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Hierarchical predictive coding has been identified as a possible unifying principle of
brain function, and recent work in cognitive neuroscience has examined how it may
be affected by age–related changes. Using language comprehension as a test case, the
present study aimed to dissociate age-related changes in prediction generation versus
internal model adaptation following a prediction error. Event-related brain potentials
(ERPs) were measured in a group of older adults (60–81 years; n = 40) as they
read sentences of the form “The opposite of black is white/yellow/nice.” Replicating
previous work in young adults, results showed a target-related P300 for the expected
antonym (“white”; an effect assumed to reflect a prediction match), and a graded
N400 effect for the two incongruous conditions (i.e. a larger N400 amplitude for the
incongruous continuation not related to the expected antonym, “nice,” versus the
incongruous associated condition, “yellow”). These effects were followed by a late
positivity, again with a larger amplitude in the incongruous non-associated versus
incongruous associated condition. Analyses using linear mixed-effects models showed
that the target-related P300 effect and the N400 effect for the incongruous non-
associated condition were both modulated by age, thus suggesting that age-related
changes affect both prediction generation and model adaptation. However, effects of
age were outweighed by the interindividual variability of ERP responses, as reflected
in the high proportion of variance captured by the inclusion of by-condition random
slopes for participants and items. We thus argue that – at both a neurophysiological
and a functional level – the notion of general differences between language processing
in young and older adults may only be of limited use, and that future research should
seek to better understand the causes of interindividual variability in the ERP responses
of older adults and its relation to cognitive performance.

Keywords: aging, predictive coding, language comprehension, event-related potentials, N400, P300, late
positivity, individual alpha frequency
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INTRODUCTION

The cognitive and neural changes associated with healthy aging
have attracted a great deal of attention within the domain
of cognitive neuroscience. Reorganization of cognitive skills –
and their neural bases – has been proposed as one possible
mechanism for the preservation of cognitive abilities in older
age, even in the face of age-related structural changes to the
brain (e.g., Cabeza et al., 2002; Reuter-Lorenz and Lustig, 2005;
Park and Reuter-Lorenz, 2009; Lindenberger, 2014; Shafto and
Tyler, 2014). Recent work has examined the implications of this
reorganization for the notion of hierarchical predictive coding,
which has been proposed as a unified theory of brain function
(Friston, 2005, 2010). The predictive coding framework assumes
that the brain continually tests the accuracy of its current internal
model of the world, by formulating predictions that can be
matched against sensory input. If the prediction is borne out, the
model is supported; if there is a prediction error (a mismatch
between the predicted and the actual sensory input), the model
must be updated. In regard to aging, it has been proposed that
the predictive model is rendered less complex by a reduction
in how readily model adaptations are undertaken in response
to prediction errors (Moran et al., 2014). In other words, older
adults are more likely to rely on predictive strategies that match
the experience accrued over the lifespan, than to readily adapt
their strategies to unexpected eventualities.

Language comprehension is a prime domain for testing
assumptions about predictive processing: it has been proposed
that prediction is the key mechanism that allows for language
to be understood rapidly and efficiently (Pickering and Garrod,
2007; Dikker et al., 2009). Several behavioral studies on language
comprehension in older adults appear to support Moran et al.
(2014)’s conclusions about age-related changes in prediction,
suggesting that older adults rely more strongly than younger
adults on predictive strategies based on probabilistic cues (Rayner
et al., 2006; DeDe, 2014). By contrast, the literature on the
electrophysiology of language comprehension has mostly been
argued to support a different conclusion, namely that older
adults do not predict upcoming input as strongly as their
younger counterparts. In the following, we briefly summarize
the electrophysiological results in question, before suggesting a
possible explanation for the apparent discrepancy with behavioral
and domain-general findings.

In an early study that examined changes in the event-
related potential (ERP) correlates of semantic expectations in
adults across the lifespan, Kutas and Iragui (1998) presented
participants aged 20–80 years with lead-in phrases that were
either high or low in constraint (e.g., “the opposite of black”
versus “a piece of furniture”); these were then followed by
a congruent (e.g., “white,” “table”) or incongruent word (e.g.,
“peach,” “noose”). Incongruous words engendered an N400 effect
(Kutas and Hillyard, 1980; Kutas and Federmeier, 2011), which
showed a linear decrease in amplitude and a linear increase in
latency with age.

Aiming to dissociate between top–down (i.e. predictive use of
semantic context) and bottom–up (i.e., spreading activation of
semantic features) contributions to these age-related changes in

the N400, Federmeier et al. (2002) examined sentences such as
those in (1) and (2).

(1) At the zoo, my sister asked if they painted the black and
white stripes on the animal. I explained to her that they were
natural features of a zebra/donkey/poodle.

(2) By the end of the day, the hiker’s feet were extremely cold
and wet. It was the last time he would ever buy a cheap pair
of boots/sandals/jeans.

The critical word (bold) in examples (1) and (2) either
provided an expected continuation (e.g., “zebra”), an
incongruous continuation with a word that was semantically
associated with the expected continuation (e.g., “donkey”) or an
incongruous and unassociated continuation (e.g., poodle). In
addition, the degree of contextual constraint was either high (1)
or low (2). Both young and older adults (mean age: 68 years)
showed a three-way gradation of the N400 effect: incongruous
unassociated > incongruous associated > congruous (for the
young adults, this replicated the results in Federmeier and Kutas,
1999) and an interaction between congruity and contextual
constraint. However, the source of the interaction differed
between the participant groups: whereas the reduced N400
for associated versus unassociated incongruities was driven
by the highly constraining contexts in the young adults, it
was primarily due to the weakly constraining contexts in the
elderly participants. From these results, Federmeier et al. (2002)
concluded that young adults use semantic context to set up
predictions about upcoming linguistic input and that, as a
by-product of these predictions, semantic associates of the target
item are also activated. Older adults, by contrast, use context
less efficiently to set up predictions about upcoming words.
This study further revealed interindividual differences, with
older adults who had high verbal fluency and higher receptive
vocabularies showing a similar pattern to the younger adults.

Similar conclusions were drawn from several subsequent
studies. Using a modified version of Kutas and Iragui’s (1998)
design that included low typicality exemplars for the low
constraint (category) task [e.g., “A type of dance” – “waltz”
(high typicality), “tap” (low typicality), “bait” (incongruent)],
Federmeier et al. (2010) examined N400 modulations as well as
modulations of a late frontal positivity. Frontal positivity effects
following the N400 are observable primarily for unexpected, but
possible (i.e., low cloze) continuations (for a review, see Van
Petten and Luka, 2012), and have thus been linked to predictive
processing. In Federmeier et al.’s (2010) experiment, young adults
showed a late frontal positivity for low typicality exemplars, while
older adults (60–76 years) did not show this effect as a group.
However, the positivity effect was observable for older individuals
with high category fluency; there was also a positive correlation
between category fluency and amplitude of the frontal positivity
in the older group.

These consistent electrophysiological findings show an
intriguing discrepancy to the above-mentioned behavioral
sentence processing (Rayner et al., 2006; DeDe, 2014) and
domain-general information processing results (Moran et al.,
2014), which have been interpreted as evidence for an age-related
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increase – rather than decrease – of predictive processing.
However, since the ERP studies in question all involved the
examination of (at least partial) prediction errors, there may be
an alternative explanation of the data that could serve to reconcile
the results across methods and domains. Specifically, rather
than reflecting an age-related difference in the establishment of
predictions, the frontal positivity may index age-related changes
in the processing of a prediction mismatch. An explanation along
these lines accords well with Moran et al.’s (2014) proposal
that older adults have a lower tendency to adapt their internal
predictive model on the basis of a prediction error. This proposal
can also derive the observation that, in older adults, a reduced
N400 for within- versus between-category violations occurs only
in low-constraint (example 2) but not high-constraint (example
1) sentences. In high-constraint sentences, the predictive model
is particularly strong, thus further discouraging prediction-error-
based model adaptations in older adults. By contrast, when a
low-constraint context does not allow for a strong prediction to
be set up, model adaptations based on bottom–up input are more
likely.

Distinguishing between these different accounts requires
separable measures of prediction matches and prediction
mismatches during sentence comprehension. While the
existing electrophysiological literature on age-related changes
in predictive language processing has focused primarily on
consequences of failed predictions, there is, in fact, also a highly
reliable electrophysiological marker of prediction matches: the
P300. P300 effects for highly expected target words were first
discussed in detail by Roehm et al. (2007b). These authors used
a design similar to Kutas and Iragui’s (1998) highly constraining
conditions, but formulated these as complete sentences and
added a continuation that was incongruent but semantically
related to the expected antonym. An example is given in (3):
(3) Das Gegenteil von schwarz ist weiß/gelb/nett.

the opposite of black is white/yellow/nice

In young adults, sentence structures such as (3) showed
an N400 effect for incongruous unassociated (nice) versus
incongruous associated critical words (yellow) and a target-
related P300 for congruous antonyms (white) versus incongruous
associated critical words (yellow) (Roehm et al., 2007b). In this
experimental setting, the P300 appears to reflect the detection
of an expected target word (for similar findings in other types
of sentence constructions, see Haupt et al., 2008; Molinaro and
Carreiras, 2010; Vespignani et al., 2010). Roehm et al. (2007b)
demonstrated the independence of the P300 from the N400
via a manipulation of the experimental task: when the same
critical word pairs (black – white/yellow/nice) are presented out
of context and with a task that does not render the antonym
a target stimulus (lexical decision), no positivity is observable,
while the N400 effect remains. In addition, the assumption of
two functionally independent, but overlapping effects within the
N400 time window in sentences such as (3) is supported by
time–frequency analyses (Roehm et al., 2007a).

The antonym paradigm used by Roehm et al. (2007b) thus
provides us with a means of separably estimating the effects of
an explicit prediction match (P300 effect) and of a prediction

mismatch (N400 effect). If older adults indeed use semantic
context less effectively than younger adults in order to set up
predictions about upcoming words, age should have amodulating
effect on the P300 for the expected antonym continuations. By
contrast, the N400 effect for incongruous continuations should
remain unaffected. Alternatively, if model adaptation as a result
of prediction errors is most strongly affected by age-related
changes, the N400 effect should be most strongly modulated
by age. Finally, it is possible that age-related modulations may
be observable in both of these crucial aspects of predictive
processing. These hypotheses were tested in the present study,
which used the same experimental design and procedure as
(Roehm et al., 2007b) with older adults between 60 and 81 years
of age.

MATERIALS AND METHODS

Participants
Forty older adults (20 females, 20 males; age range: 60–81 years;
mean: 66.95) participated in the experiment after giving written
informed consent. Two further participants were excluded
due to eye-movement artifacts. All participants were healthy,
right-handed, monolingual native speakers of German and had
no history of reading difficulties or neurological/psychiatric
disorders. Most of the participants had a tertiary education and,
at the time of data acquisition, some of them were still active
professionally or involved in local non-governmental or non-
profit organizations.

Materials
The stimulus materials were of the form shown in (3) and
identical to those used in Roehm et al. (2007b), Experiment
1. Participants read 40 sentences per condition and 40
additional fillers involving an antonym relation, which served to
counterbalance the proportion of “yes” and “no” responses in the
judgment task (see below). The critical words (bold in example
3) did not differ in length or frequency across conditions (see
Roehm et al., 2007b).

Procedure
Participants were seated comfortably in front of a computer
screen (19′) in a sound-attenuated room. Sentences were
presented in a word-by-word manner in the center of the screen
with a presentation time of 350 ms and an inter-stimulus interval
of 200 ms. Participants were instructed to read all sentences
attentively and to judge their plausibility by means of a button-
press. As a cue for the judgment, a question mark appeared in
the center of the screen 500 ms after the offset of the last word.
Themain experiment comprised 160 sentences in total, presented
in four blocks of 40 sentences, between which participants took
short breaks. The main experiment was preceded by a short
practice session, in which participants were familiarized with the
task.

Resting-state EEG recordings (2 min of recording with eyes
open and 2 min of recording with eyes closed) were obtained
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from each participant at the beginning and end of the overall EEG
recording session.

EEG Recording and Preprocessing
The EEG was recorded from 27 Ag/AgCl scalp electrodes
(Easycap GmbH, Herrsching-Breitbrunn, Germany) positioned
according to the international 10–20 system (impedances
<5 kOhm; sampling rate: 250 Hz; BrainAmp amplifier,
Brain Products GmbH, Gilching, Germany). Electrodes were
referenced to the right mastoid and re-referenced to linked
mastoids offline (ground: AFz). The electrooculogram (EOG)
was recorded via bipolar pairs of electrodes placed at the outer
canthus of each eye (horizontal EOG) and above and below the
right eye (vertical EOG). The EEG was filtered offline with 0.3–
20 Hz bandpass in order to remove slow signal drifts. Raw EEGs
were scanned for artifacts both automatically and manually.
Automatic scanning marked all epochs as artefactual in which the
EOG channels exceeded a threshold of 40 μV within a 200 ms
sliding window. Manual scanning was used to mark additional
artifacts, e.g., due to eye or muscle movements, signal drifts or
amplifier saturation. ERPs were time-locked to the presentation
onset of the critical sentence-final word. Only artifact-free trials
for which the judgment task had been performed correctly
entered the final data analysis. Across participants, mean trial
numbers included across conditions were as follows (standard
deviations in parentheses): ANT – 38.5 (2.5); REL – 38.1 (2.9);
NONREL – 38.7 (2.7). The number of rejected trials did not differ
across conditions: F(2,78) = 2.13, p > 0.12.1

Data Analysis
For both the behavioral and the ERP amplitude data, statistical
analyses were carried out using linear mixed-effects models
with crossed random effects for participants and items (Baayen
et al., 2008). Analyses were conducted using R (R Core Team,
2015) and the lme4 package for linear mixed-effects models
(LMMs; Bates et al., 2013). Figures visualizing the fixed effects
were generated using the coef2 package (Bolker and Su, 2011)
and model summary tables were produced using the lmerOut
package (Alday, 2015). Participants and items were modeled as
random effects, whereas CONDition (expected antonym: ANT
versus incongruous related: REL versus incongruous unrelated:
NONREL) and AGE were modeled as fixed effects. AGE was
centered via a z-transformation prior to inclusion in all models.
The statistical analyses of the ERP data additionally included the
topographical factor “region of interest” (ROI) as a fixed effect.
ROIs were defined as follows: left-anterior (L-ANT): F3, F7, FC1,
FC5; left-posterior (L-POST): CP1, CP5, P3, P7; right-anterior
(R-ANT): F4, F8, FC2, FC6; right-posterior (R-POST): CP2, CP6,
P4, P8.

In separate analyses, we included individual alpha frequency
(IAF) rather than age. The IAF is the peak frequency within the
EEG alpha band (8–12 Hz) during a resting-state measurement;

1For the individual alpha frequency (IAF) analysis (see Data Analysis), trial
numbers were as follows: ANT – 38.3 (2.7); REL – 37.7 (3.2); NONREL – 38.4 (3.0).
Again, there were no significant differences across conditions: F(2,58) = 2.50,
p > 0.09.

it is known to vary among individuals (mean IAF for 30 year-
old adults: 10 Hz; range 8–12) and to correlate with memory
performance and intelligence (Klimesch, 1999). Recent large-
scale studies of IAF variability in younger and older adults
demonstrated that the association between IAF and cognitive
performance remains stable across the lifespan (Grandy et al.,
2013b), and that the IAF is unaffected by intensive cognitive
training interventions (Grandy et al., 2013a). The IAF has thus
been interpreted as a stable neurophysiological trait marker
that is related to cognitive performance. We were interested
in examining whether IAF is a better estimate of language
processing performance than age per se (for findings of IAF-
based differences in real-time language processing strategy, see
Bornkessel et al., 2004). IAF was calculated by determining the
mean peak between 7 and 12 Hz (via a Fourier transformation)
in the pre- and post-experimental resting-state EEG recordings
(with eyes closed) at electrodes O1 and O2. IAF was centered via
a z-transformation prior to inclusion in all models.

For LMM modeling, we employed deviation coding for
the contrasts of the factor COND, such that individual factor
levels were compared to the grand mean of the dependent
variable. This coding was chosen in order to allow us to
separably examine the effects of a prediction match (P300
effect for ANT) and a prediction mismatch (N400 effect for
NONREL), while minimizing the effects of component overlap
on coefficient estimates (i.e., in these analyses, no comparisons
were undertaken involving condition REL). In order to also
explicitly test the hypothesis put forward by Federmeier et al.
(2002, 2010) that the incongruous associated condition (REL
in our case) is most strongly affected by age-related changes,
we performed a second analysis assessing the effects of ANT
and REL, rather than NONREL. In the following, we will refer
to these two contrast codings as “match–mismatch” and “match–
incongruous_associated,” respectively. The significance of fixed
effects was assessed using Wald χ2-tests (Fox, 2016) from the
car package in R (Fox and Weisberg, 2011). For the factor ROI,
deviation coding was chosen to assess effects for the L-POST,
R-ANT, and R-POST regions, as the left-anterior region was
deemed least likely to show the effects of interest (N400,
P300).

In all cases, the best-fitting LMM was determined via
an iterative model fitting procedure, in which a base model
(including only an intercept term for the behavioral data
and an intercept term and the fixed effect ROI for the ERP
data) was compared to a more complex model involving the
fixed effect COND and, subsequently, to models including AGE
and IAF. Note that AGE and IAF were never included in
the same model, as they are known to correlate (Klimesch,
1999). Improvements of model fit were assessed using likelihood
ratio tests, performed on models fit using maximum likelihood
estimation (for individual models, we report fits based on
restricted maximum likelihood estimation). A similar procedure
was adopted to determine the most appropriate random effects
structure. Models were initially fit with random intercepts for
participants and items and subsequently compared to more
complex models involving by-condition random slopes for
participants and items. While Barr et al. (2013) recommend
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the general use of maximal random effects structures in order
to avoid anticonservative model estimates, this may lead to
model overparameterization and, hence, potential problems
with model interpretability (Bates et al., 2015). Accordingly,
we only adopted models with more complex random effects
structures when they improved the overall fit of the model to the
data.

Finally, we analyzed the peak latencies of the P300 and
N400 effects in order to examine possible age-related and IAF-
related latency shifts. For each participant, N400 peak latency was
identified as the most negative peak between 300 and 500 ms in
the difference wave obtained by subtracting condition NONREL
from condition REL for the average of the posterior electrodes
(P7, P3, Pz, P4, P8), at which the N400 typically shows its
maximal amplitude. P300 peak latency was identified as the
most positive peak between 300 and 500 ms in the difference
wave obtained by subtracting condition ANT from condition REL,
again for the average of the posterior electrodes [again, based
on the typical distribution of P300 (P3b) effects]. We did not
analyze the peak latency of the late positivity, as this effect did
not show a clear peak in the grand average ERP. Possible age-
related changes in peak latency values were examined via linear
regression analyses.

Ethics Statement
The experiment was performed in accordance with the
Declaration of Helsinki and approved by the ethics committee
of the Research Focus on Interdisciplinary Neurosciences at the
Johannes Gutenberg-University Mainz.

RESULTS

Individual Alpha Frequency
An IAF value was calculable for 30 of the 40 participants in this
study (mean: 9.6 Hz, range: 7.7–11.1 Hz). The participants for
whom IAF was not calculable did not show a clear frequency
peak within the alpha range. See Supplementary Figures S12 and
S13 for examples. Accordingly, all analyses involving IAF that are
reported below include only the subset of 30 participants with a
calculable IAF.

Behavioral Data
Participants were very accurate in performing the judgment task.
Mean accuracies per condition (with by-participant standard
deviations given in parentheses) were as follows: ANT 98.62%
(2.19); REL 91.99% (7.72); NONREL 99.75% (0.76). In view of the
very high accuracy for all conditions in the judgment task, no
inferential statistics were calculated, in order to avoid possible
overinterpretations of ceiling effects.

Mean reaction times (calculated for correctly answered trials
only) were as follows (by-participant standard deviations are
given in parentheses): ANT 642 ms (221); REL 781 ms (247);
NONREL 622 ms (211). As the REL condition was the main source
of variability in the reaction times, LMM analyses were only
performed using the match–incongruous_associated contrasts
(i.e., comparing ANT and REL to the grand mean of the reaction
times). Iterative model fits revealed that a model including
the fixed factors COND and AGE as well as their interaction,

FIGURE 1 | Visualisation of fixed effects estimates for the best-fitting model for the reaction times. Dots represent the estimated coefficient value; lines
show standard deviations of coefficients (black lines) and 95% confidence intervals (CIs, 2 standard deviations; grey lines). Note that when the CI for a given effect
does not cross the zero mark, this effect is considered statistically significant.
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and per-condition random slopes for participants and items
showed the best fit to the data. The fixed effects are visualized
in Figure 1; for a full model specification and Wald χ2–
statistics for the fixed effects in the model, see Supplementary
Tables S1 and S2, respectively. The main effect of COND and
the interaction of COND × AGE reached significance, with the
interaction resulting from an effect of age particularly on the REL
condition.

While the inclusion of IAF also led to an improved model
fit, this was less substantial than that produced by age. For
the parameters of the best-fitting model including IAF, see
Supplementary Table S3.

ERP Data
Grand average ERPs at the position of the critical word are shown
in Figure 2 for nine selected electrodes. Visual inspection of
the figure suggests that the general pattern of results replicated
that observed by Roehm et al. (2007b): between approximately
350 and 500 ms, there is a three-way gradation of responses,
with a pronounced P300 peak for ANT and a clear N400 peak
for NONREL, and REL showing an intermediary response; this is
followed by a graded late positivity (LPS; NONREL > REL > ANT)
between approximately 500 and 800ms. Amplitude analyses were
undertaken for the 350–500 ms (N400/P300) and 500–800 ms
(LPS) time windows.

N400/P300 (350–500 ms)
For the 350–500 ms time window, the best-fitting LMM included
AGE and by-condition random slopes for participants and items.

The fixed effects for the best-fitting model are visualized in
Figure 3; for a full model specification and Wald χ2–statistics
for the fixed effects in the model, see Supplementary Tables
S4 and S5, respectively. As expected from our previous work,
the data showed a main effect of COND and an interaction
of COND × ROI. The interaction resulted from a pronounced
positivity for condition ANT and a negativity for condition
NONREL in posterior ROIs, but an amplitude reversal at
anterior sites. Here, antonyms showed more negative-going ERP
responses. For present purposes, however, interactions between
COND and AGE are of particular interest. Notably, the three-way
interaction COND × ROI × AGE reached significance, resulting
from an interaction between COND and AGE for both ANT and
REL, particularly in the right-posterior ROI.

Note that, though AGE showed a significant interaction
with COND and ROI, these effects were relatively small. This
resulted, in part, from the inclusion of random slopes in the
model: estimates for the AGE × COND interaction in particular
were considerably larger in the model without random slopes
(Wald test for the AGE × COND interaction effect in the
model with random slopes: χ2(2) = 4.71, p < 0.10; model
without random slopes: χ2(2) = 115.72, p < 0.0001). This
observation suggests that the large apparent effects of AGE in
the model without random slopes are, to a considerable extent,
subsumed by interindividual variability in the ERP responses.
This variability appears to specifically affect the interaction of
AGE and COND, as estimates for the ROI × COND interaction
remain comparable in magnitude across the two models (Wald
test for the ROI × COND interaction effect in the model without

FIGURE 2 | Grand average ERPs at the position of the critical word (onset at the vertical bar) for nine selected electrodes. Negativity is plotted upwards.
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FIGURE 3 | Visualisation of fixed effects estimates for the best-fitting model of ERP amplitudes in the N400/P300 time window. See Figure 1 for a
guide to interpreting the figure.

FIGURE 4 | Visualisation of fixed effects estimates for ERP amplitudes in the N400/P300 time window in the model using incongruous-associated
coding. See Figure 1 for a guide to interpreting the figure.

random slopes: χ2(2) = 1980.57, p < 0.0001; model with random
slopes: χ2(2) = 2102.39, p < 0.0001).

Figure 4 visualizes the fixed effects for the best-fitting model
in the early time window with incongruous–associated coding

(i.e., comparing effects of conditions ANT and REL to the grand
mean). A full model specification is provided in Supplementary
Table S6. Without consideration of AGE, the effects are similar to
those in the match–mismatch encoding model described above;
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the interaction of COND and ROI reflects a positivity for ANT and
a negativity for REL in posterior ROIs, and an amplitude reversal
at anterior sites. In regard to the effects of AGE, however, the two
models differ: there is no significant effect of AGE on condition
REL.

For the 350–500 ms time window, the inclusion of IAF as a
predictor improved model fit, but to a lesser degree than AGE.
For the parameters of the best-fitting model including IAF, see
Supplementary Table S7.

LPS (500–800 ms)
In contrast to the earlier time window, the best-fitting LMM
for the late positivity window included IAF rather than COND.
As with all previous models, by-condition random slopes for
participants and items substantially improved model fits. The
three-way interaction of COND × ROI × IAF did not reach
significance and was removed from the model without a
significant loss of explanatory capacity. Accordingly, the minimal
adequate model for the LPS time window included IAF and
by-condition random slopes, but no three-way interaction. The
fixed effects in the best-fitting model are shown in Figure 5 (see
Supplementary Tables S8 and S9 for a full model summary and
Waldχ2–statistics for the fixed effects in the model, respectively).
As is apparent from the figure, the main effect of COND and
the interaction COND × ROI reached significance, with the
interaction due to a positivity for the NONREL condition and a
relative negativity for the ANT condition in posterior ROIs. At
anterior sites, there is an amplitude reversal, which appears to
result from effects in the later part of the time window (i.e., a
relative negativity for the ANT condition in comparison to the

other two conditions; see Figure 2). While there was a main effect
of IAF and an interaction of IAF × ROI, there was no interaction
between IAF and COND.

Though IAF outperformed AGE as a predictor in this time
window, recall that the IAF dataset only covers a subset of the
full sample of participants, because we were unable to reliably
calculate an IAF value for 10 of the 40 participants. We thus also
report the best-fitting model for the full sample, which included
age and by-condition random slopes for participants and items.
Fixed effects are summarized in Figure 6; see Supplementary
Tables S10 and S11 for a full model specification and Wald
χ2–statistics for the fixed effects in the model, respectively. In
contrast to IAF, AGE did interact with COND and ROI in the late
time window, with effects of AGE apparent for conditions ANT
and NONREL.

Latency Analyses
The latency analyses for the N400/P300 time window revealed
that IAF did not predict latency of the P300 or the N400 (ps> 0.3).
By contrast, AGE predicted P300 latency (see Figure 7) but not
N400 latency (see Figure 8).

DISCUSSION

The present study aimed to dissociate the age-related modulation
of prediction matches (as reflected in a target-related P300 effect)
and prediction mismatches (as reflected in an N400 effect) in
real-time language comprehension. Linear mixed model (LMM)
analyses of ERP results from a group of older adults (60–81 years)

FIGURE 5 | Visualisation of fixed effects estimates for the best-fitting (IAF) model of ERP amplitudes in the LPS time window. See Figure 1 for a guide
to interpreting the figure.
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FIGURE 6 | Visualisation of fixed effects estimates for the best-fitting model of ERP amplitudes in the LPS time window including Age. See Figure 1
for a guide to interpreting the figure.

FIGURE 7 | Latency of the P300 as a function of age.

revealed that both effects were modulated by age. Crucially,
however, only the N400 effect for prediction mismatches that
were not associated with the expected continuation (condition

NONREL) was modulated by age, while that for semantically
associated prediction mismatches (REL) was not. Age-related
latency shifts were only observed for the target-related P300,
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FIGURE 8 | Latency of the N400 as a function of age.

but not for the N400. In a later time window, late positivity
effects for both prediction mismatch conditions were modulated
by age. However, the best-fitting model for the late time window
included IAF rather than age, though IAF did not interact with
condition. In the following, we first discuss the effects in the
N400/P300 time window, as these were most central to the
hypotheses examined in this study, before turning to the late
positivity and more general implications of these results.

Age-related Changes in Predictive
Processing and the Effects of
Interindividual Variability
The results of the current study suggest that age-related changes
in predictive processing affect both the prediction itself (as
reflected in a reduced P300 effect for prediction matcheswith age)
and the model adaptation resulting from a prediction mismatch
(as reflected in a reduced N400 effect for prediction mismatches
with age).

However, the magnitude of these age-related effects was far
outweighed by the individual variability among participants, as
shown by the substantial decrease in effect estimates for the
AGE × COND interaction once random slopes were included in
the model. The fact that no comparable decrease was observable
for the ROI × COND interaction suggests that the interindividual
variability particularly affected the estimability of age-related
influences on ERPs. This observation has potential implications
for the interpretation of existing findings on aging and the
electrophysiology of language processing. Most previous studies
in this domain have compared groups of younger and older adults

using analyses of variance (ANOVAs). It appears possible that the
age-related decreases in ERP amplitudes observed in this way (or,
more drastically, the apparent absence of an ERP effect of interest
in older adults; e.g., Delong et al., 2012) result, at least in part,
from a larger degree of interindividual variability in the older
group.

Our results indicate that the assumption of general differences
between the electrophysiological responses of younger and older
adults may be of limited use for understanding age-related
changes in cognitive processing. Rather, we suggest that it may
be more fruitful to study how the high individual variation in
the ERP patterns of older adults relates to individual differences
in processing strategies and the success of these strategies for
effective cognitive processing. In this regard, our results support
and further extend the finding by Federmeier et al. (2002, 2010)
that a subset of older adults – namely those with higher verbal
fluency – showed an ERP response pattern resembling that of
young adults, while the ERPs of the older adults as a group
differed from those of the young adults. It is a limitation of the
present study that, since we did not collect neuropsychological
data from our participants, we are unable to determine whether
the high degree of inter-individual variability could potentially be
explained – at least in part – by measures such as verbal fluency.
This is a clear objective for future studies in this area.

In another respect, however, our results are not in agreement
with Federmeier and colleagues’ findings. Federmeier et al. (2002,
2010) drew their conclusions regarding age-related changes in
predictive processing on the basis of the finding that ERP
responses to incongruous-associated continuations – i.e., words
that were unexpected, but semantically related to the expected
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continuation – were particularly susceptible to changes in older
adults. The results of the present study suggest that apparent
changes in incongruous-associated conditions (REL in the present
study) may, in fact, result from age-related changes in two
overlapping ERP components for the conditions to which
the incongruous-associated condition must be compared: the
target-related P300 for a predicted continuation (ANT) and the
N400 for an unassociated prediction mismatch (NONREL). Using
a statistical analysis technique that was designed to minimize
the influence of effect co-dependencies between individual
conditions, we observed age-related effects in conditions ANT
and NONREL, but not REL. The necessity of considering both the
P300 and the N400 in experimental designs of this type is further
emphasized by the observation of an age-related latency shift in
the P300, but not the N400 in the present study, a finding that
further corroborates our previous results on the separability of
the two components (Roehm et al., 2007a,b).

A potential caveat with regard to our conclusion that age-
related changes in language-related ERPs are outweighed by
interindividual variability is that the current study only examined
a sample of older adults (60–81 years), rather than testing
participants across a broader age range. However, previous
studies of extended lifespan samples (20–80 years) have found
evidence for linear changes in N400 and P300 amplitude and
latency across the lifespan (Picton et al., 1984; Kutas and Iragui,
1998), thus suggesting that the 20-year age range examined here
should have been sufficient to show such changes if present. The
possibility of non-linear change patterns has not been explored
in the ERP literature on language processing and aging to date, in
spite of evidence for non-linear age-related changes in language
production (e.g., Kemper et al., 2001). Future studies in the ERP
domain should consider this possibility.

The Late Positivity and Effects of
Individual Alpha Frequency and Age
In terms of the general pattern observed, the late positivity
effects in the present study replicated those observed in our
earlier experiment with young adults (Roehm et al., 2007b). More
interesting, however, are the effects of age and IAF observed in
this time window.

In contrast to the earlier time window, IAF outperformed age
in improving model fit for the late positivity. Intriguingly, the
improvement of model fit was not accompanied by an interaction
between IAF and COND. Rather, the substantial IAF × ROI
interaction suggests that inclusion of IAF was able to account
for topographical variability in our participants’ overall ERP
responses, irrespective of our experimental manipulation. While
we can only speculate regarding the functional significance of
this observation, one possibility is that it is related to the role
of alpha oscillations in long-range information transfer in the
brain (e.g., Canolty and Knight, 2010) and in the timing of
information processing via changes in inhibitory state (Klimesch
et al., 2007). In individuals with a higher IAF, the precision of
this timing is increased, thus leading to a more efficient transfer
of information between distributed brain regions (Grandy
et al., 2013b). Consequently, IAF could account for individual
differences in topographical variability of ERP responses.

By contrast, the best-fitting model including age did show
interactions of AGE, ROI, and COND. As in the N400/P300
time window, age-related differences were observed for both
ANT and NONREL, thus further emphasizing the need to
examine mechanisms of both prediction matches and prediction
mismatches when considering age-related changes in predictive
processing. The dissociation between age, which led to a
modulation of the ERP effects in our critical conditions, and
IAF, which did not interact with our experimental manipulation
but led to a greater improvement in overall model fit than
age, is intriguing and indicates that, though age and IAF are
correlated, they reflect different things. While age may be
more strongly correlated with individual changes in processing
strategies, IAF has been argued to be a neurophysiological
trait marker that is related to aspects of cognitive performance
(Grandy et al., 2013a,b). Its predictive capacity is retained
across the lifespan (or at least approximately up to the age
of 80) (Grandy et al., 2013b). This functional dissociation
may be related to the different levels of specificity with
which age and IAF interacted with the other factors in our
experiment.

CONCLUSION

With the present study, we aimed to shed further light on which
aspects of predictive processing are particularly affected by age-
related changes: those related to setting up the prediction or
those related to adapting the internal model in response to
a prediction mismatch. While our neurophysiological findings
provide some initial indications that both types of processes
are modulated by age, we consider more significant the result
that age-related modulations of language-related ERP responses
are considerably smaller than the variability observed across
individual participants. This observation suggests that – at both
a neurophysiological and a functional level – interindividual
differences between older adults should be taken into account
more strongly in the interpretation of seemingly general age-
related differences in language processing. Future research should
seek to better understand the causes underlying the high
degree of variability in the event-related electrophysiological
responses of older adults and how it relates to cognitive
performance.
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