxicity, whereas HO-1 siRNA knockdown
or its enzymatic inhibition in HIV-infected macrophages
increased supernatant glutamate and neurotoxicity. In contrast,
induction of HO-1 by dimethyl fumarate (DMF) decreased
glutamate and neurotoxicity. Furthermore, increased IFNγ, as
observed in CNS HIV infection, reduced HO-1 expression in
cultured human astrocytes and macrophages (Gill et al., 2014).
There are reports that activation of HO-1 is strongly protective
against oxidative damage and cell death in neurons. Thus,
modulation of HO-1 should represent a potential pharmaceutical
strategy for the treatment of neurodegenerative disorders (Racchi
et al., 2008; Schipper and Song, 2015).

Mitochondrial Antioxidants
Mitochondria have key roles in the production of ROS
and in apoptosis signaling. Several compounds targeting
mitochondria are currently being tested in clinical trials
for treatment of neurodegenerative diseases. Mitochondrial
antioxidants appear to be especially interesting at preclinical
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level (Szeto et al., 2014). Coenzyme Q10 (CoQ10), a carrier of
the electron transport chain of oxidative phosphorylation, has
been shown to be neuroprotective by attenuating mitochondrial
dysfunction and aging (Shetty et al., 2014). However, the
fact that these oral antioxidants cross poorly the BBB, has
slowed down their therapeutical use; directing new research
towards more soluble, shorter chain CoQ10 derivatives, such
as idebenone [6-(10-hydroxydecyl-2,3-dimethoxy-5-methyl-1,4-
benzoquinone], decylubiquinone (dUb), andMitoQ10. MitoQ10
has the advantage of being accumulated within mitochondria,
where it is activated into ubiquinol, which can reduce
mitochondrial oxidative damage (Lu et al., 2008). Other
class of mitochondrial antioxidants are Szeto-Schiller (SS)
peptides (Szeto, 2014), which localize in mitochondria at a
broad condition of mitochondrial membrane potential. In vivo
experiments revealed that SS peptides are protective, increasing
survival and motor performance, and decreasing cell death
(Moreira et al., 2010). In PD animal models, SS peptides
also protect dopaminergic neurons against MPTP neurotoxicity
(Moreira et al., 2010).

Therapeutic effects of the regulation of NADPH oxidase
and antioxidant treatment will not be restricted exclusively
to microglia. However, the development of drugs for specific
isoforms and the fact that neuroinflammation is mostly driven
by microglia and astrocytes, will have an enormous impact
on the cytotoxic activation of glial cells, by reducing both
ROS, inflammatory cytokines and endogenous inflammatory
mediators.

Life-Style Changes Prevent Microglia
dysrEgulation and Cytotoxic Activation

Accumulating evidence show that exercise, dietary restriction,
cognitive intervention (enriched environment) as well as other
mild stressors can play a role in reducing microglial activation
and priming during aging (Figure 7). Moderate exercising is
capable of even reducing the exaggerated neuroinflammation in
response to infection-type of stimuli in aged animals, with its
increased cytokine production and cognitive deficit (Barrientos
et al., 2011), and age-related microglial sensitization (Barrientos
et al., 2011; Kohman et al., 2013b), suggesting that exercise
could be an effective intervention to prevent microglial cell
aging. Furthermore, In adult APP/PS1 mice, exercise increase
neurobehavioral performance, which is associated with increased
numbers of certain populations of cholinergic and serotoninergic
neurons, and reduced Aβ levels and microglia activation
(Ke et al., 2011). Beneficial effects of exercise and cognitive
intervention could, at least in part, result from its induction of
brain-derived neurotrophic factor (BDFN; Barrientos et al., 2011;
Polito et al., 2014). Although most of reports are related to the
effect of BDNF on neuron function and survival, there are reports
on its effect on inhibiting activation of microglia (Garofalo
et al., 2015). Dietary restriction also appears to attenuate age-
related activation of microglia, resulting in beneficial effects on
neurodegeneration and cognitive decline (Morgan et al., 2007).
It has anti-inflammatory and anti-apoptotic effects (Loncarevic-
Vasiljkovic et al., 2012), and has been shown to elicit many

FIGURE 7 | Life style changes as a strategy for aging well. Cognitive
activity, dietary caloric restriction and moderate physical exercise induce mild
stress responses which results in a decreased production of stress proteins
and reduction of oxidative stress. In additions, there is an increased
production of neurotrophic factors, among which brain-derived neurotrophic
factor (BDNF) appears to be one of the most important, but also participate
growth hormone (GH) and insulin growth factor 1 (IGF1). Decreased stress
signal and increased trophic signal acts on mitochondrial function, improving
energetic metabolism and reducing oxidative stress to a protective level.
Stress signals and ROS, below a certain threshold concentration, induce
survival signals capable of restoring cellular homeostasis but, at higher or
continued levels, can contribute to aging and degenerative changes.

health promoting benefits, delaying immunosenescence and
attenuating neurodegeneration in animal models of AD and
PD. However, the mechanisms involved in the effect of dietary
restriction on microglial cell activation are poorly understood.
Exposure to dietary restriction attenuates LPS-induced fever,
and LPS-induced microglial activation in some specific brain
regions, including the arcuate and ventromedial nuclei of the
hypothalamus and the subfornical organ. Activation of microglia
in the hypothalamic nuclei was positively correlated with body
temperature (Radler et al., 2014). Dietary restriction suppresses
LPS-induced secretion of inflammatory cytokines, and shifts
hypothalamic signaling pathways to an anti-inflammatory bias
(Radler et al., 2015).

Interestingly, both exercise and dietary restriction have
been recently shown to promote mitochondrial biogenesis and
expression of mitochondrial transcription factor A (TFAM)
in the rat brain (Picca et al., 2012; Zhang et al., 2012).
Collectively, exercise, cognitive activity, and dietary restriction
could be effective ways to slowdown brain aging by preventing
microglia aging through secretion of growth factor and
regulatory cytokines. Although those effects are not restricted
to microglia, the fact that microglia are the major drivers
of neuroinflammation, determines that interventions affecting
them can have an enormous impact on the brain homeostatic
response.
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Concluding Remarks

Aging is a major risk factor for the great majority of
neurodegenerative diseases. Age dependent changes, including
increased glial cell activation, neuroinflammation, oxidative
stress, impaired mitochondrial function, and impaired protein
processing, could lead to the dysregulation of microglial cell
functions resulting, among several alterations in cytotoxicity and
accumulation of Aβ, generating the hallmark histopathology
of AD. Whereas each of these age-dependent changes are
discreet in the normal aging process, their combined effect,
together with the genetic background and environmental
conditions could initiate the vicious circle of cytotoxic activation
(von Bernhardi, 2007). Participation of oxidative stress could
be both a trigger and a consequence of Aβ accumulation,
mitochondrial impairment, cytotoxic activation of microglia,
proteasome dysfunction and protein misfolding, contributing to
the potentiation of the other disease mechanisms. Additionally,
oxidative stress, cytotoxicity and Aβ aggregation further decrease
proteasome activity, creating a vicious circle leading to more Aβ

and tau aggregation.
Microglia, in a close crosstalk with astrocytes, neurons and

other brain cells, serve crucial functions as the scavenger
system of the CNS, providing beneficial functions as
tissue repair in the CNS. However, chronic, dysregulated
activation of microglia appears to lead to deleterious effects
inducing malfunction and damage of brain cells. What drives
this dysregulation is not fully understood, but age-related
impairment of regulatory mechanisms, as observed for TGBβ

transduction signaling (Tichauer et al., 2014) are a promising
hypothesis for understanding cytotoxic activation in aged
individuals (von Bernhardi et al., 2011). Nonetheless, despite

the undeniable potential of activated microglia to become
deleterious, microglia have a profound immune-modulatory
and reparative potential in the CNS. Thus, instead of abolishing
microglia activation as it is most often proposed, strategies
to potentiate those beneficial functions while inhibiting
cytotoxic activation should be developed. Such strategy
may well constitute the way to treat neurodegenerative
disorders, but demands a better understanding of the
protective and modulatory pathways of immune activation.
Additional research is needed for the identification of new
pathways that may decrease the impact of microglial cell
dysfunction, in order of breaking the vicious circle leading to
neurotoxicity.

Further research is necessary to develop effective
pharmacological interventions against brain aging. Most of
the proposed targets, antioxidants, anti-inflammatory drugs
affecting cytokines, and microglia inhibitors, deeply affect
physiological cell signaling and functions, including pro-survival
signaling pathways, resulting in unacceptable side effects. In that
perspective, multi-target pharmacological approaches aimed
to reestablish normal regulation of microglia in the aged brain
may be future research avenue for slowing senescence-related
impairment. Furthermore, non-pharmacological strategies, like
exercise, life style changes and dietary restriction, could promote
a healthy aging through their effects on promoting microglial
physiological functions, while reducing inflammation and ROS
production.
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