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Although regional alpha power and asymmetry measures have been widely used as
indices of individual differences in emotional processing and affective style in younger
populations, there have been relatively few studies that have examined these measures
in older adults. Here, we examined the short-term test–retest reliability of resting regional
alpha power (7.5–12.5 Hz) and asymmetry in a sample of 38 active, community-dwelling
older adults (M age = 71.2, SD = 6.5 years). Resting electroencephalogram recordings
were made before and after a perceptual computer task. Pearson and intra-class
correlations indicated acceptable test–retest reliability for alpha power and asymmetry
measures in all regions. Interestingly, alpha asymmetry appeared to be less affected by
the task than was alpha power. Findings suggest that alpha asymmetry may reflect more
enduring, “trait-like” characteristics, while alpha power may reflect more “state-like”
processes in older adults.

Keywords: psychophysiology, aging, test–retest reliability, electroencephalogram (EEG), alpha power, frontal
asymmetry

Introduction

During relaxed wakefulness, the human electroencephalogram (EEG) is dominated by oscillations
in the alpha frequency band (∼7.5–12.5 Hz). Resting alpha activity is reported to be unique to the
individual (Benz et al., 2013), heritable (Smit et al., 2005; Anokhin et al., 2006), and stable (Salinsky
et al., 1991). In certain conditions, however, individual differences in resting alpha activity reflect
internal changes such as increasing fatigue (Simon et al., 2011), or reduced anxiety (Boutcher and
Landers, 1988; Crabbe and Dishman, 2004), for instance, following the performance of demanding
cognitive or physical tasks. Although these overall patterns are well-documented in younger adults,
relatively little is known about alpha activity among healthy older adults.

Extant reports suggest that resting alpha activity is lower in older than younger adults (Sander
et al., 2012), and further reduced in the presence of cognitive impairment (Koenig et al., 2005).
Furthermore, the ability to modulate alpha power does not come easily to older adults (e.g.,
suppressing the processing of irrelevant information, Vaden et al., 2012; cf. Payne et al., 2013),
and tends to break down readily under high-load conditions (Sander et al., 2012). Resting alpha
activity appears to be both vulnerable to increased age and sensitive to the demands of effortful
cognitive processing and physical activity.
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Other studies have used the pattern of resting frontal EEG
alpha asymmetry to understand dispositional mood and affective
processing (e.g., Sutton and Davidson, 1997; Coan and Allen,
2004). For example, relatively greater frontal activity in the
left hemisphere has been associated with behavioral approach
and positive affect, whereas greater right-sided activity has
been associated with behavioral inhibition and negative affect
(Davidson, 1992, 2000; Sutton and Davidson, 1997). Frontal EEG
asymmetry at rest has also been characterized as a diathesis
that may be modified by salient stimuli of sufficient intensity
(Petruzzello et al., 2001). For example, frontal alpha asymmetry
is susceptible to procedures such as emotion induction via
the use of emotional film clips (e.g., Wheeler et al., 1993)
or specific training (e.g., Davidson et al., 2003), in younger
adults. Frontal asymmetry also appears to be responsive to
interventions such as mindfulness mediation training (Davidson
et al., 2003), and cognitive behavior therapy (CBT; Moscovitch
et al., 2011), which have been reported to sustain (Moynihan
et al., 2013) or even increase left frontal asymmetry (Davidson
et al., 2003).

Although studied far less frequently in older adults, relatively
greater left frontal activity in this age group has been
associated with facets of well-being, including life-satisfaction,
autonomy, and engagement (Urry et al., 2004). In younger
adults, such elements of well-being have been related to
behavioral approach tendencies, sociability, and positive affect
(e.g., Schmidt, 1999).

Although acceptable test–retest reliability of these measures
has been demonstrated across different contexts (Schmidt et al.,
2003), in younger adults (Tomarken et al., 1992; McEvoy et al.,
2000; Winegust et al., 2014), children (Vuga et al., 2008), and
in some clinical populations (e.g., Allen et al., 2004; Vuga et al.,
2006; Schmidt et al., 2012), relatively few studies have examined
short-term test–retest reliability of regional EEG alpha power and
asymmetry measures in older individuals. If relatively greater left
frontal asymmetry at rest is a reliable measure of psychological
(Urry et al., 2004) and physiological (Davidson et al., 2003)
well-being in older adults, then these metrics should show
acceptable levels of test–retest reliability within the individuals
tested. Examining the test–retest reliability of alpha measures is
a first step in ensuring their psychometric soundness in older
adults.

The Present Study
Here, we assessed the short-term test–retest reliability of resting
regional EEG alpha power and asymmetry measures in a
community-dwelling sample of older adults, with particular
attention to brain activity in the frontal regions. We examined
resting regional alpha power and relative asymmetry before and
after a challenging perceptual task. At the level of individual
differences, moderate to strong correlations were expected
between pre- and post-task resting conditions for both alpha
power and asymmetry. Given that resting frontal asymmetry is
described as dispositional (in the absence of intentional mood
induction or interventions), asymmetry in frontal regions was
expected to be correlated (i.e., reliable) between pre- and post-
task conditions. Resting alpha power was expected to be more

easily altered by the intervening task. As alpha power may
increase due to fatigue, relaxation, or reduced anxiety following
completion of a challenging task (Crabbe and Dishman, 2004),
we anticipated that post-task levels of resting alpha power would
be higher than pre-task levels.

Materials and Methods

Participants
Forty-one (20 females) older adults (M = 71.5 years,
SD = 6.5 years, range: 61–86 years) were tested in the Vision and
Cognitive Neuroscience Laboratory at McMaster University. All
participants reported normal health, being free of neurological
or psychiatric disorders, and living in the local community. Data
from three participants were excluded because they did not have
sufficient segments in either the pre- or post-task EEG recordings
(<40, Towers and Allen, 2009), leaving data from 38 participants
available for analysis. Sample characteristics are presented in
Table 1.

Procedures
Participants were introduced to the laboratory at McMaster
University and briefed about the study procedures. Informed
consent was obtained prior to testing. Throughout the testing
session, participants were seated in a comfortable chair in a
dimly-lit, copper-shielded room maintained at a comfortable
temperature. Regional EEG data were continuously recorded
during seated rest, prior to performance of a visual perception
task (T1), and immediately following the task (T2), as part of
a larger ERP study. Following the EEG testing, resting blood
pressure and a brief cardiac recording were taken, after which
participants completed several questionnaires for use in the larger
study. Upon completion of testing, participants were debriefed
and given a nominal reimbursement for their time and travel
expenses. The study received clearance from the McMaster
Research Ethics Board.

Regional EEG Data Collection and Reduction
EEG Recording
Resting EEG data were recorded continuously using a 256-
channel HydroCel Geodesic Sensor Net [Electrical Geodesics,
Inc., Eugene, OR, USA (EGI)] during a 6-min baseline before

TABLE 1 | Sample characteristics.

Women (n = 19) Men (n = 19)

Mean (SD) Range Mean (SD) Range

Age in years 70.6 (7.0) 25 71.9 (6.2) 20

Education in years 15.2 (3.2) 12 14.7 (2.8) 9

Handedness Score 7.6 (0.7) 2 7.4 (1.7) 7

Medication use n (%) 13 (68%) 12 (63%)

(a) A score of 8 on the handedness inventory (scale 0–8) indicates consistent right
handedness, whereas a score of 0 indicates consistent left-handedness.
(b) Medication use represents the proportion of the sample taking prescribed
medications.
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and after the visual perceptual task, alternating 1-min intervals
between eyes-closed (EC) and eyes-open (EO) conditions. During
acquisition, impedances were kept below 50 k�, in accord
with recommendations in the Electrical Geodesics, Inc. (2006)
published by EGI. EEG signals were sampled at 250 Hz,
referenced to the vertex (Cz), digitized with a 16-bit analog-to-
digital converter (ADC), and hardware-filtered using an analog
filter from 0.01 to 100 Hz. Participants were instructed to relax
and minimize movements.

EEG Data Reduction
Offline, any channel with consistent artifact was interpolated
from the channel’s nearest neighboring sites prior to further
analysis using Brain Vision Analyzer 2.0.4 (Brain Products,
GmbH, Gilching, Germany). EEG data were band-pass filtered
between 0.1 and 50 Hz, the sampling rate was changed from 250
to 256 Hz, noisy channels were interpolated, and the data were
edited for artifacts, using a ±200 μV criterion. If artifacts were
present in one channel, data in all channels were excluded for that
epoch. Artifact-free EEG data from the EC and EO conditions
were analyzed separately using a fast Fourier transform (FFT),
with a Hanning window of 1-s width with 10% overlap of epochs.
EEG power was derived for the traditional frequency bands:
delta, 0.5–3.5 Hz; theta, 3.5–7.5 Hz; alpha, 7.5–12.5 Hz; beta
12.5–30 Hz; and gamma, 30–50 Hz. Given previously reported
associations between frontal alpha asymmetry and affective
processing, power in the alpha band was of particular interest.
For each 1-min interval, EEG data were analyzed beginning 5-s
after the instruction to open or close the eyes. Estimates of EEG
power were based on an average of 229 (SD = 62) 1-s epochs,
with a minimum of 56 epochs, and averaged within the EC or EO
conditions separately.

EEG Alpha Measures
Regional Alpha Power
Electroencephalogram rhythms may be measured in terms of
power (μV2) or its square root, amplitude (μV). EEG power was
derived for all frequency bands using amplitude (μV). However,
we refer to “alpha power” from this point forward, as this term is
more commonly understood. EEG clusters of electrode channels
were identified as corresponding to each of the relevant sites
from the International 10/20 Electrode Placement System (Jasper,
1958). EEG signals for each condition (pre- vs. post-task; EC vs.
EO) were averaged separately to form local power values in the
left hemisphere for Fp1 (sites 27, 32, 33, 34, 37), F3 (sites 36, 40,
41, 42, 49, 50), F7 (39, 46, 47, 48, 54), C3 (sites 51, 52, 58, 59, 60,
65, 66), T3 (sites 63, 68, 69, 70, 74), P3 (sites 76, 77, 85, 86, 87, 97,
98), P5 (sites 84, 94, 95, 96, 105), O1 (sites 116, 123, 124, 125, 136),
and eight homologous sites in the right hemisphere (Fp2, F4, F8,
C4, T4, P4, P6, and O2). EEG power values for each (clustered)
site were natural-log (ln) transformed to normalize the data, and
reported separately for the EC and EO conditions.

Regional Alpha Asymmetry
Eight measures of regional alpha asymmetry (prefrontal, mid-
frontal, lateral frontal, central, temporal, parieto-temporal,
parietal, occipital regions) were calculated separately by

subtracting natural-log transformed regional EEG alpha power
in the left hemisphere from natural-log transformed power at
homologous sites in the right hemisphere [e.g., ln(right) power
minus ln(left) power], separately for the EC and EO conditions,
during pre- and post-task rest. EEG alpha power is inversely
related to cortical activity. Therefore, positive values of frontal
asymmetry reflect relatively greater alpha power in the right
hemisphere, indicating greater activity in the left hemisphere,
whereas negative values represent relatively greater alpha power
in the left hemisphere, indicating greater activity in the right
hemisphere (Davidson, 1992).

Results

Test–Retest Reliability of Regional Alpha
Power and Asymmetry Measures Pre- vs.
Post-Task
Mean values for pre-task (T1) and post-task (T2) alpha power and
asymmetry are presented by region for the EC and EO conditions
in Tables 2A,B, respectively.

Regional Alpha Power
Test–retest reliability between pre-task and post-task alpha power
measures was excellent for the EC and EO conditions (EC:
ICCs= 0.90–0.97, ps< 0.001; EO: ICCs= 0.84–0.95, ps< 0.001).
Importantly, measures of pre- and post-task alpha power were
also highly correlated, indicating that individual differences in
alpha power evident before the task (and their rank order) were
clearly preserved after the task (all ps < 0.001; see Table 2).

Regional Alpha Asymmetry
Test–retest reliability between pre- and post-task regional
asymmetry was very good (EC: ICCs = 0.65–0.91, ps < 0.001;
EO: ICCs = 0.53–0.86, ps < 0.001). As well, pre- and post-task
asymmetry values were highly correlated for both the EC and
EO conditions for all regions tested (all ps < 0.001; see Table 2).
Individual differences in frontal alpha asymmetry (and their rank
order) seen at T1 were well-preserved at T2, after the task (see
Figures 1 and 2).

Analysis of Resting EEG Power: Eyes Closed
Condition
Eyes-closed pre- and post-task resting EEG activity was analyzed
in a 2 × 5 × 2 × 4 omnibus ANOVA, with measurement
occasion (pre-task, T1, vs. post-task, T2), frequency (delta, theta,
alpha, beta, gamma), hemisphere (left, right), and region (mid-
frontal, central, parietal, occipital) as factors. Main effects of
measurement occasion, frequency, and region (ps < 0.001) were
qualified by two-way interactions. Frequency interacted with
measurement occasion, F(4,148) = 3.32, p < 0.03, η2p = 0.08, and
region F(12,444) = 16.97, p < 0.001, η2

p = 0.31, and the regional
effect interacted with hemisphere F(3,111) = 4.04, p < 0.02,
η2
p = 0.10, with no other effects or interactions, ps > 0.12.

Unadjusted pairwise tests indicated that EEG power was greater
in the post-task (T2: M = 0.58 μV, SE = 0.09) than pre-task
condition (T1: M = 0.35 μV, SE = 0.11; see Figures 3 and 4),
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TABLE 2 | Mean (SD) and test–retest reliability coefficients for left and right resting EEG alpha power (in µV) and regional asymmetry in older adults,
before and after task performance for (A) eyes closed and (B) eyes open conditions (n = 38).

Measure Time 1
Mean (SD)
Pre-task

Time 2
Mean (SD)
Post-task

T1 to T2 change
t-value

Pearson r
correlation

Intraclass
correlation

(A) Eyes closed (EC)

Regional power (site)

Fp1 1.34 (1.0) 1.52 (1.0) 3.51∗∗ 0.95∗∗∗ 0.95∗∗∗

F3 0.93 (1.0) 1.15 (1.0) 4.36∗∗∗ 0.96∗∗∗ 0.95∗∗∗

F7 1.20 (0.9) 1.35 (0.9) 3.20∗∗ 0.95∗∗∗ 0.95∗∗∗

C3 0.71 (1.0) 0.96 (0.9) 4.84∗∗∗ 0.96∗∗∗ 0.95∗∗∗

T3 0.79 (0.9) 1.03 (0.8) 5.15∗∗∗ 0.95∗∗∗ 0.94∗∗∗

P3 1.10 (1.1) 1.38 (1.0) 6.25∗∗∗ 0.97∗∗∗ 0.97∗∗∗

P5 1.25 (1.0) 1.50 (0.9) 5.04∗∗∗ 0.95∗∗∗ 0.95∗∗∗

O1 1.31 (1.1) 1.55 (0.9) 3.26∗∗ 0.91∗∗∗ 0.90∗∗∗

Fp2 1.38 (1.0) 1.52 (1.0) 2.71∗ 0.95∗∗∗ 0.95∗∗∗

F4 1.08 (1.0) 1.25 (0.9) 3.05∗∗ 0.94∗∗∗ 0.93∗∗∗

F8 1.28 (0.9) 1.42 (0.8) 2.88∗∗ 0.94∗∗∗ 0.94∗∗∗

C4 0.66 (0.9) 0.92 (0.8) 6.88∗∗∗ 0.97∗∗∗ 0.97∗∗∗

T4 0.84 (0.8) 1.05 (0.8) 4.35∗∗∗ 0.94∗∗∗ 0.93∗∗∗

P4 1.04 (1.1) 1.34 (1.0) 5.05∗∗∗ 0.95∗∗∗ 0.94∗∗∗

P6 1.18 (1.1) 1.47 (1.0) 5.33∗∗∗ 0.95∗∗∗ 0.95∗∗∗

O2 1.30 (1.2) 1.54 (1.0) 3.09∗∗ 0.92∗∗∗ 0.91∗∗∗

Regional asymmetry

Fp2-Fp1 0.04 (0.13) <0.01 (0.10) 2.44∗ 0.68∗∗∗ 0.65∗∗∗

F4-F3 0.15 (0.35) 0.11 (0.34) 1.41 0.84∗∗∗ 0.84∗∗∗

F8-F7 0.08 (0.26) 0.07 (0.27) 0.34 0.76∗∗∗ 0.76∗∗∗

C4-C3 −0.05 (0.47) −0.04 (0.30) 0.20 0.82∗∗∗ 0.75∗∗∗

T4-T3 0.06 (0.34) 0.02 (0.33) 1.17 0.85∗∗∗ 0.85∗∗∗

P4-P3 −0.07 (0.41) −0.04 (0.41) 1.01 0.91∗∗∗ 0.91∗∗∗

P6-P5 −0.07 (0.46) −0.02 (0.44) 1.34 0.87∗∗∗ 0.87∗∗∗

O2-O1 −0.01 (0.26) −0.02 (0.30) 0.24 0.91∗∗∗ 0.90∗∗∗

(B) Eyes open (EO)

Regional power (site)

Fp1 0.82 (0.7) 0.93 (0.7) 2.27∗ 0.90∗∗∗ 0.90∗∗∗

F3 0.24 (0.8) 0.42 (0.8) 3.45 ∗∗ 0.92∗∗∗ 0.92∗∗∗

F7 0.65 (0.7) 0.77 (0.7) 2.75∗∗ 0.93∗∗∗ 0.93∗∗∗

C3 0.12 (0.9) 0.33 (0.9) 3.09∗∗ 0.90∗∗∗ 0.89∗∗∗

T3 0.36 (0.8) 0.62 (0.8) 4.80∗∗∗ 0.92∗∗∗ 0.91∗∗∗

P3 0.27 (0.9) 0.55 (0.9) 5.26∗∗∗ 0.93∗∗∗ 0.93∗∗∗

P5 0.41 (0.9) 0.66 (0.8) 4.76∗∗∗ 0.92∗∗∗ 0.92∗∗∗

O1 0.25 (0.9) 0.48 (0.7) 3.07∗∗ 0.85∗∗∗ 0.84∗∗∗

Fp2 0.86 (0.7) 0.95 (0.7) 1.49 0.86∗∗∗ 0.86∗∗∗

F4 0.39 (0.8) 0.57 (0.7) 2.54∗ 0.86∗∗∗ 0.84∗∗∗

F8 0.70 (0.7) 0.89 (0.6) 3.23∗∗ 0.88∗∗∗ 0.87∗∗∗

C4 0.08 (0.8) 0.31 (0.8) 5.63∗∗∗ 0.95∗∗∗ 0.95∗∗∗

T4 0.40 (0.8) 0.63 (0.7) 3.92∗∗∗ 0.90∗∗∗ 0.89∗∗∗

P4 0.19 (0.9) 0.47 (0.9) 4.32∗∗∗ 0.90∗∗∗ 0.90∗∗∗

P6 0.31 (0.9) 0.58 (0.8) 4.41∗∗∗ 0.90∗∗∗ 0.90∗∗∗

O2 0.19 (0.9) 0.42 (0.8) 3.08∗∗ 0.86∗∗∗ 0.85∗∗∗

Regional asymmetry

Fp2-Fp1 0.04 (0.19) 0.02 (0.16) 0.93 0.54∗∗∗ 0.53∗∗∗

F4-F3 0.15 (0.29) 0.14 (0.32) 0.18 0.82∗∗∗ 0.81∗∗∗

F8-F7 0.06 (0.25) 0.12 (0.28) 1.57 0.58∗∗∗ 0.57∗∗∗

C4-C3 −0.05 (0.50) −0.02 (0.36) 0.57 0.80∗∗∗ 0.76∗∗∗

T4-T3 0.04 (0.36) <0.01 (0.37) 0.93 0.76∗∗∗ 0.76∗∗∗

P4-P3 −0.08 (0.25) −0.08 (0.31) 0.02 0.75∗∗∗ 0.74∗∗∗

P6-P5 −0.10 (0.33) −0.08 (0.29) 0.53 0.72∗∗∗ 0.72∗∗∗

O2-O1 −0.06 (0.24) −0.06 (0.24) 0.41 0.86∗∗∗ 0.86∗∗∗

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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FIGURE 1 | Scatterplots of the associations between mid-frontal
asymmetry in the eyes-closed, pre-task (T1), and post-task (T2)
conditions.

and greater at the alpha frequency (M = 1.14 μV, SE = 0.15)
than all other frequencies (ps < 0.01), except delta (M = 0.92 μV,
SE = 0.09), p > 0.10. EEG power was also greater in mid-frontal
(M = 0.66 μV, SE = 0.11) than central (M = 0.31μV, SE = 0.10),
p < 0.001, parietal (M = 0.33 μV, SE = 0.10), p < 0.001, or
occipital regions (M = 0.56 μV, SE = 0.10), p < 0.06. In sum,
EC resting EEG power differed by frequency, and where and
when it was measured, with a pattern that suggested mid-frontal
asymmetry in the alpha band frequency.

Because mid-frontal alpha asymmetry was of particular
interest to this study, a 2 × 2 (measurement occasion,
hemisphere) ANOVA of alpha power was performed for the mid-
frontal region. Mid-frontal alpha power was greater in the post-
task (T2: M = 1.20 μV, SE = 0.15) than the pre-task condition
(T1: M = 1.00 μV, SE = 0.16), F(1,37) = 14.62, p < 0.001,
η2
p = 0.28, and significantly greater in the right hemisphere

(M = 1.16 μV, SE = 0.15) than the left (M = 1.04 μV, SE = 0.16),
F(1,37)= 5.61, p< 0.03, η2

p = 0.13, with no interaction, ps> 0.16.
Relatively greater frontal alpha power in the right hemisphere
reflected greater left frontal asymmetry (i.e., more activity in the
left frontal region) in the EC condition.

Analysis of Resting EEG Power: Eyes-Open
Condition
Similar to the EC condition, an omnibus 2 × 5 × 2 × 4
ANOVA of EO resting EEG power yielded main effects of
measurement occasion, frequency, and region (ps < 0.01), and
significant region by frequency, F(12,444) = 23.66, p < 0.001,
η2
p = 0.39, and region by hemisphere, F(3,111) = 4.53, p < 0.02,

η2
p = 0.11 interactions. Post-task EO EEG power was higher (T2:

FIGURE 2 | Scatterplots of the associations between lateral-frontal
asymmetry in the eyes-closed, pre-task (T1), and post-task (T2)
conditions.

FIGURE 3 | Eyes-closed EEG power in the left hemisphere, by
frequency, region, and condition (T1 vs. T2).

M = 0.43 μV, SE = 0.07), than pre-task power (T1:M = 0.25 μV,
SE = 0.09; see Figures 5 and 6). Resting EO power was greater in
the delta frequency band (M = 1.13μV, SE= 0.09) than the other
frequencies, ps< 0.001, and greater in mid-frontal (M = 0.66μV,
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FIGURE 4 | Eyes-closed EEG power in the right hemisphere, by
frequency, region, and condition (T1 vs. T2).

FIGURE 5 | Eyes-open EEG power in the left hemisphere by frequency,
region, and condition (T1 vs. T2).

SE = 0.09), than the other regions, ps < 0.001, with no other
effects or interactions, ps > 0.13. Like the EC condition, EO
resting EEG power differed by frequency, and where and when it
was measured, and exhibited a pattern that suggested significant
asymmetry in mid-frontal alpha power.

FIGURE 6 | Eyes-open EEG power in the right hemisphere by
frequency, region, and condition (T1 vs. T2).

To ascertain whether asymmetry was present in the EO
condition, a 2 × 2 ANOVA of EO mid-frontal alpha power was
performed, showing that mid-frontal alpha was greater in the
post-task (T2: M = 0.50 μV, SE = 0.12) than pre-task condition
(T1:M = 0.32μV, SE= 0.13), F(1,37)= 8.96, p< 0.01, η2

p = 0.20,
and significantly greater in the right hemisphere (M = 0.48 μV,
SE= 0.12) than the left (M = 0.33μV, SE= 0.13), F(1,37)= 9.52,
p < 0.01, η2

p = 0.21, with no interaction, p > 0.85. Similarly
to the EC condition, relatively greater EO alpha activity in the
right hemisphere reflected greater left frontal asymmetry (more
activity in the left frontal region), across the group.

Overall, resting EC and EOalpha power increased significantly
following task performance in all regions tested1, and mid-
frontal alpha power was relatively greater in the right hemisphere,
reflecting left frontal asymmetry in both EC and EO conditions.

Analysis of Resting Alpha Asymmetry
Alpha asymmetry is most commonly analyzed at frontal
(prefrontal, mid-frontal, lateral-frontal), and some posterior (e.g.,
parietal) sites. Therefore, measures of resting alpha asymmetry
from six regions (prefrontal, mid-frontal, lateral-frontal, central,
parietal, occipital) were selected and submitted to a 2 × 2 × 6

1Similar to findings reviewed by Crabbe and Dishman (2004), post-task increases
in absolute alpha power were not reflected in analyses of relative alpha power.
When EC alpha power was analyzed relative to power in all the other frequencies,
a 2 × 2 × 4 (measurement occasion by hemisphere by region) ANOVA revealed
that relative EC alpha power showed a marginal decline from pre-task (T1:
M = 1.92, SE = 0.84) to post-task (T2: M = 0.35, SE = 0.17), F(1,37) = 3.50,
p < 0.07, η2

p = 0.09, with no other effects (ps > 0.25). Separate ANOVAs of EC
power in the other frequencies indicated that like EC alpha power (p < 0.001,
η2
p = 0.40), EC theta, beta, and gamma power increased following task performance

(ps< 0.001,η2
p = 0.29–0.39), in contrast to delta power (p> 0.13, η2

p = 0.06), which
did not change.
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(EC vs. EO condition by measurement occasion by region)
ANOVA. The analysis revealed only a main effect of region,
F(5,185) = 3.20, p < 0.04, η2

p = 0.08, with no other effects or
interactions, p > 0.15. Pairwise tests indicated that mid-frontal
asymmetry (M = 0.14 μV, SE = 0.05) was greater than alpha
asymmetry at all other sites (all ps< 0.03, except the lateral frontal
region (M = 0.08 μV, SE = 0.04), p < 0.07; see Figure 7). The
magnitude of parietal asymmetry (M = −0.07μV, SE = 0.05) did
not differ from than that of central (M = −0.04 μV, SE = 0.06),
or occipital asymmetry (M = −0.04 μV, SE = 0.04), ps > 0.50,
but was significantly lower than that of lateral frontal asymmetry,
p < 0.05. To test whether any of the asymmetry values differed
significantly from zero, regional asymmetry values at each site
were collapsed across the EC and EO conditions and entered in
one-sample t-tests. Only mid-frontal asymmetry at T1 and T2,
ps < 0.03, and lateral-frontal asymmetry at T2, p < 0.04, differed
significantly from zero (all other ps > 0.09).

Predictors of Pre- to Post-Task Increases in Alpha
Activity
Given that regional measures of resting alpha power were greatest
during post-task rest, an additional set of analyses was performed
to ascertain whether the increase was related to individual
characteristics, namely, age, sex, education level, handedness,
or medication status (taking prescribed medications vs. taking
none).

A series of regression analyses was performed on the pre- to
post-task change in EC alpha power at each of the 16 sites, with
age, sex, education, and handedness as independent predictors.
These analyses indicated that sex accounted for significant

FIGURE 7 | Overall EEG alpha power in the eyes-closed and eyes-open
conditions was greater at T2 than T1, and greater in the frontal right
hemisphere than the left.

variance (12–31%) in the post-task increase in alpha power
(difference scores) at virtually every site, ps < 0.05, with trends
for T3 (p < 0.09, 9%) and O2 (p < 0.06, 11%). Age, education
level, handedness, and medication status were non-significant at
every site (all ps > 0.20).

Similar results were obtained for EO alpha power. Sex
explained significant variance (11–28%) in the post-task increase
in alpha power at almost every site, ps < 0.05, with trends for
Fp2 (p < 0.06, 10%) and C3 (p < 0.11, 8%). Age, education level,
handedness, and medication status did not reach significance at
any site (all ps > 0.06) except for the increase at P5, which was
positively predicted by age (p < 0.05, 9%; see Table 3).

A 2 × 8 (hemisphere × region) ANCOVA of the power
difference scores, statistically controlled for sex, indicated that
the post-task increase in EC alpha power was larger in women
(M = 0.36, SE = 0.06) than men (M = 0.09, SE = 0.06),
F(1,36) = 10.19, p < 0.01, η2

p = 0.22, and greater in parietal
(P3, P4, P5, P6) than frontal regions (Fp1, Fp2, F3, F4, F7, F8),
all ps < 0.01 (pairwise), F(7,252) = 4.19, p < 0.01, η2

p = 0.10
(see Figure 8). Numerically, the effect size for sex exceeded that
of region. There were no interactions, ps > 0.30. The post-
task increase in EO alpha power was similar, being larger for
women (M = 0.35 μV, SE = 0.07) than men (M = 0.07 μV,
SE = 0.07), F(1,36) = 8.49, p < 0.01, η2

p = 0.19, and greater
in temporo-parietal (T3, T4, P3, P4, P5, P6), relative to frontal
regions (Fp1, Fp2, F3, F4, F7, F8), all ps < 0.03 (pairwise),
F(7,252) = 6.15, p < 0.001, η2

p = 0.15. For the EO condition, sex
interacted with hemisphere, with women showing greater right-
sided increases in alpha power relative to left-sided increases

TABLE 3 | Regression results for sex as a predictor of increased resting
EC alpha power (n = 38).

B SE sr2 B SE sr2

L Hem R Hem

Site Site

EC

Fp1 0.26∗ 0.10 0.16 Fp2 0.26∗ 0.11 0.15

F3 0.25∗ 0.10 0.16 F4 0.32∗∗ 0.11 0.20

F7 0.21∗ 0.10 0.12 F8 0.32∗∗ 0.09 0.26

C3 0.25∗ 0.10 0.16 C4 0.17∗ 0.07 0.14

T3 0.17 0.10 0.09 T4 0.22∗ 0.09 0.14

P3 0.31∗∗ 0.08 0.31 P4 0.31∗ 0.12 0.17

P5 0.30∗∗ 0.09 0.24 P6 0.31∗ 0.11 0.20

O1 0.34∗ 0.15 0.13 O2 0.31† 0.16 0.11

EO

Fp1 0.23∗ 0.10 0.13 Fp2 0.23† 0.12 0.10

F3 0.23∗ 0.11 0.13 F4 0.34∗ 0.13 0.16

F7 0.19∗ 0.09 0.11 F8 0.37∗∗ 0.11 0.27

C3 0.23 0.14 0.08 C4 0.27∗∗ 0.07 0.26

T3 0.23∗ 0.11 0.11 T4 0.30∗∗ 0.11 0.18

P3 0.34∗∗ 0.10 0.26 P4 0.35∗∗ 0.12 0.19

P5 0.30∗∗ 0.10 0.20 P6 0.40∗∗ 0.11 0.28

O1 0.38∗ 0.14 0.17 O2 0.36∗ 0.15 0.15

∗p < 0.05, ∗∗p < 0.01, †p < 0.06.
(a) Post-task increases in alpha power were larger in women than men.
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FIGURE 8 | Overall post-task increases in alpha power in the
eyes-closed and eyes-open conditions were greater in women than
men.

(R: M = 0.37 μV, SE = 0.07; L: M = 0.33 μV, SE = 0.07),
and men showing the reverse (R: M = 0.06 μV, SE = 0.07; L:
M = 0.08 μV, SE = 0.07). In contrast to the results with change
scores, parallel analyses of simple pre-task (T1) resting alpha
power revealed no sex differences for either the EC (p > 0.11)
or EO (p > 0.24) conditions. We note, though, that resting alpha
power was nominally higher inmen (EC:M = 1.33μV, SE= 0.22;
EO: M = 0.54 μV, SE = 0.18) than women (EC: M = 0.84 μV,
SE = 0.22; EO: M = 0.24 μV, SE = 0.18) at T1, prior to task
performance.

Discussion

Inherent to the notion that resting EEG alpha power and
asymmetry are validmeasures of dispositional and state processes
is the assumption that within-individual differences in these
measures remain stable across time and contexts. An initial step
in addressing their validity is to confirm their reliability. Here, we
sought to establish test–retest reliability in a sample of healthy
older adults. We found that individual differences in resting
regional EEG alpha power and asymmetry showed good-to-
excellent test–retest reliability from pre- to post-task conditions
at all sites tested. While similar test–retest reliability has been
reported in non-clinical (e.g., Tomarken et al., 1992; McEvoy
et al., 2000) and clinical (Schmidt et al., 2012) samples of younger
adults, these findings appear to be the first to demonstrate
short-term test–retest reliability of regional EEG power and

asymmetry in a sample of healthy older adults using a dense array
methodology.

The second major finding was that at virtually all of the
individual sites tested, resting alpha power increased following
performance of a perceptual task, for both the EC and EO
conditions. The topography of the increase in alpha power
indicated a global change in participants’ electrocortical resting
state in response to the intervening task, similar to that reported
by Simon et al. (2011) in drowsy drivers. We believe the increase
in alpha power following the perceptual task reported here may
be related to fatigue, similar to the increase in alpha power
that occurs after prolonged driving, another visual perception
task demanding attentional control and vigilance. In our sample,
post-task alpha power increases were more substantial in older
women than in older men, the latter of whom showed more
incremental and more variable changes (Figure 8). Because alpha
power during pre-task rest was non-significantly higher in men
than women, the larger increase in older women served to
equalize alpha power differences between sexes in the post-task
condition.

The third finding was that because the increase in alpha
power from pre- to post-task conditions was global, the balance
between alpha power in left and right frontal regions did not
change. Consistent with a large literature linking left frontal
asymmetry to behavioral approach and positive affect in young
adults, resting EEG signals in this sample of healthy older
adults exhibited significantly greater resting left frontal than right
frontal activation in both EC and EO conditions, at T1 and T2. In
addition, the asymmetry pattern was localized primarily to mid-
frontal sites, where asymmetry was substantially different from
zero.

Although the literature on asymmetry in older adults is scant,
our findings are in line with the evidence currently available.
Greater left frontal asymmetry has been reported in healthy
adults aged 57–60, where it was positively associated with well-
being, approach behavior, and agency (Urry et al., 2004). Our
findings are also consistent with a study in which left frontal
asymmetry was maintained in adults 65 years or older who
participated in 8 weeks of mindfulness meditation training, in
contrast to a decline in matched wait-list controls over the
same period (Moynihan et al., 2013). Increases in left frontal
asymmetry, along with positive changes in immune function,
have also been reported in young and middle-aged adults who
participated in mindfulness mediation training (Davidson et al.,
2003), and in socially anxious adults participating in CBT (e.g.,
Moscovitch et al., 2011).

Overall, our data suggest acceptable short-term test–retest
reliability in alpha power and asymmetry at the level of the
individual. The present results are in line with the extensive
literature on frontal asymmetry in younger adults. These findings
also suggest that while mean measures of frontal asymmetry did
not change from pre-to post-task conditions, mean levels of alpha
power were uniquely sensitive to the experimental task.

Limitations
There are at least two limitations to the interpretation of the
findings reported here. First, the findings were derived from a
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relatively healthy, small sample of community-dwelling older
adults, which may limit their generalizability to older adults
with significant health problems, and limited mobility, social
connections, or economic resources. We note, though, that
the adults in our sample spanned a wide range of ages (61–
86 years), representing both “young-old” individuals who were
still employed or only recently retired, as well as “old–old” adults
who were well into their retirement years.

Second, while we have demonstrated sound test–retest
reliability with respect to individual differences in resting alpha
power and asymmetry in the context of task performance, we
have not shown this reliability over an extended period of time.
It would be important to establish comparable reliability of alpha
power and frontal asymmetry in a longitudinal sample. Yet, we
note that post-task increases in resting alpha power have only
rarely been reported in the literature, and usually in the context
of physical tasks.

Conclusion

Resting frontal alpha power and asymmetry have been linked to
stable individual differences in dispositional variables in many
previous studies. Simultaneously, they may also demonstrate
state-dependent variation in response to changing environmental

demands. In the present study, individual differences in resting
EEG alpha power and asymmetry from two occasions were highly
reliable in a sample of older adults. Although mean levels of
alpha power were uniquely sensitive to experimental context
(and may have represented greater fatigue in older women than
older men), mean measures of frontal alpha asymmetry did not
change. Demonstrating within-subject reliability across contexts
serves to validate the notion that these measures actually reflect
meaningful individual differences that are of potential interest to
aging and personality and emotion research. Although studies
of EEG alpha power and asymmetry have long been used as
psychophysiological measures in younger adults, the results of the
present study documenting test–retest reliability of resting frontal
EEG alpha power and asymmetry in older adults support the use
of these psychophysiological measures in future studies of healthy
aging.
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