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The structural connectivity within cortical areas and between cortical and subcortical 
structures was investigated in dementia with Lewy bodies (DLB) and Alzheimer’s disease 
(AD). We hypothesized that white matter (WM) tracts, which are linked to visual, atten-
tional, and mnemonic functions, would be differentially and selectively affected in DLB as 
compared to AD and age-matched control subjects. Structural tensor imaging and dif-
fusion tensor imaging (DTI) were performed on 14 DLB patients, 14 AD patients, and 15 
controls. DTI metrics related to WM damage were assessed within tracts reconstructed 
by FreeSurfer’s TRActs Constrained by UnderLying Anatomy pipeline. Correlation anal-
ysis between WM and gray matter (GM) metrics was performed to assess whether the 
structural connectivity alteration in AD and DLB could be secondary to GM neuronal 
loss or a consequence of direct WM injury. Anterior thalamic radiation (ATR) and cingu-
lum-cingulate gyrus were altered in DLB, whereas cingulum-angular bundle (CAB) was 
disrupted in AD. In DLB patients, secondary axonal degeneration within ATR was found 
in relation to microstructural damage within medio-dorsal thalamus, whereas axonal
degeneration within CAB was related to precuneus thinning. WM alteration within the 
uncinate fasciculus was present in both groups of patients and was related to frontal and 
to temporal thinning in DLB and AD, respectively. We found structural connectivity alter-
ations within fronto-thalamic and fronto-parietal (precuneus) network in DLB whereas, 
in contrast, disruption of structural connectivity of mnemonic pathways was present in 
AD. Furthermore, the high correlation between GM and WM metrics suggests that the 
structural connectivity alteration in DLB could be linked to GM neuronal loss rather than 
by direct WM injury. Thus, this finding supports the key role of cortical and subcortical 
atrophy in DLB.

 

Keywords: alzheimer’s disease, dementia with lewy bodies, diffusion tensor imaging, magnetic resonance 
imaging, structural connectivity

http://www.frontiersin.org/Aging_Neuroscience/
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2015.00208&domain=pdf&date_stamp=2015-11-02
http://www.frontiersin.org/Aging_Neuroscience/archive
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnagi.2015.00208
http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:l.bonanni@unich.it
http://dx.doi.org/10.3389/fnagi.2015.00208
http://www.frontiersin.org/Journal/10.3389/fnagi.2015.00208/abstract
http://www.frontiersin.org/Journal/10.3389/fnagi.2015.00208/abstract
http://www.frontiersin.org/Journal/10.3389/fnagi.2015.00208/abstract
http://loop.frontiersin.org/people/193612/overview
http://loop.frontiersin.org/people/128715/overview
http://loop.frontiersin.org/people/139222/overview
http://loop.frontiersin.org/people/266910/overview


November 2015 | Volume 7 | Article 2082

Delli Pizzi et al. Connectivity in DLB and AD

Frontiers in Aging Neuroscience | www.frontiersin.org

inTrODUcTiOn

Dementia with Lewy bodies (DLB) is the second most common 
form of neurodegenerative dementia after Alzheimer’s disease 
(AD) (Vann Jones and O’Brien, 2014).

Clinically, DLB patients present with greater attentional 
and visuo-perceptual impairment (Calderon et  al., 2001; 
Collerton et  al., 2003) and a less prominent memory loss 
(Collerton et al., 2003; Ferman et al., 2006) as compared with 
AD patients.

Recent studies on DLB patients have reported structural and 
functional connectivity alteration between cortical areas (Kantarci 
et al., 2010; Galvin et al., 2011; Kenny et al., 2012; Watson et al., 
2012; Franciotti et al., 2013) and between cortex and subcortical 
structures (Kenny et  al., 2013; Delli Pizzi et  al., 2014a,b; 2015; 
Peraza et al., 2014).

In particular, Diffusion Tensor Imaging (DTI) has allowed 
the investigation of structural connectivity between brain 
areas by mapping the motion of water along neural axons and 
providing microstructural details about the shape and integrity 
of white matter (WM) fibers. Commonly used DTI metrics 
include fractional anisotropy (FA), mean diffusivity (MD), 
radial diffusivity (RD), and axial diffusivity (DA). FA and MD 
are associated with the primary degeneration of axons; FA is 
higher in organized than in disorganized fascicles, which are 
affected by microstructural processes such as demyelination, 
axonal degradation, or gliosis (Pierpaoli et al., 1996). MD, in 
contrast, is a sensitive, albeit rather non-specific, measure that 
can be increased by any pathological process affecting the cell 
membranes (Bosch et al., 2012). RD provides more detailed 
information about breakdown of myelin (Song et  al., 2002, 
2003), whereas DA describes the underlying pathology and it 
is associated with secondary degeneration of axons (Pierpaoli 
et al., 2001). However, the use of DA and RD remain contro-
versial because a change in RD can cause a fictitious change 
in DA and vice-versa in voxels characterized by crossing  
fibers (Wheeler-Kingshott and Cercignani, 2009; Jones et al., 
2013).

Different approaches have been used to assess the structural 
connectivity in DLB patients. They ranged from conventional 
analyses, which use region of interest (ROI) (Bozzali et  al., 
2005) or tract-specific method (Ota et al., 2009) to voxel-based 
approaches, which use statistical parametrical mapping analy-
sis (Lee et  al., 2010) or tract-based spatial statistics (Hattori 
et al., 2012; Watson et al., 2012). However, all these approaches 
present limitations. The conventional analysis methods are 
hindered by manual interaction and in particular, the partial 
volume contamination from adjacent tracts may induce site 
selection bias, resulting in additional inter-observer variability 
in the measurements. The voxel-based approach is limited 
because: (1) no physical characteristics are measured directly; 
(2) it cannot ensure voxel correspondence of the same tract 
across subjects (Yeatman et al., 2012); (3) coregistration algo-
rithms do not accurately align fiber tracts which are affected 
by variation in size and shape (Wassermann et  al., 2011). 
Therefore, the voxel-based approach may not have sufficient 

precision at the individual level for dementia patient popula-
tions, given that patients with dementia are largely affected by 
brain deformation and substantial variability of long-range 
fiber tracts morphology among subjects (Wassermann et  al., 
2011; Yeatman et al., 2012).

TRActs Constrained by UnderLying Anatomy (TRACULA) 
is a recent tool for automatic reconstruction of a set of major 
white-matter pathways from diffusion-weighted MR images. It 
uses global probabilistic tractography with anatomical priors. 
Prior distributions on the neighboring anatomical structures of 
each pathway are derived from an atlas and combined with the 
FreeSurfer cortical parcelation and subcortical segmentation of 
the subject that is being analyzed to constrain the tractography 
solutions (Yendiki et  al., 2011, 2013). TRACULA has benefits 
in terms of: (1) overcoming the limitations related to manual 
interaction, thus facilitating the application of tractography to 
large studies; (2) measuring, for each patient, the DTI-derived 
metrics from each tract of interest; (3) overcoming coregistra-
tion issues linked to voxel-based approaches (Wassermann et al., 
2011; Yendiki et al., 2011, 2013).

In the current study, we used TRACULA to assess structural 
connectivity in a cohort of DLB and AD patients as well as healthy 
controls. Our hypothesis was that WM tracts linked to visual, 
attentional, and mnemonic functions are differentially and selec-
tively affected in DLB and AD.

Because the axonal degeneration can be initiated either by the 
degeneration of the cell bodies associated with these axons, or by 
the direct WM injury, we also performed a correlation analysis 
between WM and gray matter (GM) metrics to assess whether 
possible structural connectivity alteration in AD and DLB could 
be the consequence of GM neuronal loss.

MaTerials anD MeThODs

study sample
The current research was approved by the local Ethics Committee 
and was performed according to the Declaration of Helsinki 
(1997) and subsequent revisions. Data will be made freely available 
upon request. All subjects (or their caregivers, where appropriate) 
provided written informed consent. Fourteen DLB and 14 AD 
patients were recruited from our Memory Clinic and Movement 
Disorder Clinic. Fifteen age-matched volunteers were recruited 
from our non-demented case register. AD patients fulfilled the 
National Institute of Neurological and Communicative Diseases 
and Stroke/AD and Related Disorders Association criteria 
(McKhann et al., 1984). Probable DLB diagnosis was based on 
consensus guidelines (McKeith et al., 2005). As part of their clini-
cal work up, all patients underwent Computerized Tomography 
or MRI and dopaminergic presynaptic ligand ioflupane SPECT 
(DAT scan) within 6 months before the inclusion in the study. In 
addition, all patients were assessed with electroencephalography 
(EEG) recordings as abnormalities characterized by parieto-
occipital dominant frequency alterations have previously been 
shown to reliably differentiate probable DLB from AD (Bonanni 
et al., 2008).
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clinical assessment
All participants underwent clinical and neuropsychologi-
cal evaluations. Specifically, Mini Mental State Examination 
(MMSE) (Folstein et al., 1975), Clinical Dementia Rating (CDR) 
(Morris, 1993), and Dementia Rating Scale-2 (DRS-2) (Jurica 
et  al., 2001) were used to investigate cognitive deterioration. 
Frontal Assessment Battery (FAB) (Dubois et  al., 2000) and 
Clinician Assessment of Fluctuations (CAF) (Walker et  al., 
2000) were included to assess, respectively, the severity of frontal 
dysfunction and the presence and severity of cognitive fluctua-
tions. Unified Parkinson’s Disease Rating Scale (UPDRS)-motor 
section III (Fahn and Elton, 1987) assessed the presence and 
severity of extrapyramidal signs. Neuropsychiatric Inventory 
(NPI) was used to determine the frequency and severity of any 
neuropsychiatric features (Cummings et al., 1994). In particular, 
the NPI item-2 hallucinations assessed the occurrence as well as 
severity × frequency of visual hallucinations. Presence/absence 
of REM sleep Behavior Disorder (RBD) was determined accord-
ing to minimal International Classification of Sleep Disorders 
(ICSD) criteria (World Health Organization, 1992) and con-
firmed by polysomnography. Patients were treated with l-DOPA 
(all DLB patients), rivastigmine or donepezil (all AD and DLB 
patients with same daily dosages), quetiapine (5 DLB and 5 AD), 
clozapine (4 DLB), risperidone (4 AD), and clonazepam (14 DLB 
patients, who presented with RBD).

Mr Data acquisition
All measurements were carried out with a Philips Achieva 3 
T scanner (Philips Medical System, Best, The Netherlands) 
equipped with eight-channel receiver coil. After scout and refer-
ence sequences, three dimensional T1-Weighted Turbo Field-
Echo (3D T1-W TFE, TR/TE = 11/5 ms, slice thickness = 0.8 mm, 
FOV = 256 mm × 192 mm × 170 mm) and Diffusion-Weighted 
Image Spin-Echo (DWI-SE; TR/TE = 3691/67 ms, slice thickness 
of 4 mm, FOV = 230 mm × 230 mm × 139 mm, 15 diffusion-
sensitive gradient directions) sequences were performed on all 
participants. T2-weighted fluid attenuation inversion recovery 
(FLAIR, TR/TE  =  11000/125  ms, slice thickness of 4  mm, 
FOV = 240 mm × 129 mm × 222 mm) sequence was also per-
formed to assess vascular pathology or WM abnormalities.

leukoencephalopathy Burden 
evaluation
The FLAIR image of each participant was evaluated in blind 
by two experienced neuroradiologists in two independent ses-
sions. Intra- and inter-rater reliability tests were performed by 
non-parametric Kruskal–Wallis test, followed, respectively, by 
Wilcoxon and Mann–Whitney post hoc test to allow comparisons 
within and between groups.

The rating scale described in Fazekas et al. (1987) was used to 
assess the different types of hyperintense signal abnormalities in 
the deep white matter (DHWM). Specifically, DHWM was scored 
as 0 = absent, 1 = punctate foci, 2 = beginning confluence of foci, 
3 = large confluent areas.

gray Matter Morphometry
Structural T1-weighted and DWI images were processed by 
using Freesurfer processing stream (Fischl and Dale, 2000; 
Yendiki et  al., 2011).1 By using recon-all command line, we 
performed the automated reconstruction and labeling of cortical 
and subcortical regions [classified by using the Desikan–Killiany 
Atlas (Desikan et al., 2006)] on the high-resolution anatomical 
T1-weighted images of each subject. Subcortical volumes and 
mean thickness of each cortical region were extracted by using 
“asegstats2table” and “aparcstats2table” command line.

structural connectivity analysis
The DWI image of each subject was corrected from distortions 
induced by eddy currents and motion (Yendiki et al., 2013). Next, 
intra-subject registration between the individual’s low-b diffusion 
and T1 images was performed by using an affine registration 
method that seeks to maximize the intensity contrast of the b = 0 
image across the cortical gray/white boundary, which is obtained 
from the T1-images. Subsequently, affine registration was carried 
out between each individual’s structural MRI image and MNI152-
1mm atlas. WM mask was created by extracting the cerebral WM, 
cerebellar WM, ventral diencephalon, and brainstem from the 
individual’s FreeSurfer cortical parcelation and subcortical seg-
mentation (obtained by recon-all command line). Cortical mask 
was obtained by mapping the cortical parcelation labels to the 
volume, growing them into the WM by 2 mm and combining all 
the grown cortical labels into a mask. Anatomical brain mask was 
produced by binarizing and dilating the entire cortical parcelation 
and subcortical segmentation. All the above masks were obtained 
from individual T1 space to individual diffusion space and to the 
template space. Least-squares tensor estimation was carried out 
using FSL’s (FMRIB’s Diffusion Toolbox2) and mapping all scalar 
output volumes of the tensor fit (FA, MD, DR, and DA) from 
diffusion space to the template space. Combining the atlas data 
with the previously obtained individual’s masks, pathways were 
computed in template space. The TRACULA atlas data were used 
to estimate a priori probabilities that each pathway intersects each 
of the labels in the cortical parcelation and subcortical segmenta-
tion, at each point along the pathway’s trajectory. The atlas set 
was also used to obtain ROIs for the two endings of each pathway, 
as well as an initial guess of the location of the control points of 
each pathway, to be used in the subsequent pathway reconstruc-
tion. After estimation of pathway priors, ball-and-stick model 
fitting was performed. Estimation of the a posteriori probability 
distribution of the location of each pathway in the individual 
and reconstructed volumetric distributions was performed for 
corticospinal tract, inferior longitudinal fasciculus, uncinate 
fasciculus, ATR, cingulum-cingulate gyrus (CCG) (supracallosal) 
bundle, cingulum-angular (infracallosal) bundle (CAB), superior 
longitudinal fasciculus-parietal bundle, superior longitudinal 
fasciculus-temporal bundle, corpus callosum-forceps major, and 
corpus callosum-forceps minor. With the exception of corpus 

1 http://ftp.nmr.mgh.harvard.edu
2 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
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callosum-forceps major and corpus callosum-forceps minor, 
which are inter-hemispheric connections, all other pathways were 
labeled for the left and right hemisphere. We therefore defined a 
total of 18 tracts per subject. From each one, DTI metrics (FA, 
MD, RD, and DA) were averaged over an entire pathway.

Target regions Definition
For each WM tract showing significant difference among groups, 
we defined the its target regions. Specifically, for the right ATRs, 
the target regions were the right mediodorsal nuclei of thalami 
and the areas within the right frontal lobe (caudal-anterior cin-
gulate gyrus, caudal-middle frontal gyrus, lateral-orbitofrontal 
gyrus, medial-orbitofrontal gyrus, parsopercularis, parsorbitalis, 
parstriangularis, rostralanteriorcingulate gyrus, rostral-middle 
frontal gyrus, superior frontal gyrus, frontal pole); for the left 
and right CABs, the target regions were the ipsilateral regions 
within the temporal lobe (entorhinal and parahippocampal 
cortices, hippocampus, inferiortemporal gyrus, middle temporal 
gyrus, superior temporal gyrus (STG), temporal pole, transverse 
temporal gyrus, insula) and ipsilateral precuneus and posterior 
cingulate cortex (PCC); for the left CCG bundles, the target 
regions were the areas within the left frontal lobe and left precu-
neus and PCC; for the right and left inferior longitudinal fascicles, 
the target regions were the ipsilateral areas within temporal and 
occipital (cuneus, fusiform gyrus, lateral occipital gyrus, lingual 
gyrus and pericalcarine cortex) lobes; for the right and left 
uncinate fasciculus, the target regions were the ipsilateral regions 
within frontal and temporal lobes. All cortical areas were defined 
by using the Desikan–Killiany Atlas.

Microstructural assessment of Thalamic 
regions
Microstructural assessment of the thalamic regions were per-
formed by using Functional MRI of the Brain (FMRIB) Software 
Library (FSL) version 4.1 (Smith et al., 20043). In detail, for each 
subject, noise reduction was carried out using Smallest Univalue 
Segment Assimilating Nucleus (SUSAN) algorithm on structural 
images and eddy-currents correction on diffusion images. Brain 
Extraction Tool (BET) was carried out for brain and skull extrac-
tion of the structural and DWI images. T1-W structural image 
of each subject was co-registered in common space on the non-
linear MNI152 template with 1 mm × 1 mm × 1 mm resolution, 
by means of affine transformations based on 12 degree of freedom 
(three translations, three rotations, three scalings, and three 
skews) using FMRIB’s Linear Image Registration Tool (FLIRT). 
FMRIB’s Integrated Registration and Segmentation Tool (FIRST) 
was used to automatically segment thalami (Patenaude et  al., 
2011). Thalami masks were obtained by binarizing the FIRST 
outputs. The DTI maps were registered to MNI standard space 
using: (1) FLIRT to register each subject’s b0 image to its native 
structural image, and (2) FMRIB’s non-linear registration tools 
to register the structural and diffusion images to MNI space 
(1 mm × 1 mm × 1 mm). Next, “fslroi command line” was used 
to overlap the thalami masks on MD maps and to minimize 

3 http://www.fmrib.ox.ac.uk/fsl

the misalignment between DWI and structural images. Oxford 
thalamic connectivity atlas (provided by FSL tool) was adapted on 
the thalami masks to define the medio-dorsal nuclei projecting to 
frontal cortex (Figure S1 in Supplementary Material). To exclude 
thalamic voxels that contained cerebrospinal fluid (CSF), the MD 
images were segmented using FMRIB’s Automated Segmentation 
Tool (FAST) and CSF binarized to be used as exclusion mask. 
To exclude voxels out of the thalamic range, manual editing was 
applied where needed. Finally, MD values were calculated within 
the connectivity-defined subregion (Delli Pizzi et al., 2015).

statistical analysis
One-way ANOVA and Bonferroni post  hoc test was also per-
formed on demographic and clinical data. Chi-squared test was 
carried out for sex. Kruskal–Wallis one-way analysis of vari-
ance by ranks was used to assess group difference on DHWM. 
T-Tests (independent samples) were applied on TRACULA 
outcomes to test the differences among groups (AD vs. controls, 
DLB vs. Controls and AD vs. DLB). Bonferroni’s correction was 
applied to adjust the p-level (corrected p threshold was set at 
0.05/18 tracts = 0.003). Analysis of covariance (ANCOVA) was 
performed to exclude the possible effect of DHWM on DTI 
findings.

Within each patient group, linear regression was performed 
to assess the relationship between: (1) DTI metrics within tract 
of interest (dependent variable) and our primary clinical meas-
ures (independent variables: age, DHWM, FAB, MMSE, NPI 
hallucination-item, UPDRS scores); (2) DTI metrics (dependent 
variable) and the GM measures within target regions of each tract 
of interest (independent variables); age, DHWM and mean corti-
cal thickness value of each hemisphere were added to regressor 
as nuisance factors. If any significant relationship exits between 
WM and GM metrics, we assume that the WM changes are 
consequence of GM neuronal loss (Huang et al., 2012).

To ensure the specific effect of GM patterns of atrophy on 
DTI metrics, a further regression analysis was also performed 
including DTI metrics as dependent variable and the thickness 
of non-target regions as independent variables.

resUlTs

Demographic and clinical Features
Demographic features and neuropsychological test scores were 
summarized in Table 1.

No differences in terms of age, sex, and educational level were 
observed among groups.

No differences on global test of cognition (DRS-2, MMSE, 
CDR) and on the severity of frontal dysfunction (FAB score) 
were found between AD and DLB patients. All DLB patients had 
RBD. All DLB patients had visual hallucinations and cognitive 
fluctuations. None of the AD patients had visual hallucinations 
or cognitive fluctuations, as expected given inclusion criteria. 
All DLB patients showed an abnormal quantitative EEG pattern 
profile consistent with a DLB diagnosis (Bonanni et  al., 2008) 
and represented by slow dominant frequency (in the theta and 
pre-alpha band) in posterior leads and a dominant frequency 
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variability >1.5 Hz. None of the AD patients or controls showed 
these DLB-specific EEG characteristics (Bonanni et  al., 2008). 
Dopamine-transporter hypocaptation in the caudate nuclei at 
SPECT-DAT scan was observed in all DLB patients (bilateral in 
12). SPECT-DAT scan abnormalities were not observed in AD 
patients or control subjects.

White Matter hyperintensity evaluation
Intra- and inter-rater reliability test showed no differences in the 
evaluation of white matter hyperintensity (p = 1.000).

No significant difference on DHWM was found among groups 
(Table 1).

In DLB, DHWM was absent (score = 0) in one patient, was 
present with punctate foci (score  =  1) in eight patients, with 
beginning confluence of foci (score = 2) in four patients and with 
large confluent areas (score = 3) in one patients. In AD, DHWM 
was absent (score = 0) in one patient, was present with punctate 
foci (score = 1) in 11 patients, with the beginning confluence of 
foci (score = 2) in one patients and evidence of large confluent 
areas (score = 3) in one patient. In controls, DHWM was absent 
(score = 0) in three subjects and was present with punctate foci 
(score = 1) in 12 subjects.

TaBle 1 | Demographic and clinical features.

characteristics DlB aD controls

Number of subjects/patients 14 14 15

Agea,b 75.8 ± 3.8 75.4 ± 6.2 75.0 ± 4.8

Male gender (in percentage)a,c 50.0 50.0 46.7

Disease duration (years)d 3.1 ± 0.6 3.0 ± 0.7 –

Education level (years)a,e 7 ± 4 7 ± 4 7 ± 3

CDRa,f 2.04 ± 0.50 1.93 ± 0.47 –

MMSEa,g 18.0 ± 4.9 18.1 ± 4.6 27.7 ± 0.6

DRSa,h 93.3 ± 17.8 84.6 ± 13.5 136.8 ± 0.86

FABa,i 6.1 ± 3.0 6.7 ± 3.1 17.1 ± 1.0

DHWMj 1.36 ± 0.74 1.14 ± 0.66 0.80 ± 0.41

CAF 4.5 ± 2.5 0.0 ± 0.0 0.0 ± 0.0

UPDRS III 26.1 ± 9.2 0.0 ± 0.0 0.0 ± 0.0

NPI item-2 hallucinations 4.1 ± 1.5 0.0 ± 0.0 0.0 ± 0.0

Values are expressed as mean ± SD.
aThe p-values were calculated using the one-way ANOVA; Bonferroni post hoc test 
was also performed when F-test was significant.
bMain interaction among groups: F2,42 = 0.743, p = 0.482.
cThe p-values were calculated using chi-squared test: χ1

2 0 47 0 977= =. , . .p
dThe p-values were calculated using the independent-samples t-test: t26 = −0.291, 
p = 0.773.
eMain interaction among groups: F2,42 = 0.92, p = 0.912.
fThe p-values were calculated using the independent-samples t-test: t26 = 0.045; 
p = 0.565.
gMain interaction among groups: F2,42 = 30.435, p < 0.001; post hoc: controls vs. AD, 
p < 0.001; controls vs. DLB, p < 0.001 and AD vs. DLB, p = 1.000.
hMain interaction among groups: F2,41 = 70.276, p < 0.001; post hoc: controls vs. AD, 
p < 0.001; controls vs. DLB, p < 0.001 and AD vs. DLB, p = 0.242.
iMain interaction among groups: F2,42 = 88.905, p < 0.001; post hoc: controls vs. AD, 
p < 0.001; controls vs. DLB, p < 0.001 and AD vs. DLB, p = 1.000.
jKruskal–Wallis main interaction among groups: χ2

2 4 985 0 083= =. , . .P
AD, Alzheimer’s Disease; CAF, clinician assessment of fluctuations; DLB, dementia with 
Lewy bodies; CDR, Clinical Dementia Rating, DRS, Dementia Rating Scale; FAB, frontal 
assessment battery; MMSE, mini mental state examination; NPI, neuropsychiatric 
inventory; UPDRSIII, Unified Parkinson’s Disease Rating Scale-motor section III; 
DHWM, hyperintense signal abnormalities in the deep white matter.

structural connectivity
Table  2 and Figures  1 and 2 summarize significant results  
obtained from DTI analysis by TRACULA. Tables  S1–S4 in 
Supplementary Material provide the complete (significant and 
non-significant) statistical results for each metric and tract. Table 
S5 in Supplementary Material shows the results of ANCOVA analy-
ses, which excluded the possible effect of DHWM on DTI results.

As compared with controls, DTI-metric changes in DLB were 
found in the right ATR (DA), right inferior longitudinal fascicule 
(FA), left CCG bundle (RD), right (RD, MD), and left (DA, RD, 
MD) uncinate fasciculus.

As compared with controls, DTI-metric changes in AD were 
found in the right (RD, MD) and left (DA, RD, MD) CAB, right 
inferior longitudinal fascicule (FA, RD), and right (RD) and left 
(RD) uncinate fasciculus.

No significant difference was found between DLB and AD.
No correlation was found between WM metrics and clinical 

outcomes.

relationship Between White Matter and 
gray Matter Metrics
Figure 3 shows the relationship between white matter and GM 
metrics.

Within the DLB group, the increase of DA values in the 
right ATR was correlated to MD values in the mediodorsal 
nuclei of the right thalamus (t = 2.487, β = 0.583, p = 0.029); 
the increase of RD values in the left CCG bundle was 
anti-correlated to cortical thickness in the left precuneus 
(t  =  −3.028, β  =  −0.658, p  =  0.010); the increase of DA 
values in the left uncinate fasciculus was anti-correlated 
to cortical thickness in the left mediorbitofrontal gyrus 
(t = −7.902, β = −1.087, p < 0.001), left laterorbitofrontal 
gyrus (t = 8.840, β = 1.171, p < 0.001), left pars triangularis 
(PT) (t  =  −6.712, β  =  −0.977, p  <  0.001), left parahip-
pocampus (t = 3.958, β = 0.466, p = 0.003); the increase of 
RD values in the left uncinate fasciculus was anti-correlated 
to cortical thickness in the left laterorbitofrontal gyrus 
(t = −4.719, β = −1.266 p = 0.001) and left PT (t = 2.650, 
β = 0.711, p = 0.023).

Within the AD group, no significant correlation was found 
between DTI metrics in the right and left CCG bundle and GM 
measure in the target regions; the increase of DA values within 
the right uncinate fasciculus was correlated to right STG thick-
ness (t = −3.427, β = −0.703, p = 0.005).

No correlations were found between FA values in the right 
inferior longitudinal fascicule and cortical thickness within 
temporal and occipital lobes.

No significant relationship was found between the DTI metrics 
and the cortical thickness in the non-target regions.

DiscUssiOn

In this study, we found specific pattern of WM alterations in DLB 
and AD.

As compared with controls, the ATR was altered in DLB but 
not in AD.
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TaBle 2 | Mean DTi-metrics values of left and right white matter tracts for each group.

Metric Tract DlB aD controls DlB vs. controls aD vs. controls DlB vs. aD

FA R-ILF 0.40 ± 0.04 0.40 ± 0.03 0.44 ± 0.02 p = 0.002 p = 0.000 p = 1.000

MDa L-CAB 0.88 ± 0.06 0.94 ± 0.08 0.84 ± 0.04 p = 0.055 p = 0.000 p = 0.020
R-CAB 0.86 ± 0.05 0.92 ± 0.10 0.81 ± 0.06 p = 0.038 p = 0.001 p = 0.041
L-CCG 0.82 ± 0.04 0.80 ± 0.05 0.77 ± 0.03 p = 0.001 P = 0.042 p = 0.383
L-UNC 0.89 ± 0.06 0.86 ± 0.05 0.82 ± 0.03 p = 0.001 p = 0.010 p = 0.198
R-UNC 0.89 ± 0.06 0.87 ± 0.04 0.84 ± 0.02 p = 0.001 p = 0.011 p = 0.244

RDa L-CAB 0.73 ± 0.07 0.79 ± 0.08 0.70 ± 0.04 p = 0.216 p = 0.000 p = 0.022
R-CAB 0.71 ± 0.06 0.77 ± 0.10 0.67 ± 0.07 p = 0.097 p = 0.002 p = 0.038
L-CCG 0.59 ± 0.05 0.58 ± 0.06 0.53 ± 0.03 p = 0.001 p = 0.017 p = 0.583
R-ILF 0.68 ± 0.08 0.68 ± 0.06 0.63 ± 0.03 p = 0.021 p = 0.003 p = 0.982
L-UNC 0.72 ± 0.07 0.69 ± 0.05 0.64 ± 0.02 p = 0.001 p = 0.002 p = 0.310
R-UNC 0.71 ± 0.06 0.70 ± 0.04 0.66 ± 0.01 p = 0.001 p = 0.001 p = 0.471

DAa R-ATR 1.20 ± 0.05 1.18 ± 0.05 1.14 ± 0.04 p = 0.001 p = 0.009 p = 0.256
L-CAB 1.19 ± 0.06 1.24 ± 0.08 1.12 ± 0.06 p = 0.006 p < 0.001 p = 0.048
R-CAB 1.16 ± 0.04 1.22 ± 0.12 1.11 ± 0.07 p = 0.027 p = 0.005 p = 0.091
L-UNC 1.24 ± 0.05 1.21 ± 0.05 1.18 ± 0.04 p = 0.002 p = 0.191 p = 0.075

aValues ×10−3 mm2/s.
Table reports the DTI-metrics values (mean ± SD) and the statistical outcomes (derived from t-test for independent samples and Bonferroni’s correction) for tracts showing 
significant differences among groups. Bold characters indicate statistically significant results. The complete statistical results for each metric and tract were reported in Tables S1–S4 
in Supplementary Material.
AD, Alzheimer’s Disease; DLB, dementia with Lewy bodies; FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity; DA, axial diffusivity; ATR, anterior thalamic radiation, 
CAB, cingulum-angular (infracallosal) bundle, CCG, cingulum-cingulate gyrus (supracallosal) bundle, ILF, inferior longitudinal fasciculus, UNC, uncinate fasciculus.
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This tract connects the dorso-medial thalamic nuclei with the 
prefrontal cortex (Wakana et al., 2007; Yendiki et al., 2011). The 
fronto-thalamic connectivity plays a relevant role in conscious-
ness (Ward, 2011) and alertness (Tomasi et al., 2009). Recently, 
structural and functional alteration of fronto-thalamic loop has 
been described in DLB patients (Kenny et al., 2013; Delli Pizzi 
et al., 2014a, 2015). In the current study, we found a close relation-
ship between microstructural GM damage within thalamic nuclei 
projecting to frontal lobe and secondary axonal degeneration 
(expressed by DA) within ATR. In addition, we did not find any 
correlation between frontal thickness and fronto-thalamic tract 
alterations. Thus, we suggest that the secondary axonal degenera-
tion within the ATR could be linked by GM neuronal loss in the 
thalami. Of note, the synchronized activity of the thalamo-cortical 
pathway modulates the information flow necessary for conscious 
cognitive processes (León-Domínguez et al., 2013). However, we 
did not find a significant correlation between the ATR degen-
eration in DLB patients and the CAF scores. Although the CAF 
questionnaire remains validated as a measure of the frequency 
and duration of the cognitive fluctuations and has been used in 
numerous studies as a metric to examine the pathophysiological 
basis of cognitive fluctuations (McKeith et  al., 2005; Bonanni 
et al., 2008; Taylor et al., 2012), it has been superseded by recent 
scales which may have better diagnostic utility in distinguishing 
flCog in DLB compared with AD (e.g., dementia cognitive fluc-
tuation scale, Lee et al., 2014). Therefore, further studies by using 
more recent neuropsychological tests are warranted to investigate 
whether the fronto-thalamic structural connectivity alteration in 
DLB could be relevant to explain the impairment of the cognitive 
processes (necessary for consciousness) in DLB.

In line with literature (Bozzali et al., 2005; Kantarci et al., 2010; 
Lee et al., 2010), the inferior longitudinal fascicle was affected in 
both forms of dementia as compared with controls. This tract is a 

ventral associative bundle transmitting visual information from 
occipital areas to the temporal lobe (Catani et al., 2012). It plays 
an important role in visual object recognition and it is strongly 
implicated in disorder of visual perception (Catani et al., 2012). 
The degeneration of inferior longitudinal fascicle has been related 
to visual hallucinations in DLB patients (Kantarci et al., 2010). 
However, in the current study, we did not observe a significant 
relationship between WM damage within inferior longitudinal 
fascicle and the frequency and severity of visual hallucinations. 
Recent models and different neuroimaging studies on DLB 
have suggested that visual hallucinations could be more reliant 
upon dorsal network impairment (Taylor et al., 2012; Delli Pizzi 
et al., 2014b; Shine et al., 2014) and further investigation of this 
in DLB patients is warranted and whether these possible altera-
tions were related to visual hallucinations. However, a limitation 
of our study, TRACULA does not allow the assessment of the 
dorsal visual pathway in its entirety. In particular, it is not able 
to detect the first and second branches of superior longitudinal 
fascicle (Yendiki et al., 2011), which are involved in visuo-spatial 
attention (Thiebaut de Schotten et al., 2011).

As compared to controls, the CCG (supracallosal bundle) 
was damaged in DLB but not in AD. The CCG bundles wrap 
around the corpus callosum from medial frontal cortex and 
anterior cingulate cortex to dorsal PCC (Greicius et al., 2009). 
Input from the frontal lobes modulates the level of dorsal poste-
rior cingulated cortex activity, and consequently the top-down 
and bottom-up attentional signals (Bonnelle et al., 2012). In this 
way, the CCG bundles regulates the attentional focus, influenc-
ing the “metastability” of the brain as a whole and shifting the 
balance of attention along an internal/external and broad/nar-
row dimension (Leech and Sharp, 2014). Furthermore, the loss 
of the normal top-down cortico-cortical communication from 
the dorsal anterior cingulate cortex to the dorsal PCC has been 

FigUre 1 | structural connectivity showing DTi-metrics values within right anterior thalamic radiation (aTr), right inferior longitudinal fascicle (ilF) 
and right and left uncinate fasciculus (Unc). Representative images showing TRACULA output: the tract of interest is colored in red and overlaid on individual’s 
structural image. The distribution of DTI-metrics values within each tract of interest and within group is reported in the scatter-plots: orange, red, blue, and green 
rectangles represent axial diffusivity (DA), radial diffusivity (RD), mean diffusivity (MD) and fractional anisotropy (FA), respectively. Significant differences between 
groups are marked with dark lines and asterisks. The values of DA, RD, and MD are reported as values ×10−3mm2/s. AD, Alzheimer’s Disease; DLB, dementia with 
Lewy bodies; R, right; L, left.
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associated to alterations in arousal and awareness (Horovitz 
et al., 2008, 2009; Larson-Prior et al., 2009; Boly et al., 2012). 
In this study, we found a relationship between the secondary 
processes of neurodegenration with supracallosal bundle 
(expressed by RD) and the thickness of the dorsal precuneus. 
Hence, the axonal neurodegeration of supracallosal bundle, 
probably related to demyelination process, could be linked to 
neuronal loss in the posterior cortical regions, which are rel-
evant in DLB (Delli Pizzi et al., 2014b) and attention processing 
(Leech and Sharp, 2014).

As compared to controls, the angular (infracallosal) bundle 
was damaged in AD but not in DLB. The CAB connects the 
ventral PCC to temporal structures including the perforant 
path (the main input to the hippocampus, extending from the 
entorhinal cortex to dentate gyrus) and several other fibers reach-
ing entorhinal cortex, parahippocampal gyrus, and associated 
areas (Thiebaut de Schotten et al., 2011; Leech and Sharp, 2014). 
The temporal structures (Jack et al., 1999; Janke et al., 2001) and 
the ventral PCC are highly affected in AD (Buckner et al., 2008). 
Particularly, metabolic abnormalities within these regions are 

ventral associative bundle transmitting visual information from 
occipital areas to the temporal lobe (Catani et al., 2012). It plays 
an important role in visual object recognition and it is strongly 
implicated in disorder of visual perception (Catani et al., 2012). 
The degeneration of inferior longitudinal fascicle has been related 
to visual hallucinations in DLB patients (Kantarci et al., 2010). 
However, in the current study, we did not observe a significant 
relationship between WM damage within inferior longitudinal 
fascicle and the frequency and severity of visual hallucinations. 
Recent models and different neuroimaging studies on DLB 
have suggested that visual hallucinations could be more reliant 
upon dorsal network impairment (Taylor et al., 2012; Delli Pizzi 
et al., 2014b; Shine et al., 2014) and further investigation of this 
in DLB patients is warranted and whether these possible altera-
tions were related to visual hallucinations. However, a limitation 
of our study, TRACULA does not allow the assessment of the 
dorsal visual pathway in its entirety. In particular, it is not able 
to detect the first and second branches of superior longitudinal 
fascicle (Yendiki et al., 2011), which are involved in visuo-spatial 
attention (Thiebaut de Schotten et al., 2011).

As compared to controls, the CCG (supracallosal bundle) 
was damaged in DLB but not in AD. The CCG bundles wrap 
around the corpus callosum from medial frontal cortex and 
anterior cingulate cortex to dorsal PCC (Greicius et al., 2009). 
Input from the frontal lobes modulates the level of dorsal poste-
rior cingulated cortex activity, and consequently the top-down 
and bottom-up attentional signals (Bonnelle et al., 2012). In this 
way, the CCG bundles regulates the attentional focus, influenc-
ing the “metastability” of the brain as a whole and shifting the 
balance of attention along an internal/external and broad/nar-
row dimension (Leech and Sharp, 2014). Furthermore, the loss 
of the normal top-down cortico-cortical communication from 
the dorsal anterior cingulate cortex to the dorsal PCC has been 

FigUre 1 | structural connectivity showing DTi-metrics values within right anterior thalamic radiation (aTr), right inferior longitudinal fascicle (ilF) 
and right and left uncinate fasciculus (Unc). Representative images showing TRACULA output: the tract of interest is colored in red and overlaid on individual’s 
structural image. The distribution of DTI-metrics values within each tract of interest and within group is reported in the scatter-plots: orange, red, blue, and green 
rectangles represent axial diffusivity (DA), radial diffusivity (RD), mean diffusivity (MD) and fractional anisotropy (FA), respectively. Significant differences between 
groups are marked with dark lines and asterisks. The values of DA, RD, and MD are reported as values ×10−3mm2/s. AD, Alzheimer’s Disease; DLB, dementia with 
Lewy bodies; R, right; L, left.
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FigUre 2 | structural connectivity showing DTi-metrics values for left cingulum-angular (infracallosal) cingulum-angular bundle (caB) and bilateral 
cingulum-cingulate gyrus (supracallosal) bundle (ccg). Representative images showing TRACULA output: the tract of interest is colored in red and overlaid 
on individual’s structural image. The distribution of DTI-metrics values within each tract of interest and within group is reported in the scatter-plots: orange, red, blue, 
and green rectangles represent axial diffusivity (DA), radial diffusivity (RD), and mean diffusivity (MD), respectively. Significant differences between groups are marked 
with dark lines and asterisks. The values of DA, RD, and MD are reported as values ×10−3mm2/s. AD, Alzheimer’s disease; DLB, dementia with Lewy bodies; R, 
right; L, left.

related to amyloid deposition and to brain atrophy in a spatial 
distribution that reflects the default-mode network (Greicius 
et al., 2009). Furthermore, it was also observed that the functional 
connectivity within the default-mode network is reduced between 
PCC and hippocampal areas and this tract is particularly involved 
in internally directed cognition such as memory retrieval and 
planning, which are prevalently and prominently affected in AD 
(Buckner et al., 2008; Greicius, 2008).

Although AD affects primarily GM, WM disruption is also 
widespread (Scheltens et al., 1995; Smith et al., 2000; Gouw et al., 
2008; Huang et  al., 2012). In the current study, the profiles of 
DTI-metric changes within infracallosal bundle of AD patients 
and the poor correlation between WM and GM alteration sug-
gest that heterogeneous pathologic processes such as axonal 
damage and breakdown of oligodendrocytes and myelin could 
be independent from neuronal loss in the cortex and subcortical 
structures.

Uncinate fasciculus was affected in both AD and DLB as 
compared to controls. This tracts connects the anterior tem-
poral lobe with the orbital and polar frontal lobe including 

orbitofrontal area and inferior frontal gyrus (Catani et  al., 
2012). Uncinate fasciculus functions are linked to episodic 
memory, language and social-emotional processing (Catani 
et al., 2012). Its disruption has been reported in both AD and 
DLB (Serra et  al., 2012). However, its contribution to these 
forms of dementia is still unclear. In the current study, we found 
a relationship between DTI metrics within uncinate fasciculus 
and the cortical thickness of (1) the PT and of the medio- and 
lateral-orbitofrontal gyrus in DLB patients and (2) the STG in 
AD patients. These findings suggest that the structural altera-
tion within uncinate fasciculus of AD and DLB could be caused 
by cortical neuronal loss more than by direct WM injury. This 
hypothesis is in agreement with a recent paper by Serra et al. 
(2012), suggesting that the uncinate fascicle damage could be 
linked to GM atrophy in the medial temporal lobe structures 
and to memory impairment in AD and with prominent involve-
ment of the frontal lobes in DLB.

In conclusion, different patterns of WM alteration were found 
in AD and DLB. In particular, the structural connectivity is affected 
within fronto-thalamic and fronto-parietal attentional network 
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FigUre 3 | scatter plots describe the relationship between the metrics within the white matter tract and the measures of gray matter within its 
target regions. The values of axial diffusivity (DA), radial diffusivity (RD), and mean diffusivity (MD) are reported as values ×10−3mm2/s. For DLB patients, the panels 
show: the relationship between DA within the right anterior thalamic radiation (ATR) and MD within the right medio-dorsal thalamic region (mdTHAL), which projects 
to prefrontal cortex; the relationship between RD within the left cingulum-cingulate gyrus (supracallosal) bundle (CCG) and the thickness of left precuneus; the 
relationship between DA within the left uncinate fasciculus (UNC) and the thickness of left pars triangularis (PT), left medial orbitalfrontal gyrus (MOFG), left lateral 
orbitofrontal gyrus (LOFG) and between the RD within the left UNC and the thickness of left PT and LOFG; for AD patients, the panel shows the relationship 
between RD within the right uncinate fasciculus and the thickness of right superior temporal gyrus (STG). AD, Alzheimer’s disease; DLB, dementia with Lewy bodies; 
R, right; L, left.
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in DLB and within mnemonic pathways in AD. Furthermore, 
the high correlation between GM and WM metrics within ATR, 
supracallosal bundle and uncinate fasciculus suggests that the 
structural connectivity alteration in DLB could be linked to GM 
neuronal loss rather than by direct WM injury. Thus, this finding 
supports the key role of cortical and subcortical atrophy in DLB.

We must acknowledge that due to low sample size the proposed 
structural MRI protocol cannot be applied for clinical purposes, 
i.e., for differential diagnosis between DLB and AD, which would 
require the replication of the study on larger cohorts by different 
centers.
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