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A commentary on

Possible involvement of lysosomal dysfunction in pathological changes of the brain in aged

progranulin-deficient mice

by Tanaka, Y., Chambers, J. K., Matsuwaki, T., Yamanouchi, K., and Nishihara, M. (2014). Acta
Neuropathol. Commun. 2, 78. doi: 10.1186/s40478-014-0078-x

The recent paper by Tanaka and colleagues details the neuropathological consequences of
progranulin knock out in a mouse model. Loss of progranulin function by GRN mutation causes
neuronal ceroid lipofuscinosis, also known as Batten’s disease—a progressive neurodegenerative
condition belonging to a class of disorders called lysosomal storage diseases (LSD, reviewed in
Kollmann et al., 2013). The unexpected link between GRN and Batten’s disease was discovered by
genetic analysis of two siblings presenting with neurological symptoms and histopathological signs
consistent with LSD (Smith et al., 2012). This unanticipated genetic relationship shows progranulin
is pivotal for lysosomal function in the brain, but the mechanism behind why this protein is
essential remains unclear.

Of note, Tanaka et al. (2014) show that LSD caused by progranulin deficiency in mice causes
severe neurodegeneration in the somatosensory thalamus (ventroposterior medial/ventroposterior
lateral thalamic nuclei—VPM/VPL). Here the authors correctly point out that this is a feature
shared by other types of murine Batten’s disease models (Partanen et al., 2008; Kuronen et al.,
2012). However, this has also been observed in other kinds of lysosomal storage disorders and is
not specific to the type of storage product found in the lysosome. The lipid-storing LSD Niemann
Pick disease type C1 (cholesterol, ganglioside storage), Sandhoff disease (GM2 ganglioside storage),
and Gaucher disease (glucosylceramide storage) all show the same pattern of neuronal cell death
in the VPM/VPL (Yamada et al., 2001; Farfel-Becker et al., 2011; Sargeant et al., 2011). Why these
thalamic nuclei show selective vulnerability to diverse causes of lysosomal disorder remains unclear.
It is reasonable to conclude, however, that the cause of cell death probably stems from generic
lysosomal dysfunction, not from a build-up of a hypothetical disease-specific metabolite.

Having shown loss of progranulin precipitates pathological features similar to other diverse LSD,
the authors of this study discuss the relevance of progranulin haplo-insufficiency to later onset
neurodegenerative disease. Heterozygous mutations in the progranulin gene, GRN, cause familial
frontotemporal lobar dementia (FTD). This was discovered when Baker et al. (2006) identified
mutations inGRN as risk factors for FTD at 17q21, in addition toMAPT, the gene that encodes tau.
It is likely that GRN is haplo-insufficient, revealed by heterozygous null GRN mutations in FTD.
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Remarkably, genetic variation in GRN has also been linked to
other late onset neurodegenerative diseases such as Alzheimer’s
disease (Perry et al., 2013).

There is, however, a more fundamental process that linksGRN
mutation with late onset disease. It is now clear that progranulin
is a bone fide lysosomal protein that is vital for efficient lysosomal
function. This is evidenced by its obvious lysosomal subcellular
localization (Gowrishankar et al., 2015) as well as its role in LSD.
In light of these findings, it is important to extend the discussion
presented by Tanaka and colleagues to include parallels between
GRN and GBA.

Like GRN, GBA encodes a lysosomal protein
(glucocerebrosidase, GCase). Homozygous or compound
heterozygous loss of function mutations in this gene cause a
lysosomal disorder called Gaucher disease. Like Batten’s disease
caused by Grn knockout in mice, Gba knockout produces similar
neuropathology; both mouse models display conspicuous loss of
neurons in the VPM/VPL that is accompanied by marked gliosis
(Farfel-Becker et al., 2011; Tanaka et al., 2014). The similarities
do not end there. Heterozygous mutations in both of these
lysosomal genes are risk factors for late onset neurodegenerative
disease. Heterozygous mutation of GBA is over-represented
in Parkinson’s disease patients (Gan-Or et al., 2008). This was
initially uncovered by astute clinical observation (Rogaeva and
Hardy, 2008) and the association between genetic variation in
GBA and Parkinson’s disease has since been corroborated by
numerous genetic studies.

The obvious parallels between GBA and GRN haplo-
insufficiency raise immediate questions about the nature of
pathogenesis in later onset neurodegenerative diseases such as
FTD, Alzheimer’s disease and Parkinson’s disease. Is risk for
late onset neurodegenerative disease from mutation in GBA
or GRN related to gene-product specific mechanisms? Or is it
general inefficiency in lysosomal flux that causes or contributes
to late onset neurodegenerative disease? Surely, the fact that

mutations in two very different LSD causing genes that also
contribute to late onset neurodegenerative disease suggests
variation in lysosomal flux is important. This idea has been
further corroborated by a study that showed FTD associated
with mutation in the lysosomal network gene, CHMP2B, was
accompanied by neuronal lysosomal storage material (Clayton
et al., 2015).

With this in mind, are mutations in other lysosomal proteins
risk factors for late onset neurodegenerative disorders? With
over 50 genes that cause lysosomal storage disease (Cox
and Cachón-González, 2012) and at least 900 genes involved
in maintaining efficient lysosomal network flux (Di Fruscio
et al., 2015), there are many potential candidates for genetic
contribution to sporadic forms of late onset neurodegenerative
disease. Future studies should address key questions presented
in this commentary by focussing on the measurement and
enhancement of lysosomal flux in late onset neurodegenerative
disease.

In conclusion, the study by Tanaka and colleagues directly
links homozygous loss of progranulin to other models of
LSD. Lysosomal storage of un-degraded material, along with
regionally specific neuronal cell death consistent with other
diverse lysosomal disease models is strong evidence that
progranulin deficiency causes lysosomal storage disease. Further
to this, the role of heterozygous GRN mutation in late onset
neurodegenerative disorders appears similar to the relationship
between GBA, another lysosomal gene, and Parkinson’s disease.
This suggests generalized reduction in lysosomal network
flux may be a key driver of pathogenesis in late onset
neurodegenerative disease.
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