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Higher cardiorespiratory fitness is associated with better cognitive performance and
enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain
activation is associated with better cognitive performance is not well understood. In this
cross-sectional study, we examined whether the association between cardiorespiratory
fitness and executive function was mediated by greater prefrontal cortex activation
in healthy older adults. Brain activation was measured during dual-task performance
with functional magnetic resonance imaging in a sample of 128 healthy older adults
(59–80 years). Higher cardiorespiratory fitness was associated with greater activation
during dual-task processing in several brain areas including the anterior cingulate
and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right
motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex,
controlling for age, sex, education, and gray matter volume. Of these regions, greater
ACC/SMA activation mediated the association between cardiorespiratory fitness and
dual-task performance. We provide novel evidence that cardiorespiratory fitness may
support cognitive performance by facilitating brain activation in a core region critical for
executive function.

Keywords: exercise, aging, fMRI, dual-task, cardiorespiratory fitness, executive function

Introduction

Successful and healthy aging is an important public health priority as the population of adults
65 and older is projected to almost double from 43.1 million in 2012 to 83.7 million in 2050
(Ortman et al., 2014). The rapid growth of the older adult population is significant as aging is
associated with decline in both physical and cognitive health. Physical decline involves increased
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frailty, arthritis, and incidence of chronic diseases such as
cardiovascular disease, type 2 diabetes, and cancer (Fried,
2000). Cognitive aging is most frequently found in measures
of processing speed, executive function, and memory (Park and
Reuter-Lorenz, 2009; Salthouse, 2010).

Importantly, physical and cognitive health is strongly
associated with physical activity and sedentary behaviors. With
advancing age, older people tend to be less active, engage in
less strenuous physical activity, and spend more time sitting
(Evenson et al., 2011). Sedentariness is a risk factor for diabetes
(Thorp et al., 2011), depression (de Wit et al., 2011), has
negative impact on brain health (Voss et al., 2014), and may
accelerate physical decline (Booth et al., 2011). Exercise is a
promising lifestyle factor that may combat the negative effects
of both physical and cognitive aging by promoting broad
positive physiological effects, as well as reducing the risk of
cardiovascular and other chronic diseases (Kujala, 2009) and
increasing brain and cognitive health (Colcombe and Kramer,
2003). Thus, examining lifestyle factors and interventions that
have the potential to reduce or reverse age-related decline
has important implications for the expanding older adult
population.

Specific measures of brain health are associated
with cardiorespiratory fitness. Older adults with higher
cardiorespiratory fitness show reduced incidence of cognitive
decline (Barnes et al., 2003). Cardiorespiratory fitness is also
associated with less structural brain atrophy (Colcombe et al.,
2003; Erickson et al., 2009), enhanced brain function (Colcombe
et al., 2004; Voss et al., 2010; Prakash et al., 2011), and higher
estimates of white matter integrity (Marks et al., 2011; Johnson
et al., 2012; Burzynska et al., 2014).

Additionally, cardiorespiratory fitness in healthy older
adults has been linked to better cognitive performance in
processes especially vulnerable to age, such as executive function
(Colcombe and Kramer, 2003; Colcombe et al., 2004; Smith
et al., 2010; Guiney and Machado, 2013). Executive function
is required to direct behavior through implementing cognitive
control and can be decomposed into processes of shifting,
updating, and inhibition (Miyake et al., 2000). Although
executive function tasks recruit a distributed network of brain
regions that span both frontal and posterior parietal areas
(Collette et al., 2006; Niendam et al., 2012), the prefrontal
cortex (PFC) acts to actively maintain and manipulate goal-
directed representations (Miller and Cohen, 2001). Various
tasks can be used to assess executive function and one specific
example is the dual-task paradigm, as it requires coordination,
maintenance, and integration of two tasks. Studies have found
that the dual-task paradigm is sensitive to both age (Verhaeghen
et al., 2003) and exercise (Hawkins et al., 1992) effects. A meta-
analysis of 33 studies reported that both younger and older
adults experience performance decrements when performing
simultaneous tasks; however, older adults demonstrated a greater
dual-task performance deficit than younger adults (Verhaeghen
et al., 2003). Importantly, Hawkins et al. (1992) demonstrated
that 10-weeks of aquatic exercise resulted in improved dual-task
performance in older adults compared to the non-exercise
control group.

Beyond behavioral performance, cardiorespiratory fitness and
physical activity are associated with differential brain activation
in older adults. Enhanced activation in areas involved in executive
function, such as the PFC and parietal cortex, were coupled with
better performance on executive function tasks (e.g., flanker task,
Stroop task, and digit symbol substitution task; Colcombe et al.,
2004; Rosano et al., 2010; Prakash et al., 2011). However, no
studies have specifically examined the extent to which greater
cardiorespiratory fitness is related to greater dual-task processing
in areas involved in executive function.

Thus, here we extend previous work by determining whether
individual differences in cardiorespiratory fitness are associated
with brain function in regions known to support executive
function, particularly dual-task performance, in healthy older
adults. Other studies report that brain volume (Erickson et al.,
2009; Verstynen et al., 2012; Weinstein et al., 2012), resting
state functional connectivity (Voss et al., 2010), and neuronal
metabolites (Erickson et al., 2012) mediate the association
between cardiorespiratory fitness and cognitive performance.
Based on this previous literature, we hypothesized that older
adults with greater cardiorespiratory fitness would exhibit greater
PFC activation during dual-task processing and better dual-
task performance. Furthermore, we examined whether brain
activation during dual-task processing within the PFC mediated
the association between cardiorespiratory fitness and cognitive
performance.

Materials and Methods

Participants
Participants were recruited from the local community of Urbana–
Champaign, IL, USA. Eligible participants met the following
criteria: (1) 55–80 years of age, (2) a score ≥51 out of 57 on the
modified Mini-Mental Status Exam (mMMSE, Stern et al., 1987),
indicating absence of cognitive impairment that would impair
every day function, but we acknowledge that the mMMSE is not
equivalent to a full clinical adjudication of cognitive impairment
or dementia, (3) right handedness, as defined by at least a 75% on
the Edinburgh Handedness Questionnaire (Oldfield, 1971), (4) a
score <3 on the Geriatric Depression Scale (Yesavage et al., 1983;
Shiekh and Yesavage, 1986), (5) normal color vision and a visual
acuity of at least 20/40, (6) informed consent, as approved by
the University of Illinois Institutional Review Board. Participants
were also required to meet magnetic resonance imaging (MRI)
safety criteria, including no history of head trauma, head or neck
surgery, diabetes, neuropsychiatric or neurological conditions
(e.g., claustrophobia or brain tumors), as well as not having
any ferrous metallic implants that could cause injury due to
the magnetic field. All participants were compensated for their
participation. Our participant sample consisted of 128 older
adults.

Cardiorespiratory Fitness Assessment
Consent from a personal physician was required before
participants could engage in the cardiorespiratory fitness
assessment. Graded maximal exercise testing on a motor-driven
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treadmill was used to assess cardiorespiratory fitness (VO2 max).
To begin the test, the participant walked slightly faster than
their normal walking pace (∼30–100 m/min) and every 2 min
the grade increased by 2%. Medical personnel continuously
monitored the participant’s oxygen uptake, heart rate, and
blood pressure. Before the treadmill test, resting heart rate
was measured while the participant was in a supine position
after electrocardiogram preparation. Oxygen uptake (VO2) was
measured from expired air samples taken at 30 s intervals
until maximal VO2 (VO2 max) was attained or to the point of
test termination due to symptom limitation and/or volitional
exhaustion. VO2 max was defined was the highest recorded
VO2 measurement when at least two of the three criteria
were met: (1) plateau in VO2 peak between two or more
workloads, (2) respiratory exchange ratio of greater than 1.00,
and (3) a heart rate equivalent to their predicted maximum (i.e.,
220 – age).

Imaging Methods
Functional MRI (fMRI) scans were acquired during an event-
related dual-task paradigm. The dual-task is a task that provides
a measure of executive function that requires maintenance and
coordination of two tasks as well as inhibition of inappropriate
responses. As shown in Figure 1, the dual-task paradigm
consisted of two discrimination tasks and two conditions. The
letter discrimination task was discrimination between “A” or “B”
and the number discrimination task was discrimination between
“2” or “3.” The single-task condition presented either only the
letter or only the number discrimination task and the dual-task
condition presented the letter and number discrimination tasks
simultaneously. There were 48 single-task condition trials (24
letter and 24 number) and 48 dual-task condition trials, for a
total of 96 trials. To respond, participants used their right index
finger for “A” and right middle finger “B” and their left index
finger for “2” and left middle finger for “3.” The number and letter
stimuli were randomly presented above or below the location
of the prior central fixation cross. When only a single stimulus
was presented an “∗” held the place of the second stimulus to
display a constant number of visual stimuli across condition

FIGURE 1 | A graphic illustration of the dual-task paradigm. The first
and third panels are examples of the single-task presentation, a letter or
number discrimination, respectively. The last panel represents the dual-task
presentation consisting of both the number and letter discrimination.

types. Each trial began with a 1.5 s fixation cross followed by 3 s
stimulus presentation, within which the participant responded.
To optimize stimulus sequence and timing the inter-trial interval
(ITI) ranged from 1.5 to 12 s with a mean ITI of 3.3 s. The
participants were instructed to respond to the stimuli as fast
and as accurately as possible with the button press on the MR-
compatible response pad and the task stimuli were presented
withMRI-safe fiber optic goggles (Resonance Technologies, Inc.).
Brief practice on the task was conducted before the participant
entered into the MR scanner to orient the participant to the
task.

The conditions, trial types, and location of stimuli were
randomized and first order counterbalanced. Performance
measures of median response time and error rate were collected
for the single-task and dual-task condition types. Median
response time was used to reduce the influence of outliers.
To reduce the dimensionality of the performance measures,
a summed z-score of response time and error rate for each
condition, Zsingle and Zdual, were calculated and used as the
primary performance outcomes.

During the task, T2∗ weighted images were acquired using a
fast echo-planar imaging (EPI) sequence with blood oxygenation
level dependent (BOLD) contrast (64 × 64 matrix, 4 mm slice
thickness, TR = 1500 ms, TE = 26 ms, flip angle = 60). A total of
414 volumes were acquired per participant (∼4.6 min).

Additionally, for all participants a high resolution T1-
weighted structural brain image was acquired with a 3D
(Magnetization Prepared Rapid Gradient Echo Imaging
(MPRAGE) protocol with 114 contiguous axial slices, collected
in ascending fashion parallel to the anterior and posterior
commissures, echo time (TE) = 3.87 ms, repetition time
(TR) = 1800 ms, field of view (FOV) = 256 mm, acquisition
matrix 192 mm × 192 mm, slice thickness = 1.3 mm, and flip
angle = 8◦. All images were collected on a 3T head-only Siemens
Allegra MRI scanner.

Image Analysis
fMRI Preprocessing
FSL 5.0.4. (FMRIB’s Software Library1) was used for fMRI data
preprocessing. MELODIC 3.13 (Multivariate Exploratory Linear
Optimized Decomposition into Independent Components) and
FIX 1.05 (FMRIB’s ICA-based Xnoiseifier) were used to reduce
data artifacts (Smith et al., 2004; Salimi-Khorshidi et al., 2014).
Within the MELODIC analysis, the following preprocessing steps
were conducted: rigid body motion correction using MCFLIRT
(Jenkinson et al., 2002), removal of non-brain structures using
the brain extraction technique (BET; Smith, 2002), and temporal
filtering with a high pass frequency cut off of 90 s. FIX was used as
a semi-automatic ICA classification analysis and a representative
subsample of 25 participants were used create a FIX training
dataset. The subsample did not differ in age, sex, education, or
mMMSE from the rest of the sample. The ICA components of
the subsample were visually inspected and classified as ‘noise’
or ‘signal’ according to criteria explained in Kelly et al. (2010).
The FIX training dataset was then applied to the remaining

1www.fmrib.ox.ac.uk/fsl
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participants to reduce data artifacts. The ‘cleaned’ data was then
spatially smoothed with a 6.0-mm full-width at half-maximum
(FWHM) Gaussian kernel.

Registration
For each participant a two-step registration process was used
to register all imaging data to the standard stereotaxic space
of the 152T1 Montreal Neurological Institute (MNI) template.
The first step was the registration between each participant’s
low-resolution EPI image and the high-resolution T1 structural
image. The second step was the registration between the
participant’s high-resolution T1 structural image and the study
specific template in the standard stereotaxic space of the 152T1
MNI template. The study-specific template was created using
the representative subsample of the 25 subjects that were used
to create the FIX training dataset. To create the study specific
template each participant’s high-resolution T1 structural image
was warped to standard stereotaxic space of the 152T1 MNI
template via FLIRT, then an average of the registered high-
resolution T1 images was created and spatially smoothed with
a 6.0-mm FWHM Gaussian kernel. The study template was
used to minimize the amount of warping during registration,
to protect against registration bias, and to avoid registration
complications in registering older adults to the MNI template.
The registration process used FLIRT 12-parameter affine linear
registration (Jenkinson and Smith, 2001; Jenkinson et al.,
2002).

General Linear Model Analysis
After completing preprocessing and registration, the data were
entered into the individual lower-level analysis with FEAT
6.00 (FMRI Expert Analysis Tool2) to measure brain activation
during dual-task processing. The trial onsets of the single-
task and dual-task trials were convolved with a double gamma
hemodynamic response function (HRF) to create the distinct
predictor models of the single-task and dual-task conditions.
Additionally, error trials were modeled as a separate predictor of
no interest. Four linear contrasts were produced: (1) single-task
activation greater than fixation baseline, (2) dual-task activation
greater than fixation baseline, (3) single-task activation greater
than dual-task activation (single > dual), and (4) dual-task
activation greater than single-task activation (dual > single).
The contrasts generated four lower-level statistical parametric
maps thresholded with a z-score of 2.33 and cluster threshold of
p < 0.05. Based on our hypothesis that the dual-task will invoke
differential brain activity compared to the single-task, the fourth
contrast of dual > single was our contrast of interest.

Next, the four individual lower-level statistical parametric
maps were used as inputs for a higher-level mixed-effects whole
brain group analyses using FLAME (within FEAT; Beckmann
et al., 2003). Within the regression analysis, cardiorespiratory
fitness was used as our predictor of interest to examine
where brain activation associated with dual-task processing was
associated with individual differences of cardiorespiratory fitness.
All group maps were thresholded with a z-score of 2.56 and

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT

cluster threshold of p < 0.05. Additionally age, sex, education
(as these variables have been found to relate to cardiorespiratory
fitness), and a voxel-wise gray matter partial volume images
were included as covariates of no interest in the model. The
gray matter partial volume images were used to ensure that
individual differences in gray matter volume did not confound
the results. The gray matter partial volume images were created
by segmenting the MPRAGE image into gray, white, and CSF
values using FSL’s automated segmentation technique (FAST) and
then smoothing these images with a 6.0-mm FWHM kernel. The
resulting clusters from the whole brain fMRI group analysis were
used as regions of interest (ROI) in the subsequent analyses. In
a secondary analysis of these ROIs, we explored the possibility
that the activation patterns mediated the association between
cardiorespiratory fitness and dual-task performance.

Statistical Analysis
A repeated measures ANOVA was used to examine differences
in response times and error rates between the single-task
and dual-task conditions. To investigate the relationship
between brain activation during dual-task processing
and dual-task performance we conducted hierarchical
multiple linear regressions. Analyses included age, sex, and
education as covariates, given significant correlations between
cardiorespiratory fitness and age, sex, and education. For all
regression analyses, standardized β-values and p-values are
reported as well as t-values when relevant.

A secondary mediation analysis was conducted to examine
whether brain activation during dual-task processing mediated
the association between cardiorespiratory fitness and dual-
task performance. A mediation analysis is a hypothesis-driven
model that describes a proposed mediating variable (M: brain
activation during dual-task processing) that indirectly associates
the independent variable (IV: cardiorespiratory fitness) and
dependent variable (DV: dual-task performance). In the model,
the coefficients of a and b represent the relationship between
the IV and M, and the M and DV, respectively. It is now
accepted that mediation analyses do not require an initial
association between the IV and DV (Gelfand et al., 2009; Zhao
et al., 2010; Rucker et al., 2011). Bootstrapping procedures
were used to calculate the indirect effect to minimize problems
attributed to a modest sample size (cf. MacKinnon, 2000;
MacKinnon et al., 2004). Additionally, bootstrapping statistics
make no a priori assumptions about the distribution of the
paths a, b, and their product ab and demonstrate increased
power without increasing Type 1 error rate (indirect effect;
Preacher and Hayes, 2008a,b). The analysis was implemented
using the PROCESS macro for SPSS developed by Preacher
and Hayes3. Briefly, an empirical estimation of the sampling
distribution of the product of the a and b path (ab∗) was
generated by taking a new sample of size n with replacement
from the available sample. Then, the a and b estimates were
used to calculate ab∗, the indirect effect of cardiorespiratory
fitness on dual-task performance, in a single resample of size n
from the original data. This process was repeated k times (i.e.,

3www.quantpsy.org
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k = 10,000 bootstrap resamples). The distribution of ab∗ served
as an empirical non-parametric approximation of the sampling
distribution of the indirect effect. The 95% bias corrected and
accelerated confidence interval (corrected for both median bias
and skew; Efron, 1987) of the indirect effect are derived by
sorting the ab∗ values from low to high and defining the lower
[0.5 × (1 − 0.95) × 10,000 = 250th value in the sorted ab∗
distribution] and upper [1 + 0.5× (1 + 0.95) × 10,000 = 9,751st
value] bounds. The null hypothesis of no indirect effect was
tested by determining whether zero was within the confidence
interval. If this is not the case, then there is evidence for a
significant indirect effect. All models controlled for age, sex, and
education. An alpha level of p < 0.05 and the 95% confidence
interval of the indirect effect was used to determine significant
effects. All behavioral data were analyzed with SPSS21.0 for Mac
Computer.

Results

Participant demographics and cardiorespiratory fitness data are
presented in Table 1. Cardiorespiratory fitness was associated
with age (r = −0.33, p < 0.05), sex (rpb = −0.51, p < 0.05) and
education (r = 0.31, p < 0.05); these variables were thus used as
covariates in all analyses.

A repeated measures ANOVA was used to investigate
performance differences between the single-task and dual-task.
The main effect of condition for response time was significant
[F(1,124) = 7.41, p < 0.05] suggesting the dual-task generated
slower a response time (median= 1.95 s, SD= 0.23) compared to
the single-task (median = 1.16 s, SD = 0.16). However, the main
effect of condition for error rate [F(1,124) = 0.854, p > 0.05] was
not significant.

Additionally, linear regressions were used to relate response
time and error rate within each condition. There was a significant
positive relationship between response time and error rate for
both the single-task [β = 0.26, t(123) = 3.03, p < 0.01] and dual-
task [β = 0.56, t(123) = 7.39, p < 0.01] while controlling for
age, sex, and education. These results supported our reasoning for
creating a combined z-score for response time and error rate for
each condition because participants with shorter response time
also exhibited lower error rates, or better overall performance.

Cardiorespiratory Fitness and Dual-Task
Performance
Higher cardiorespiratory fitness was associated with better
performance only on the more difficult dual-task condition

TABLE 1 | Demographics.

Demographic Mean (SD) Range

Age (years) 66.11 (5.54) 59–80

Education (years) 15.96 (2.93) 8–16

Sex (% Female) 67.2% –

mMMSE 55.18 (1.61) 51–57

VO2max (mL/kg/min) 21.26 (4.77) 12.9–34.7

[Zdual: β = −0.25, t(126) = −2.9, p < 0.01], not the single-task
condition [Zsingle: β = −0.16, t(126) = −1.76, p > 0.05].
The association between cardiorespiratory fitness and dual-task
performance did not remain significant when controlling for age,
sex, and education [β = −0.13, t(123) = −1.2, p > 0.05]. Our
sample represents healthy, but low active older adults. Thus,
our analysis may be underpowered to detect an association
between cardiorespiratory fitness and dual-task performance
while controlling for our covariates, moreover, this does not
prevent further investigation with a mediation model (Hawkins
et al., 1992; Rucker et al., 2011).

Cardiorespiratory Fitness and Brain Activation
As predicted, the whole brain group analysis revealed that
our main contrast of interest dual > single produced four
clusters that were associated with individual differences in
cardiorespiratory fitness (see Table 2). The four clusters were
used as ROIs in our subsequent hierarchical multiple linear
regressions and mediation analyses. Brain activation related to
dual-task processing was represented as a subtraction of dual-
task percent signal change minus single-task percent signal
change. The whole brain analysis also indicated that the opposite
contrast, single > dual did not result in any association between
cardiorespiratory fitness and brain activation.

Figure 2 illustrates the four distinct clusters of activation
that were positively associated with cardiorespiratory fitness,
which included the anterior cingulate cortex (ACC) and
supplementary motor cortex (SMA), thalamus and basal ganglia,
right motor/somatosensory cortex and middle frontal gyrus
(MFG), and left somatosensory cortex.

FIGURE 2 | Brain activation patterns associated with higher levels of
cardiorespiratory fitness and dual-task processing. The brain figure
shows the four clusters of activation anterior cingulate and supplementary
motor cortex (ACC and SMA; blue), thalamus and basal ganglia (yellow), right
motor/somatosensory cortex and middle frontal gyrus (MFG; green), and left
somatosensory cortex (teal).
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TABLE 2 | Statistical peaks for brain activation patterns associated with higher levels of cardiorespiratory fitness and dual-task processing.

Montreal Neurological Institute (MNI)
peak coordinates

Region Cluster Size (#voxels) Max Z X (mm) Y (mm) Z (mm)

Anterior cingulate and supplementary motor cortex (ACC/SMA) 541 3.81 6 −2 50

Thalamus/Basal ganglia 757 3.57 −12 −18 10

Right motor/somatosensory cortex and MFG 406 3.99 50 −18 56

Left somatosensory cortex 331 4.78 −46 −24 56

Brain Activation and Dual-task Performance
Hierarchical multiple linear regressions were used to investigate
the associations between dual-task performance and brain
activation during dual-task processing in the four ROIs
(ACC/SMA, thalamus/basal ganglia, right motor/somatosensory
cortex and MFG, and left somatosensory cortex), controlling for
age, sex, and education. To predict dual-task performance, the
covariates (age, sex, and education) were entered as the first
step and the four dual-task processing ROIs were entered as the
second step. Both steps were significant [Step1: F(3,127) = 5.04,
p < 0.05; Step 2: F(7,127) = 3.56, p < 0.05]. The addition
of the four ROIs from the first to second step, resulted in a
marginal increase of 6.3% of explained variance within dual-
task performance [�R2 = 0.063, �F(4,120) = 2.23, p = 0.06].
The analysis also revealed that only the ACC/SMA ROI was
significantly related with dual-task performance [β = −0.218,
t(120) = −2.03, p < 0.05], which suggests that greater activation
in the ACC/SMA had the strongest association with better dual-
task performance as shown in Figure 3.

Therefore, an additional hierarchical multiple regression was
conducted to discover the additional variance that the ACC/SMA
ROI explained beyond the covariates and other three ROIs.
The first step consisted of the covariates and the three ROIs
unrelated to performance and the second step included the
ACC/SMA ROI into the model. Both steps were significant
[Step1: F(6,127) = 3.38, p < 0.05; Step 2: F(7,127) = 3.56,
p < 0.05]. With the addition of the ACC/SMA ROI to the model,

FIGURE 3 | Scatter plot of dual-task processing and performance (raw
data). The plot illustrates the significant association between dual-task
processing within the ACC/SMA and better dual-task performance (negative
Zdual indicates faster RT and lower error rates).

there was a significant increase of 2.9% of explained variance
in dual-task performance [�R2 = 0.029, �F(1,120) = 4.13,
p < 0.05].

Mediation Analysis
A mediation analysis was conducted as a secondary analysis
to explore whether brain activation during dual-task processing
mediated the association between cardiorespiratory fitness and
dual-task performance. Of the four ROIs investigated, the
ACC/SMA ROI emerged as a possible mediator because it
was related to both cardiorespiratory fitness and dual-task
performance. We acknowledge that the total effect between
cardiorespiratory fitness and dual-task performance was not
statistically significant after controlling for age, sex, and
education; however, this is not a requirement to test mediation
(Zhao et al., 2010; Rucker et al., 2011). Our mediation model
was guided by theory with evidence that supports an association
between exercise and dual-task performance (Hawkins et al.,
1992). Thus, the model specifically addressed whether greater
ACC/SMA activation (M) mediated the relationship between
higher cardiorespiratory fitness (IV) and better dual-task
performance (DV), while controlling for age, sex, and education.
The ACC/SMA ROI significantly mediated the association
between cardiorespiratory fitness and dual-task performance
(indirect effect = −0.043; 95% CI = −0.082 to −0.012). Figure 4
summarizes the coefficients, point estimates, and 95% bias-
corrected and accelerated bootstrap confidence intervals of the
mediation model. These findings support that greater activation
within the ACC/SMA help to facilitate the relationship between
cardiorespiratory fitness and better cognitive performance.

Discussion

Higher levels of cardiorespiratory fitness have been associated
with enhanced task-related brain activation in older adults
(Colcombe et al., 2004; Prakash et al., 2011). However, it is
unknown how this relationship relates to aspects of executive
function performance in older adults. In the present study,
we report a positive association between cardiorespiratory
fitness and activation during dual-task processing within the
ACC/SMA, thalamus/basal ganglia, right motor/somatosensory
cortex and MFG, and left somatosensory cortex. Furthermore,
ACC/SMA brain activation mediated the association between
cardiorespiratory fitness and dual-task performance. Although
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FIGURE 4 | Mediation model. ACC/SMA as a mediator of the effect of
cardiorespiratory fitness on dual-task performance. The 95% bootstrap
confidence intervals of the indirect effect: −0.082, −0.012. The confidence
intervals did not include zero, indicating reliable mediations (dashed arrow).
Coefficients for all paths are unstandardized. c path: total (direct) effect of
independent on dependent variable; a path: effect of independent on the
mediator variable; b path: effect of the mediator on dependent variable; c′
path: indirect effect of independent on dependent variable through a mediator.
ab∗ : point estimate of the indirect effect of independent on dependent variable
through a mediator (i.e., the multiplication of the paths a and b).

the overall relationship between cardiorespiratory fitness
and dual-task performance did not remain significant after
controlling for various covariates, the results suggest that
cardiorespiratory fitness facilitates behaviorally relevant
modulation of brain activation. The four ROIs are areas that
support dual-task processing in older adults, thereby extending
previous findings of enhancement of behavioral indicators of
dual-task performance, an important aspect of executive control,
in older adults (Hawkins et al., 1992).

The present study demonstrates that components of the
cognitive control network elicited by the dual-task paradigm are
sensitive to cardiorespiratory fitness in older adults. Executive
functioning is supported by the cognitive control network,
which includes the ACC/SMA, PFC, premotor cortices, and
the posterior parietal cortex. This cognitive control network is
evoked by various task demands (Koski and Paus, 2000; Cole and
Schneider, 2007; Niendam et al., 2012) and is also present during
rest (Margulies et al., 2007). Here, higher cardiorespiratory fitness
was related to greater activation in the dual-task condition
relative to the single-task condition within the ACC/SMA,
thalamus/basal ganglia, right motor/somatosensory cortex and
MFG, and left somatosensory cortex, which overlap with areas
within the cognitive control network. Of these brain regions
where activation was related to cardiorespiratory fitness, only the
ACC/SMAwas positively associated with dual-task performance.
Dosenbach et al. (2006) described the dorsal ACC and insula
as core cognitive control regions because activity within those
regions was sustained across a variety of task conditions. Other
studies also connect the ACC to cognitive control or executive
functions, such as multi-tasking (Medeiros-Ward et al., 2015),
inhibition (Garavan et al., 2002), conflict monitoring (Kerns et al.,
2004), error detection (Brown and Braver, 2005), and response
selection (Paus et al., 1993; Milham et al., 2001). These studies
provide evidence that the ACC/SMA may serve a unique role
within the cognitive control network and dual-task processing.

We are not the first to suggest that the structure and function
of the ACC is specifically sensitive to cardiorespiratory fitness in
older adults. A number of longitudinal studies have demonstrated
that the ACC exhibits a preferential change in both structure
and function across time associated with exercise training. For
example, older adults who participated in a walking program,
3 days per week for 6 months, had a significant increase in dorsal
ACC/SMA regional brain volume, compared to a stretching and
toning group (Colcombe et al., 2006). Additionally, Chapman
et al. (2013) reported that 3 months of physical training exercise
resulted in increased blood flowwithin the rostral ACCcompared
to a wait-list control group. Lastly, 4 months of exercise was
associated with greater functional connectivity between the
rostral ACC and the hippocampus, relative to a non-exercise
group (Burdette et al., 2010). Despite the differences in the region
of the ACC impacted by exercise, together these studies support
that ACC is responsive to cardiorespiratory fitness and exercise
interventions.

Cross-sectional studies have also linked ACC brain structure
and function to cardiorespiratory fitness in older adults. One
study demonstrated that fractional anisotropy, a measure of
cerebral white matter integrity, within the middle cingulate
cortex was positively associated with cardiorespiratory fitness in
older adults (Marks et al., 2011). Additionally, older adults with
higher and lower cardiorespiratory fitness differentially recruited
the ACC during a selective attention task (Colcombe et al.,
2004). Specifically, higher fit older adults exhibited reduced ACC
activation and greater frontal-parietal activation compared to the
lower fit older adults, which was interpreted as more effective
attentional recruitment and less conflict compared to the lower
fit older adults (Colcombe et al., 2004). In contrast, our data
suggest that greater ACC activation during dual-task processing
was associated with higher cardiorespiratory fitness and better
dual-task performance. The different relationship between ACC
activation and performance in these two studies may be a result
of the nature of the tasks that subjects were performing –
selective attention (i.e., focusing attention on a subset of stimuli
in the display) in the Colcombe et al. (2004) study and dividing
attention across the display, and multiple tasks, in the present
study. Collectively, these studies provide additional evidence that
the ACC region is sensitive to cardiorespiratory fitness. It may
be that cardiorespiratory fitness alters the dynamic range of
neural recruitment to improve neural efficiency and cognitive
performance specific to the cognitive demands encountered in
different tasks.

Our results extend the idea that the ACC/SMA region
is particularly sensitive to cardiorespiratory fitness and
important in executing cognitive control to manage tasks
performed concurrently. We demonstrate that cardiorespiratory
fitness related ACC/SMA activation serves to promote better
cognitive performance by modulating cognitive control
required during dual-task performance. A variety of dual-
task paradigms elicited PFC and parietal activation during
dual-task processing which was associated with dual-task
performance. Specific PFC areas included the dorsal lateral
prefrontal cortex (DLPFC) and ACC/SMA (D’Esposito et al.,
1995; Adcock et al., 2000; Bunge et al., 2000; Szameitat et al., 2002;
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Schubert and Szameitat, 2003; Erickson et al., 2005). Whereas
previous studies investigating dual-task brain function mainly
focused on the DLPFC, converging evidence suggest that the
ACC/SMA is associated with cardiorespiratory fitness, dual-
task performance, and cognitive control. Within our dual-task
paradigm greater ACC/SMA activation may be related to at
least two aspects of dual-task performance, the maintenance and
coordination of rules for the two distinct tasks, and mapping
of the task-related stimuli to the appropriate motor responses
(Paus et al., 1993, 1998; Picard and Strick, 1996). Performing
simultaneous or demanding tasks elicit ACC recruitment, which
may be associated with the increased possibility of error and
conflict (Carter et al., 1998; Kerns et al., 2004). Greater ACC
activation may serve to monitor processing and performance
to modulate cognitive control by promoting active maintenance
and coordination of multiple tasks. Consequently, our results
suggest that the brain activation in ACC/SMA during dual-task
processing mediated the relationship between cardiorespiratory
fitness and dual-task performance by promoting greater cognitive
control and improved performance monitoring as well as faster
motor responses.

Whereas our study is the first to demonstrate that
ACC/SMA brain activation mediated the association between
cardiorespiratory fitness and dual-task performance, it must be
viewed in the context of some limitations. First, it is important
to note that fMRI detects changes in blood flow as an indirect
measure of neuronal activity to measure brain activation.
Differences in brain activation could be interpreted to reflect
blood flow differences associated with cardiorespiratory fitness
level rather than differences in neuronal function. However,
if that were true, increased cardiorespiratory fitness would
likely result in a global, non-specific increase in task-related
brain activation. The dual-task processing results challenge
such an idea by describing that cardiorespiratory fitness was
associated with specific regional differences in task-related
brain function. Additionally, we acknowledge while our sample
of older adults is healthy, they are low active. Based on the
American College of Sports Medicine the cardiorespiratory
fitness level of our sample mean (21.26 ml/kg/min) is below
the 50th age and sex predicted percentile (American College of
Sports Medicine et al., 2010). Hence, we may be underestimating

the associations with cardiorespiratory fitness and in future
studies it would be beneficial to include a larger range of
cardiorespiratory fitness levels. The cross-sectional nature of
our study limits the casual conclusions that can be drawn,
highlighting the importance of longitudinal randomized control
trials. Furthermore, future research is needed to understand the
neurobiological mechanisms by which cardiorespiratory fitness
is associated with brain activation in older adults. Animal models
have demonstrated that exercise promotes neurogenesis (van
Praag et al., 2005), angiogenesis (Ding et al., 2006a), synaptic
plasticity coupled with increased production of growth factors
(e.g., brain-derived neurotrophic factor, insulin-like growth
factor; Ding et al., 2006b; Marlatt et al., 2012), and reduced
inflammation (da Silva et al., 2013). The extent to which these
neurobiological mechanisms account for the positive effects
of cardiorespiratory fitness on the aging human brain requires
future exploration.

Our findings suggest that brain activation during dual-
task processing is associated with individual differences in
cardiorespiratory fitness and is directly relevant to dual-task
performance in older adults. In particular, we report that higher
cardiorespiratory fitness is associated with greater ACC/SMA
brain activation, better cognitive control and more specifically,
higher levels of dual-task processing. Our work is directly
applicable to the growing older adult population, in that, an
active lifestyle that supports cardiorespiratory fitness may be
an effective and accessible way to combat the negative aspects
of the cognitive aging process. Consequently, older adults with
greater cardiorespiratory fitness may be able to maintain their
independence and continue to positively contribute to society.
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