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The role of the amyloid cascade in the pathogenesis of Alzheimer’s disease (AD) is still the subject 
of passionate debates (Herrup, 2015; Musiek and Holtzman, 2015). According to quite a radical 
viewpoint (Herrup, 2015), the tendency to try to find a unifying etiopathogenetic pathway has so 
far hampered the understanding of such a complex disease. Thus, it would be better to reject the 
amyloid cascade hypothesis since it is neither necessary nor sufficient to drive the development and 
progression of AD. Herrup (2015) proposes, as food for thought, to relocate the amyloid cascade 
in a multifactorial context where it represents only one of a number of deficiencies contributing 
to degenerative escalation in the age-weakened brain (Herrup, 2015). From a more conservative 
perspective, the amyloid cascade is the necessary key initiator of a complex sequence of pathological 
changes, especially tau protein hyperphosphorylation, which mediates neurodegeneration (Musiek 
and Holtzman, 2015). However, owing to the lapse in time between the appearance of amyloid 
plaques and that of tau protein tangles, neuronal loss and dementia, as well as the absence of an 
obvious anatomical colocalization between the amyloidogenic process and neurodegeneration areas, 
the amyloid cascade hypothesis is not sufficient to explain AD pathology unless supported by a series 
of “wingmen” (Musiek and Holtzman, 2015).

In our view, the case is neither for rejecting the amyloid cascade hypothesis, which would be 
equivalent to throwing out the baby with the bath water, nor for invoking “wingmen” without which 
the amyloid cascade hypothesis would not hold water, because the foremost, necessary “wingman” 
is a core element within the amyloid hypothesis itself. Indeed, the disease process “…. is proposed 
to result from an imbalance between Aβ production and Aβ clearance” (Hardy and Selkoe, 2002). 
The imbalance between Aβ production and disposal mainly comes from overproduction in famil-
ial AD (Scheuner et al., 1996), while in sporadic cases it may be due to a reduced ability to clear 
(Mawuenyega et al., 2010). One way or another, the role of Aβ clearance in AD continues to be 
recognizably underscored (Bohm et al., 2015). There are several ways by which Aβ is cleared from 
the brain. They include proteolytic degradation in both intracellular and extracellular parenchymal 
compartments, either fluid-phase macropinocytosis or receptor-mediated cellular uptake by astro-
cytes and microglia followed by lysosomal degradation, and bulk flow from interstitial fluid (ISF) to 
blood and lymphatic systems (Bohm et al., 2015).

In light of the discovery of novel efflux routes, which dump waste molecules away from the 
interstitial space, we think it is currently possible to reconsider the role of Aβ clearance in AD 
pathogenesis on a much better informed basis than ever before. The existence of a system responsible 
for drainage of the ISF from the brain parenchyma into the CSF, the so-called glymphatic system (Iliff 
et al., 2012), its relationship with the newly found meningeal lymphatic vessels in connection with 
deep cervical lymph nodes (Louveau et al., 2015), and their anatomo-physiological interplay with 
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the intracranial vascular system (Beggs, 2013), provide a new 
outlook of the hydrodynamics of cerebral fluxes. There is atten-
tion focused now on the emerging role of Virchow–Robin spaces 
(VRS) in the homeostasis of cerebral fluids in the CNS (Brinker 
et  al., 2014). Neuroanatomically, the VRS refer to perivascular 
compartments surrounding small arteries when penetrating from 
the subarachnoid space into brain parenchyma and the small 
veins leaving these compartments (Ishikawa et al., 2015). Lining 
the VRS is continuous astrocyte endfeet with a high expression 
of aquaporin-4 (Aqp4) water channels allowing CSF flux to pick 
up exhausted material from the ISF and flush it out along para-
venous drainage pathways (Iliff et al., 2012). Thus, VRS are the 
site where interstial and cerebrospinal fluids, vessels, and brain 
parenchymal components meet to constitute the neurovascular 
unit (Stanimirovic and Friedman, 2012). If Aqp4 localization 
is lost, or if CSF outflow is reduced as a consequence of either 
CSF flow obstruction or cerebral artery pulsatility inefficiency, 
or cerebrospinal venous insufficiency and lymphatic disorders 
(Brinker et al., 2014), local perivascular CSF recirculation may 
be impaired and, consequently, the VRS may dilate due to fluid 
retention (Weller et  al., 2015). No wonder that it has recently 
been proposed to rename the dilated VRS as dilated interstitial 
spaces (Ishikawa et  al., 2015). When VRS dilatation occurs, 
the neurovascular unit may be damaged through either direct 
compression or the resulting ischemic insult expanding outward 
on the surrounding parenchyma, and inward on blood vessels. 
A reduced CSF turnover results in accumulation and stagnation 
of byproducts at the level of the VRS. This can further hurt the 
neurovascular unit by inducing a proinflammatory milieu and 
by maintaining/worsening clearance damage in a self-feeding 
fashion. Note that CSF diversion, while favoring CSF clearance 
and/or reducing parenchymal compression, was beneficial in a 
small series of patients with normal pressure hydrocephalus-like 
symptoms associated with severe VRS dilatation (Scollato et al., 
2015). The relevance of ISF–CSF flux disturbances in AD is sug-
gested at the inner boundary of the system by experiments based 
on disruption of Aqp4 functions (Iliff et  al., 2012), and at the 
olfactory archaic route of CSF outflow by the frequent observa-
tion of early olfactory dysfunction as a consequence of cribiform 
plate disruption (Ethell, 2014). Notably, a higher incidence of 
dilated VRS has been found in AD patients (Ramirez et al., 2015) 
also in association with Aβ deposition along the perivascular 
fluid drainage pathways of cortical and leptomeningeal arteries 
(Roher et al., 2003).

It has become increasingly apparent that, when looking at Aβ 
clearance impairment, special emphasis should be assigned to 
aging (Kress et al., 2014), inflammation (Heppner et al., 2015), 
and apolipoprotein E (ApoE) (Kanekiyo et  al., 2014). Aging 
has been associated with a drastic decline in the efficiency of 
exchange between the subarchnoidal CSF and brain parenchyma 
due to both a reduction in penetrating arterial pulsatility and 
altered Aqp4 expression within astrocytes (Kress et  al., 2014). 
Moreover, impairment of the “perivascular pump” driven by 
cerebral arterial pulsation (Hadaczek et al., 2006) may lead to CSF 
flux disturbance (Iliff et al., 2013), as seen in small vessel disease 
and normal pressure hydrocephalus, aging-related conditions 
that also share with AD the cardinal sign of cognitive decline and 

VRS enlargement (Wardlaw et  al., 2013; Ishikawa et  al., 2015). 
Another emerging issue in AD is neuroinflammation, which 
also helps explain clearance disturbances. Soluble Aβ oligomers 
are sensed by cell-surface receptors of the microglia, which is 
primed to cope with these and other misfolded proteins through 
glial-induced proteolitic degradation and phagocytosis (Heppner 
et al., 2015). Inflammation-related changes in the neurovascular 
unit eventually amplify neurodegeneration by self-sustaining 
amyloidogenic over-production and decreased brain clearance, 
even through derangement of astrocytic Aqp4 expression and 
distribution (Heppner et al., 2015). Without a doubt, the APOE 
genotype is the best-known factor with a sizable effect on AD in 
terms of occurrence risk and of onset age (Farrer et al., 1997). It 
has been shown that ApoE interacts with Aβ along all its clear-
ance pathways (Kanekiyo et al., 2014) and that the presence of the 
ApoE4 isoform may adversely affect Aβ metabolism. In particu-
lar, oligomeric Aβ levels in the CSF are increased in AD patients 
compared to non-AD and are greater in APOE4/4 compared to 
APOE3/3 AD patients (Tai et al., 2013). Furthermore, there seems 
to be an inverse relationship between the levels of soluble ApoE/
Aβ complex and oligomeric Aβ, suggesting that the complex plays 
a significant role in modulating oligomeric Aβ levels, either by 
affecting Aβ clearance or Aβ aggregation, or both. The lower lev-
els and instability of ApoE4/Aβ complex compared to ApoE3/Aβ, 
possibly owing to the hypolipidated status of the ApoE4 isoform, 
suggest a possible mechanism for the ApoE4-induced risk for AD.

That is to say, the three main elements involved in AD all 
contribute to the damage of the cerebral hydrodynamic system 
at one or more levels. In addition to these elements acting either 
additively or synergically on AD, there certainly are several oth-
ers, which are strongly overlapping and integrated. Genome-wide 
association studies have identified a handful of common variants 
in genes involved in lipid metabolism, immunity, inflammation, 
and endocytosis (Calero et  al., 2015). However, they probably 
explain <25% of the genetic variance. Future AD genetics research 
with novel technologies may possibly identify rare, high penetrant 
variation that may account, at least in part, for the remaining 
genetic variance in AD. It is also possible that gene–gene interac-
tions, somatic mutations, and epigenetics will eventually account 
for much of the unexplained genetic and phenotypic variance 
in AD. Altogether, these analyses highlight the value of defining 
pathways and networks of gene–environment interactions rather 
than the contribution of individual genes (Calero et  al., 2015). 
It is also well known that environmental factors such as trauma 
and detrimental life styles may have a role (Fotuhi et al., 2009). 
Paradigmatically, detrimental life styles accelerate age-related, 
ApoE4-dependent, inflammation-mediated cardiovascular and 
cerebrovascular damage, while feeding the risk of developing 
AD (Fotuhi et  al., 2009), possibly through the derangement of 
one or more Aβ clearance pathways. Sleep and circadian rhythm 
disturbances are common in aging and AD patients (Fotuhi 
et al., 2009). Sleep deprivation leads to glymphatic Aβ clearance 
impairment in the mouse, possibly linked to a reduction of the 
interstitial space width, insofar as it would increase resistance to 
convective fluid movement (Xie et al., 2013). On the other hand, 
amyloid plaque formation may cause sleep disruption, leading 
to a feedback loop of further Aβ deposition either directly (Ju 
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et al., 2014) or through neuroinflammation (Wisor et al., 2011). 
Another important aspect of a healthy life style is exercise, which 
has been shown to improve Aβ clearance in mouse models of AD 
(Nichol et al., 2008; Lin et al., 2015). Moreover, physical activity 
has been found to be associated with delayed Aβ deposition in 
preclinical AD (Okonkwo et al., 2014), while cognitively normal 
sedentary APOE4 carriers may be at augmented risk for cerebral 
amyloid deposition (Head et  al., 2012). As far as nutrition is 
concerned, saturated fatty acid intake may adversely affect cogni-
tion (Morris et al., 2004), possibly through mechanisms involving 
ApoE (Laitinen et  al., 2006) and/or conveying inflammation 
(Timmermans et al., 2014). Insufficient antioxidant dietary supply 
can elicit a chronic inflammatory response, where the cytotoxic 
properties of soluble Aβ oligomers are mediated via a reactive 
oxygen species pathway (Dumery et  al., 2001; Giordano et  al., 
2014). Moreover, exposure to a fat-rich diet during gestation and 
lactation has far-reaching consequences over the entire lifespan 
in adult mice because of impaired perivascular Aβ clearance from 
the brain (Hawkes et  al., 2015). The elements we associated to 
clearance impairment in this contention are among those defi-
ciencies listed by Herrup (2015) and identified as “wingmen” in 
the model discussed by Musiek and Holtzman (2015). Additional 

deficiencies should be included in our hydrodynamic reappraisal. 
Even though it is known that traumatic brain injury is associated 
with AD, only recently have experiments demonstrated that tau 
pathology and onset of neurodegeneration are dependent on an 
impaired glymphatic system (Iliff et al., 2013). As a novel category 
of deficiencies to be taken into account, we hereby introduce CSF 
outflow disorders. It is now emerging that chronic cerebrospinal 
venous insufficiency plays a role in the dynamics of white matter 
hyperintensities in AD patients (Chung et al., 2014), since it may 
lead to CSF outflow reduction (Beggs, 2013). Notably, these imag-
ing features can have VRS dilatation as pathological substrate and 
represent a biomarker that AD has in common with small vessels 
disease, cerebral amyloid angiopathy and normal pressure hydro-
cephalus. Disorders of the lymphatic system of the brain, as occur 
in aging and in association with APOE4, may result in clearance 
impairment and AD development (Pappolla et al., 2014; Weller 
et al., 2015).

Ultimately, the hydrodynamic refocusing on AD is consist-
ent on the one hand with the mainstream hierarchical model 
of the amyloid cascade (Hardy and Selkoe, 2002) in a scheme 
where multiple deficiencies lead to Aβ clearance impairment, the 
“hub” which drives downstream processes (Figure  1). On the 

FiGURE 1 | A look at the amyloid cascade hypothesis focusing on the imbalance between Aβ production and clearance. Aging, inflammation, and 
ApoE4 affect Aβ clearance by networking at the level of the neurovascular unit and the intra- and extracranial fluid circulation systems. Likewise, modifiers that feed 
the imbalance are categorized under three domains: detrimental lifestyle and trauma, additional genetic risk factors, and CSF outflow disorders.
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movement of a variety of cytotoxic oligomeric Aβ species in the 
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with aging, Aβ aggregates are the first to be difficult to be rid of 
compared to soluble types, which could explain why they are vis-
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