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The research on staging of pre-symptomatic and prodromal phase of neurological

disorders, e.g., Alzheimer’s disease (AD), is essential for prevention of dementia. New

strategies for AD staging with a focus on early detection, are demanded to optimize

potential efficacy of disease-modifying therapies that can halt or slow the disease

progression. Recently, neuroimaging are increasingly used as additional research-based

markers to detect AD onset and predict conversion of MCI and normal control (NC) to

AD. Researchers have proposed a variety of neuroimaging biomarkers to characterize the

patterns of the pathology of AD and MCI, and suggested that multi-view neuroimaging

biomarkers could lead to better performance than single-view biomarkers in AD staging.

However, it is still unclear what leads to such synergy and how to preserve or maximize.

In an attempt to answer these questions, we proposed a cross-view pattern analysis

framework for investigating the synergy between different neuroimaging biomarkers. We

quantitatively analyzed nine types of biomarkers derived from FDG-PET and T1-MRI, and

evaluated their performance in a task of classifying AD, MCI, and NC subjects obtained

from the ADNI baseline cohort. The experiment results showed that these biomarkers

could depict the pathology of AD from different perspectives, and output distinct patterns

that are significantly associated with the disease progression. Most importantly, we

found that these features could be separated into clusters, each depicting a particular

aspect; and the inter-cluster features could always achieve better performance than the

intra-cluster features in AD staging.

Keywords: pattern recognition, neuroimaging, multi-modal, Alzheimer’s disease, mild cognitive impairment

1. INTRODUCTION

Alzheimers disease (AD) is the most common neurodegenerative disorder among aging people,
which accounts for nearly 70% of all dementia cases. The symptoms of cognitive impairment
develop gradually over years, and eventually lead to death (Kalaria et al., 2008). Currently,
there is no cure for AD. The early signs of AD include a noticeable and measurable decline in
memory, language, thinking, and other cognitive abilities. Patients with these symptoms are usually
diagnosed as the Mild Cognitive Impairment (MCI). MCI does not notably interfere with daily
activities, but those with MCI have a higher risk of later progressing to AD or other forms of
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dementia (Dubois and Albert, 2004; Jicha et al., 2006;
Nettiksimmons et al., 2014). Many medical interventions may
only be effective in the early course of the disease (Bond et al.,
2012). Therefore, accurate staging of the disease, especially
the detection of MCI, could help the physicians to identify
the subjects at higher risk of developing dementia and allow the
patients to receive early medical interventions before irreversible
brain damages are formed.

Numerous biochemical and genetic biomarkers, e.g.,
increased cerebrospinal fluid (CSF) tau, phosphorylated tau and
ubiquitin levels, low CSF Amyloid-β (Aβ42) concentration, and
apolipoprotein E (ApoE) ǫ4 allele, have been proposed to detect
AD onset and predict conversion of MCI and normal control
(NC) to AD with high specificity and sensitivity (Trojanowski
et al., 2010; Kandimalla et al., 2011, 2013, 2014; Andreasson
et al., 2014). Recently, neuroimaging biomarkers have been
increasingly used as additional markers for assessing the
likelihood of such detection and prediction, since they can detect
the changes in brain structure (e.g., atrophy) and function (e.g.,
hypometabolism, amyloid plaque, and neurofibrillary tangles
formation) before the cognitive impairment symptoms appear
(Perrin et al., 2009; Davatzikos et al., 2011; Ewers et al., 2011a,b;
Hinrichs et al., 2011; Singh et al., 2012; Jacobs et al., 2015).
Several large multi-modal neuroimaging data repositories, such
as the Alzheimers Disease Neuroimaging Initiatives (ADNI)
(Jack et al., 2008; Jagust et al., 2010) and Australian Imaging,
Biomarker and Lifestyle Flagship Study of Aging (AIBL) (Sona
et al., 2012), have been founded to facilitate the neuroimaging
research in AD and MCI.

A variety of quantitative measures can be extracted from
the neuroimaging data as biomarkers in the evaluation of AD
and MCI patients, such as hippocampal volume loss (Schuff
et al., 2009), ventricular boundary shift integral (Freeborough
and Fox, 1997) extracted from structural MRI, and z-score
(Minoshima et al., 1995) and t-map (Cai et al., 2010) extracted
from FDG-PET. We refer to same type of features as a “view.”
The terms, “view” and “modality,” are often used interchangeably
in the computer vision community, but not in the medical
imaging community. A modality, in medical imaging domain,
usually means the image acquisition technique or scanning
protocol, such as Magnetic Resonance Imaging (MRI), Positron
Emission Tomography (PET), Computed Tomography (CT),
Ultrasound, Single Photon Emission Computed Tomography
(SPECT), functional MRI (fMRI), and Diffusion Tensor
Imaging (DTI). However, a view means a specific type of
measure extracted from a modality. Therefore, a modality
may contain multiple views, but a view pertains to one
modality.

MRI and PET are the two most widely used neuroimaging
modalities in visualizing AD andMCI brains (Liu et al., 2015a). A
diversity of biomarkers extracted from the PET and/or MRI data
have been proposed in previous studies. Liu et al. recently gave
a comprehensive review of these biomarkers (Liu et al., 2015b).
The most well-known MRI biomarkers include the regional
gray matter volume (GMV), e.g., hippocampus and ventricles
(Klöppel et al., 2008; Heckemann et al., 2011), cortical thickness
(Fischl and Dale, 2000; Dickerson et al., 2009; Frisoni et al.,

2010), local gyrification index (Schaer et al., 2008), curvedness
and shape index (Awate et al., 2010; Cash et al., 2012). PET-
derived biomarkers are generally pertaining to the radioactive
tracers. Amyloid-binding compounds, i.e., 18F-BAY94-9172, 11C-
SB-13, 11C-BF-227, 18F-AV-45, and 11C-Pittsburgh compound B
(11C-PiB), have been used for imaging amyloid plaques in AD
(Carpenter et al., 2009; Perrin et al., 2009; Thompson et al., 2009;
Ni et al., 2013), whereas 2-[18F]fluoro-2-deoxy-D-glucose (FDG)
has mainly been used to depict glucose metabolism (Minoshima
et al., 1995; Cai et al., 2010). Various static and kinetic biomarkers
can be extracted from the PET data, i.e., the standard uptake value
(SUV) (Clark et al., 2012; Landau et al., 2013), cerebral metabolic
rate of glucose consumption (CMRGlc) (Sokoloff et al., 1977; Cai
et al., 2010), mean index (Batty et al., 2008), z-scores (Minoshima
et al., 1995), hypo-metabolic convergence index (HCI) / amyloid
convergence index (ACI) (Chen et al., 2011), tissue time activity
curve (TTAC) (Cai et al., 2000). In our previous studies, we
proposed the convexity ratio and solidity ratio (Liu et al., 2013a)
to detect the brain atrophy with MRI and the Difference-of-
Gaussian (DoG) features (Cai et al., 2014) to detect the hypo-
metabolism with FDG-PET, respectively. All of these biomarkers
have been proved to have great potentials of differentiating the
AD and MCI patients from normal controls (NC), and they also
have demonstrated different strengths in characterize the disease
pathology, e.g., PET views, such as SUV and CMRGlc in FDG-
PET, are effective in detecting the functional anomalies in the
brain, whereas MRI views, such as GMV and cortical thickness,
are more sensitive to the brain morphological changes (Fan et al.,
2008; Desikan et al., 2009; Risacher et al., 2009).

Researchers have carried out many studies on fusing these
multi-view features. As pointed out by Atrey et al. (2010) and
Zhang et al. (2011), current multi-view fusion methods could
be roughly categorized into two groups, i.e., feature fusion and
decision fusion. The feature fusion methods create a new feature
space for the multi-view features and subsequently train a single
model to classify the patients. Feature selection is a special feature
fusion algorithm, that selects the most discriminant features
based on certain selection criteria, such as t-test (Heckemann
et al., 2011), Lasso (Zhu et al., 2014), or Elastic Net (EN) (Shen
et al., 2011). The advanced feature fusion methods include multi-
view spectral embedding, which embed the multi-view feature
spaces into a unified space based on manifold learning (Park,
2012; Liu et al., 2013c; Che et al., 2014), the multi-kernel support
vector machine (MK-SVM) that combines the feature spaces
with kernel tricks (Hinrichs et al., 2009, 2011; Zhang et al.,
2011), and deep learning methods that extract highly abstract
features with a multi-layered neural network (Liu et al., 2014b,
2015c). The decision fusion methods train different models for
different views, and subsequently aggregate the predictions of
the all classifiers to make the final decision. Decision fusion,
as compared to feature fusion, requires repeatedly training
the classifiers and tuning their weighting parameters. In our
recent study (Liu et al., 2013b), we proposed the Multifold
Bayesian Kernelization (MBK) method to synthesize the multi-
view biomarkers. MBK could construct a set of non-linear kernels
to obtain the classification probabilities for individual views,
and then infer their weighting parameters by minimizing the
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diagnostic errors and kernelization errors based on a Bayesian
framework.

The aforementioned studies show that multi-view biomarkers
could achieve better performance than single biomarkers, and
imply that the multi-view biomarkers could create the synergy
in the classification of AD and MCI (Hinrichs et al., 2011;
Zhang et al., 2011; Singh et al., 2012; Liu et al., 2013b, 2014a;
Jacobs et al., 2015). However, researchers do not yet understand
the cause of such synergy, and there is a lack of the methods
for quantitatively analyzing the synergy between individual
biomarkers. Therefore, this study differs from the other multi-
view studies in that our interest is to investigate the synergy
between the multi-view biomarkers instead of solely improving
the staging performance.

We propose a cross-view pattern analysis framework to
investigate the synergy between the multi-view biomarkers. With
this framework, we found that the biomarkers derived from
MRI and PET could be separated into four clusters, each having
a unique strength in detecting certain pathological changes in
AD and MCI. We evaluated these biomarkers in a task of
classifying the AD, MCI, and NC subjects obtained from the
ADNI baseline cohort, and found the inter-cluster combination
could always achieve the best performance compared to the
intra-cluster combination. This study does not require the
ethical approval since it is purely based on the analysis of
the medical imaging data with no involvement of the patients,
and the permission has been obtained to use the ADNI
datasets.

The reminder of this paper is organized as follows. In Section
2, we first described the ADNI datasets, the pre-processing
steps and the multi-modal features used in this study, and
then elaborated the single-view and cross-view pattern analysis
methods as well as the classification and evaluation methods. The
pattern analysis and classification results were shown in Section
3, followed by the discussion on our findings in Section 4. Finally
we concluded in Section 5.

2. MATERIALS AND METHODS

Figure 1 illustrates the work-flow of our analysis. We first
acquired the raw MRI and PET datasets from the ADNI baseline
cohort, then registered the brain volumes to a template and
segmented them into a set of 3D regions of interest (ROI). Totally
nine views of biomarkers were extracted from each ROI. Single-
view and cross-view pattern analyses were carried out on these
views based on their pathology patterns in terms of the brain
atrophy and hypo-metabolism. Finally, we evaluated the single-
view biomarkers and their combinations in the classification of
AD, MCI, and normal control (NC) subjects using the MK-SVM
algorithm.

2.1. Datasets
Data used in the preparation of this article were obtained
from the Alzheimers Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has

been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD).

The ADNI datasets consist of a variety of imaging and non-
imaging biomarkers, such as MRI, PET, cerebrospinal fluid
(CSF) measures, genetic biomarkers, and clinical assessments.
Our focus of this study was to investigate the neuroimaging
biomarkers, therefore, we selected all of 369 subjects who had
both the T1-weighted MRI volume scanned on a 1.5 Tesla MR
scanner and the FDG-PET volume from the ADNI baseline
cohort. After pre-processing, we visually checked the images and
excluded those with intolerable distortions, that resulted in a
downsized database of N(N = 331) subjects. These patients were
divided into three groups according to their baseline diagnoses,
including 85 AD, 169 MCI, and 77 NC subjects.

2.2. Pre-processing
In Step (a), as indicated in Figure 1, we pre-processed all these
3D MRI and PET volumes using the following protocols. We
retrieved the MRI and PET volumes from ADNI database (Jack
et al., 2008; Jagust et al., 2010). The PET data have a common
isotropic voxel size of 1.5mm3 and a full width at half maximum
resolution of 8 mm. We then removed the non-brain tissue
from MRI images using FSL BET (Smith, 2002). To enable the
subsequent joint analysis of PET and MRI, i.e., feature extraction
and pattern analysis, we then linearly registered the PET image to
the MRI image of the same subject using FSL FLIRT (Jenkinson
et al., 2002).

ROI-based features, as compared to voxel-based features, had
lower dimensions and would avoid the curse-of-dimensionality.
In addition, brain ROI features, such as hippocampal and
ventricular volumes, have shown promising potential in
characterizing AD and MCI. Therefore, we chose to use ROI-
based features instead of voxel-based features in this analysis.
The MRI data in ADNI baseline cohort have been labeled with
K(K = 83) brain ROIs through the multi-atlas propagation with
enhanced registration (MAPER) approach (Heckemann et al.,
2010, 2011). These MAPER-generated labelmaps were then used
to extract the ROI features in the next step. A complete list of
these ROIs can be found in the previous papers (Heckemann
et al., 2011; Liu et al., 2014a).

2.3. Feature Extraction
As shown in Figure 1 - Step(b), totally M(M = 9) views
of biomarkers were investigated in this study, including
four biomarkers extracted from the T1-weighted MRI data:
Gray Matter Volume (GMV), Local Gyrification Index (LGI),
Convexity Ratio (CNV), and Solidity Ratio (SLD); and
five biomarkers extracted from FDG-PET data: Mean Index
(M-IDX), Fuzzy Index (F-IDX) and three Difference-Of-
Gaussian features (DoG-M, DoG-C, DoG-Z). Since the features
were all ROI-based, each feature element had two attributes, the
location in the brain and the feature value. These two attributes
together formed a signature neurodegeneration pattern of each
view.
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2.3.1. Gray Matter Volume
GMV, is the most commonly used MRI biomarker in AD
characterization in laboratories, since the GMV is closely related
to the cortical neuronal loss as well as synaptic loss due to the
disease (Carison et al., 2008). In this study, we extracted the
GMV features from all K ROIs except for the ventricles, central
structures, cerebellum and brainstem (whole volumes were used
for these ROIs). We further normalized the GMV features by the
intracranial volume as measured on the same source image to
eliminate the impact of linear scaling in segmentation.

2.3.2. Local Gyrification Index
LGI, is a metric that quantifies the ratio of the cortex buried
within the sulcal folds to the outer visible cortex (Schaer et al.,
2008). A normal healthy cortex with extensive folding usually has
a larger LGI, whereas a degenerative cortex with limited folding
has small LGI. The LGI features are usually computed in circular
3D ROIs in each hemisphere. In order to match the other views
of features in this study, we computed the LGI features in the K
pre-defined ROIs instead, i.e., the intersection of the 3D circular
ROIs and pial surface were replaced by the outer surface of the

FIGURE 1 | The work-flow of the cross-view pattern analysis. It is a five-step pipeline, which takes brain T1-MRI and FDG-PET images as inputs and generates

the classification results as the outputs.
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pre-defined ROIs. For the non-cortical regions, the surface areas
were used as the LGI features.

2.3.3. Convexity Ratio
CNV, also aims to capture the cortical folding features. CNV
differs from LGI in that it is not limited to the cortex surfaces.
It is defined as the area of the convex hull surface divided by that
of the ROI surface (Liu et al., 2013a). Similar to LGI, a normal
healthy brain usually has a larger CNV, and a degenerative brain
has low CNV.

2.3.4. Solidity Ratio
SLD, quantifies the fullness of the ROI in the convex hull. It
is defined as the ratio of volume of the ROI to that of the
convex hull. SLD describes the extend to which the shape is
convex or concave. Compared to the normal healthy brains, the
degenerative brains with atrophy usually have a shrinking shape,
which leads to a lower SLD value. SLD and CNV are usually used
together to enhance the GMV features due to large inter-subject
brain volume variations (Liu et al., 2013a).

2.3.5. Mean Index
M-IDX, is defined as the mean activity levels of the ROIs (Batty
et al., 2008). It is a simple and effective feature in capturing the
brain metabolism activity levels and has been widely used in AD
and MCI characterization. In particular, M-IDX is very sensitive
to the brain hypo-metabolism and has better performance in
early detection of MCI than many complex feature descriptors,
such as 3D Gabor Filters, Gray Level Co-occurrence Matrix, and
Discrete Curvelet (Liu et al., 2014a). To eliminate the intensity
variations during acquisition or parameter estimation, we further
normalized the M-IDX features with the average cerebellum
metabolism rate.

2.3.6. Fuzzy Index
F-IDX, evaluates the consistency of themetabolism activity levels,
or the fuzziness, of the ROIs. It is defined as the standard
deviation divided by the mean value of the ROI voxels. F-IDX is
particularly useful for characterizing the ROIs that are partially
hypo-metabolic. The voxels in these ROIs have less consistent
activity levels, thus lead to higher F-IDX. On the contrary, the
normal ROIs are expected to have more consistent activity levels
and smaller F-IDX values.

2.3.7. Difference-of-Gaussian Mean
DoG-M, quantifies the degeneration levels of the hypo-metabolic
regions (lesions) at different spatial scales estimated by the
Difference-of-Gaussian (DoG) descriptor. It is defined as the
mean metabolism rate of the lesion area within the segmented
ROI (Cai et al., 2014). Different from M-IDX, DoG-M considers
the activity level of the lesions only. The mean metabolism rate
of all lesion areas across the brain is first computed, and further
normalized by the mean metabolism rate of the cerebellum to
remove the bias of global intensity variation. It is originally called
the lesion mean index. To avoid the ambiguity with M-IDX, we
referred to it as DoG-Mean (DoG-M) in the rest of this paper.

2.3.8. Difference-of-Gaussian Contrast
DoG-C, quantifies the contrast between the lesions and non-
lesion parts. Since there are large variations of the metabolism
rates in different ROIs, DoG-C offsets this effect by focusing on
the contrast instead of the actual activity level of the ROI. It is
originally called the lesion contrast index and defined as the ratio
of the mean metabolism rate of the lesions to that of the non-
lesion parts and further corrected using the variances of both
parts in the ROIs, where the lesions are also approximated by the
DoG descriptor.

2.3.9. Difference-of-Gaussian Z-Score
DoG-Z, similar to the conventional Z-score (Minoshima et al.,
1995), quantifies the proportion of the abnormal voxels in
the ROIs. However, conventional Z-score requires voxel-wise
registration which will involve registration error, instead we used
DoG operator to estimate the hypo-metabolism lesions in this
study. DoG-Z is a good indicator to approximate the progress of
the disease. Late-stage patients usually have higher DoG-Z values
than the early stage patients.

2.4. Single-View Pattern Analysis
In single-view pattern analysis, as shown in Figure 1 - Step(c),
we analyzed the pathology patterns of the nine individual views
extracted from the imaging data.

For each view, we performed ANOVA on the three disorder
groups, AD, MCI, and NC, against the null hypothesis
that all groups were simply random samples of the same
population. Given a view, P, the p-values of ANOVA, P =

{P(1), P(2), . . . , P(K)}, showed the discriminating power of the
ROIs in this view. Tomake it comparable to other views’ patterns,
we transformed the p-values to non-negative valued weights,
which were positively correlated to the ROI discriminating
power, as Equation (1):

P′(i) = exp (−
P(i)2

2σ 2
) (1)

where σ is the bandwidth parameter which controls how quickly
P′(i) falls off with the P(i). If P(i) is small, then P′(i) is close to 1;
and if P′(i) is greater than σ , then P′(i) will plummet to 0. In this
study, we set the bandwidth σ as 0.05.

In order to quantify the differences between the patterns in the
following analysis, we further normalized the P′ as Equation (2):

P′′(i) =
P′(i)

∑

K P′(j)
(2)

The normalized weights, P′′(1), P′′(2), . . . , P′′(K), together
formed a distinct pathology pattern of the view.

There are three types of ROIs in terms of their consistency
across different views. The first type of ROIs is the disease-
spared ROIs, which are not affected by the disease and have low
discriminating power across most of the views, e.g., cerebellum
is believed to be spared by AD and always used to calibrate the
PET metabolism rates. The second type of ROIs is the disease-
affected ROIs. Hippocampus, for instance, has been widely used
as an effective biomarker for characterizing AD and MCI. The
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third type of ROIs is the view-specific ROIs, which have varying
p-values across different views. These ROIs show the different
effects of the disease on the brain, and potentially lead to the
synergy or interference between different views.

2.5. Cross-View Pattern Analysis
Figure 1 - Step(d) shows the cross-view pattern analysis. The
goal of this step was to compare the patterns and quantitatively
analyze the variability among them.

We first paired up theseM views, which lead toM×(M−1)/2
pairs of views. In this study, there were 9 single views and 36
pairs. We then quantitatively analyzed each pair based on their
patterns. Assuming P′′ and Q′′ represent the patterns of two
views, we computed their affinity, A(P,Q), as Equation (3):

A(P,Q) = exp







−

1

2π
(

DKL(P||Q)
︷ ︸︸ ︷

∑

K

P′′(i) log
P′′(i)

Q′′(i)
+

DKL(Q||P)
︷ ︸︸ ︷

∑

K

Q′′(i) log
Q′′(i)

P′′(i)
)








(3)

where DKL(P||Q) is the Kullback-Leibler (KL) divergence of Q
from P, and DKL(Q||P) is the KL divergence of P from Q.
A(P,Q) = 0 if P′′ = Q′′. Note that KL divergence is non-
symmetric measure of difference between P and Q, and cannot
be used as a distance metric as it does not satisfy the symmetry
condition. Therefore, we actually measured the affinity between
two views based on their mutual divergence.

The affinity value of all pairs formed the affinity matrix A.
To see how the views were related to each other, we further
computed the clustering of them based on the symmetric
normalized Laplacian matrix (L) of A (Ng et al., 2002), as
Equation (4):

L = I − D−1/2AD−1/2 (4)

where I is the unit matrix, D is defined as the diagonal matrix
whose (i, i)-element was the sum ofA’s ith row. If we consider the
patterns to be the points in a K-dimensional space, then the top-
k eigenvectors of L could be stacked in columns to form a new
k-dimensional space for the patterns, therefore it allowed us to
observe the embedding of the views in a low dimensional space.
In this study, we set k to 2 and displayed the views as points in a
2-dimensional space.

2.6. Classification and Evaluation
The last step of our work-flow was to evaluate the performance
of these 9 single views and 36 pairs of views in the task of staging
of the disease progression, i.e., classifying the AD, MCI and NC
subjects, as illustrated in Figure 1 - Step(e). The goal of this step
is to see how the single-view biomarkers interact with each other
and find out what biomarkers have more effective synergy than
others.

Since the datasets used in this study were highly skewed that
MCI subjects accounted for a large percentage (over 50%) of
the entire population, we designed three classifiers instead of
one classifier in order to reduce the data bias onto classification

and achieving more accurate staging. The first classifier was a
binary SVM aiming to distinguish NC subjects from the AD
and MCI patients. We kept the NC subjects predicted by the
first classifier and sent other subjects to the second classifier.
The second classifier was also a binary SVM, which classified the
subjects into AD or non-AD patients. The predicted AD patients
of the second classifier were retained and the rest of the patients
were sent to the third classifier. The third classifier was a multi-
class SVM, which classified AD, MCI, and NC subjects in one
setting. The Radial-Basis-Function SVM (RBF-SVM) was used
for the single views, whereas the Multi-Kernel SVM (MK-SVM)
was used for the combinations of the views. Both the RBF-SVM
and MK-SVM were implemented using LIBSVM library (Chang
and Lin, 2011).

The 5-fold cross-validation paradigm was adopted in
performance evaluation. Specifically, we divided the datasets
into 5 equal-sized subsets, and each subset was used for testing
in turn while other subsets were used for training the model.
While training, the three classifiers were trained together and
the hyper-parameters were optimized using the random search
optimization algorithm (Bergstra and Bengio, 2012). Totally six
performance metrics were used in this study, including three
precision metrics for AD, MCI, and NC respectively, and the
overall accuracy, specificity and sensitivity. Note that when
computing the specificity and sensitivity, NC was considered as
the negative class, and both MCI and AD were considered as the
positive class. The corresponding standard deviations from cross-
validation were also reported with the performance metrics.

3. RESULTS

3.1. Single-View Pattern Analysis Result
Figure 2 shows the back-projection of the MRI single-view
patterns onto the ICBM_152 brain template (Mazziotta et al.,
2001), which is also labeled using the MAPER approach. The
color bar indicates the p-values of the ROIs in each view. Note
that the ventricles and corpus callosum are not displayed here.
Based on these patterns, we found that a large proportion of
the brain was spared by the disease, such as the insula, brain
stem, corpus callosum, and parts of the frontal lobe, parietal
lobe and subcortical regions. The disease-affected regions include
the repeatedly reported ventricles, middle and inferior temporal
lobe and limbic gyrus. We also observed a strong agreement
across most views on parts of the occipital lobe (lateral part,
lingual, and cuneus) and frontal lobe (superior part), which
were less investigated in previous studies. GMV further detected
the hippocampus, parahippocampal and ambient gyrus, and
amygdala. CNV detected two particular ROIs, the cerebellum
and the thalamus, although these two structures were usually
considered spared by AD. SLD also has two signature ROIs in
the parietal lobe, including the superior and post-central parts.

Figure 3 shows the back-projection of the PET single-
view patterns onto the ICBM_152 brain template. In addition
to the temporal lobe and limbic gyrus that were detected
by MRI views, the PET patterns also included more frontal
(subgenual, orbital, inferior, middle, and superior parts) and
parietal areas (post-central and superior parts). These regions are
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FIGURE 2 | Back projection of the normalized weights of the ROIs for four MRI views onto the ICBM_152 template using 3D Slicer (Fedorov et al.,

2012).

believed affected at the later course of AD and MCI, after the
hippocampus, entorhinal cortex, temporal regions and posterior
cingulate (Fan et al., 2008). This indicated that frontal and
parietal lobe were essential in staging AD and MCI, and we may
more effectively detect functional changes rather than structural
changes in these regions. Compared to MRI views, they were less
sensitive to pathological changes in the occipital lobe, where only
the cuneus was detected by the DoG-M and DoG-Z. The patterns
of M-IDX and DoG-M were larger than the other views, both
covering the inferiolateral parietal area.

To summarize, we found that parts of the brain were disease-
spared regions verified by both PET and MRI views. MRI
views were capable of capturing the brain structural changes
on temporal lobe, limbic gyrus, the ventricles, and part of the
occipital lobe, which were usually shaped in the late course of
the disease. The PET views, on the other hand, reflected the
metabolic activities of the brain and were able to detect the early
functional anomalies, therefore they tended to involvemore ROIs
in their patterns than the MRI views, especially in the frontal and
parietal areas. In addition, some ROIs could only be detected by
certain views, and led to distinct patterns. The differences of these
patterns indicated that the disease had different effects on the
brain and no single-view biomarkers were able to capture all the
pathological changes.

3.2. Cross-View Pattern Analysis Result
Table 1 shows the KL divergence (DKL(Col||Row)) of the row
item (Row) from the column item (Col) for these nine views.
PET views had a low mean KL divergence of 16.6, which
was close to that of MRI views 17.8. However, the mean KL
divergence of PET views from MRI views (DKL(MRI||PET) =

47.37) was markedly higher than that of MRI views from
PET views (DKL(PET||MRI) = 20.87). These results indicated
that the views in the same modality usually look more
similar than those in different modality. A typical example
to show inter-modal and intra-modal differences was the
GMV, which had limited divergence from other MRI views
(LGI:6.83; CNV:2.31; SLD:3.99), but large divergence from
PET views (M-IDX:48.09; F-IDX:31.13; DoG-M:49.95; DoG-
C:39.28; DoG-Z:33.53). In addition, the MRI views always
gain more information from the PET views than otherwise,
e.g., DKL(M-IDX||CNV) = 51.80 is much greater than
DKL(CNV||M-IDX) = 4.01; DKL(DoG-M||LGI) = 50.15 is
also greater compared to DKL(LGI||DoG-M) = 9.21. The only
exception was the pair of CNV and DoG-Z, both having high
divergence from each other. As for the individual views, the
divergence had a very wide range from the minimum DKL(M-
IDX||DoG-M) = 0.35 to the maximum DKL(SLD||DoG-C) =

61.47.
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FIGURE 3 | Back projection of the normalized weights of the ROIs for five PET views onto the ICBM_152 template using 3D Slicer.

TABLE 1 | The cross-view Kullback-Leibler divergence between different views.

DKL(Col||Row) GMV LGI CNV SLD M-IDX F-IDX DoG-M DoG-C DoG-Z

M
R
I

GMV 0 32.40 33.73 25.00 5.19 23.22 12.59 28.42 16.81

LGI 6.83 0 16.26 28.30 3.39 21.67 9.21 28.15 22.30

CNV 2.31 20.39 0 38.71 4.01 19.39 28.44 45.88 46.15

SLD 3.99 32.88 25.40 0 5.37 39.22 11.65 31.84 14.30

P
E
T

M-IDX 48.09 48.93 51.80 49.83 0 39.06 6.03 45.31 34.59

F-IDX 31.13 43.04 50.26 55.67 13.00 0 18.87 18.04 9.85

DoG-M 49.95 50.15 56.92 47.56 0.35 42.70 0 55.06 35.05

DoG-C 39.28 52.29 40.63 61.47 6.92 27.94 18.63 0 13.31

DoG-Z 33.53 43.80 45.11 47.93 9.19 27.52 19.32 4.10 0

To see how individual views related to each other, Figure 4
displays their clustering results in a 2D space using the cross-view
pattern analysis method described in Section 2.5. The blue color
indicates the MRI views, the red color indicates the PET views,
and the distance between two views in this coordinate system

is proportional to their mutual divergence. We noticed that the
MRI and PET views were clearly separated. More importantly,
these views also formed clusters within the same modality. There
were two clusters for the MRI views and two clusters for the PET
views. The first sub-cluster (C1) for MRI included CNV, GMV,
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FIGURE 4 | The clustering results for the nine views in the 2D space. The structural and functional features are substantially separated when considering the

first two eigenmodes.

and LGI. All of these three features had strong correlation with
the brain cortical atrophy, such as the loss of cortical neurons,
the changes of cortical foldings. The second cluster (C2) for
MRI had one isolated view only, SLD. Different from other
MRI views, SLD focused on the shape changes of the brain
caused by the disease. The third cluster (C3) contained three PET
views, F-IDX, DoG-C, and DoG-Z. These views were effective
in evaluating the consistency of the activity levels within a ROI,
particularly when the ROI was partially hypo-metabolic. The
M-IDX and DoG-M formed the fourth cluster (C4). These two
views both were sensitive to the metabolic activity changes of the
brain, which were important in the early detection of the AD
and MCI.

3.3. Single-View Classification
Performance
The classification performances of the individual views are
summarized in Table 2. The best result of each performance
metric is highlighted in bold-face. In general, PET views tended
to have better performance than MRI views, especially on NC
precision, MCI precision and the overall specificity. The only

exception was DoG-Z, which had lower NC precision, MCI
precision, accuracy and sensitivity compared to the MRI views.
In addition, the sensitivity was always higher than the specificity
across all the views, with an average difference of 30.44%. This
was because we considered both AD and MCI as the positive
class when computing the sensitivity and specificity. We argued
that sensitivity was more important than specificity in this
classification task, because the strong ability to detect the positive
class (AD and MCI) would avoid treating the patients as normal
subjects.

It was very clear that no single view could win all. F-IDX
was the best view with the highest NC precision (53.30%), MCI
precision (64.06%), overall accuracy (56.49%), and specificity
(63.67%). GMV achieved the highest AD precision (67.64%),
and DoG-M had the highest sensitivity (82.27%). One interesting
discovery about the top three views (F-IDX, GMV, and DoG-
M) was that they were from three distinct clusters (C3,
C1, and C4), as described in Section 3.2. This fact implied
that different views had different strengths in classification,
and such strengths might be related to the clusters they
belonged to.
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TABLE 2 | The classification performance of single-view biomarkers.

Method NC MCI AD Accuracy Specificity Sensitivity

M
R
I

GMV 43.08± 11.48 60.23± 8.30 67.64±22.93 55.58± 5.49 48.33± 10.26 78.76± 11.68

LGI 31.27± 6.38 52.34± 12.98 44.04± 12.75 44.42± 9.78 35.17± 7.87 76.35± 4.37

CNV 43.91± 4.28 57.57± 4.25 50.63± 12.94 52.27± 5.92 47.58± 17.96 81.45± 7.38

SLD 39.86± 8.60 55.64± 3.56 47.09± 5.66 49.24± 1.99 48.17± 16.29 78.37± 4.50

P
E
T

M-IDX 45.46± 7.96 60.88± 3.57 62.19± 13.46 56.20± 3.06 51.83± 10.61 81.11± 4.27

F-IDX 53.30±10.55 64.06±3.69 49.47± 6.32 56.49±3.89 63.67±8.52 81.90± 7.75

DoG-M 49.02± 14.52 63.20± 7.12 55.39± 11.66 56.19± 4.68 50.58± 4.20 82.27±7.99

DoG-C 44.84± 8.92 57.56± 5.33 55.83± 7.00 52.88± 4.56 52.33± 19.49 79.47± 10.27

DoG-Z 33.84± 2.41 51.95± 3.62 51.91± 8.26 46.54± 2.89 42.92± 8.83 74.82± 3.06

The bold value is the highest value in each column.

3.4. Cross-View Classification
Performance
Table 3 shows the classification performance of 36 pairs of
biomarkers in the same classification task. The best result of each
performance metric is highlighted in bold-face. We separated the
pairs into three groups according to their modalities, including
six intra-MRI pairs, 10 intra-PET pairs, and 20 inter-PET&MRI
pairs.

Most of the biomarker pairs could outperform the single
biomarkers with marked improvements. Similar to the single-
view biomarkers, none of the pairs could be leading in all
aspects. The pair of CNV and DoG-M achieved the best precision
for NC at 65.94%, which was 12.64% higher than the best
single-view performance. They also had the highest sensitivity of
93.69%, increased the best single-view sensitivity by 11.42%. The
pair of GMV and F-IDX performed best on MCI classification
with a precision of 70.89%, improved the best single-view
MCI precision by 6.83%. GMV also had the best performance
on AD classification when paired with F-IDX, and their AD
precision was 80.56%, 12.92% higher than the best single-view
AD precision. F-IDX had the best single-view accuracy of 56.49%,
and it further improved the accuracy to 67.37% when combined
with DoG-M. The highest specificity was 69.92%, achieved by
CNV and DoG-C with an increase of 6.25% compared to the best
single-view specificity.

We noticed that the inter-MRI&PET pairs usually gave better
results than the intra-PET and intra-MRI pairs. As detailed above,
the best results were always obtained from the inter-MRI&PET
pairs, except for the overall accuracy, which was achieved by
two PET views. However, when the views were separated into
different clusters as in Figure 4, we found the two views in the
best pairs were always from different clusters with no exception,
i.e., C1 (CNV) and C4 (DoG-M) achieved best NC precision and
overall sensitivity; C1 (GMV) and C4 (DoG-M) had best MCI
precision; C1 (GMV) and C3 (F-IDX) led in AD precision; C3
(F-IDX) and C4 (DoG-M) attained highest overall accuracy; and
finally C1 (CNV) and C3 (DoG-C) achieved best specificity. C2
(SLD) was the only cluster that made no contribution to any of
the best results.

In summary, there were two clear tendencies based on the
cross-view results. First, the biomarker pairs could achieve much

better results than the single-view biomarkers. Second, the best
performance was always achieved by the views from different
clusters.

4. DISCUSSIONS

The mutual divergence was an effective measure to quantize the
variability of the biomarkers. In this study, we identified four
clusters of the biomarkers based on their mutual divergence,
and the best joint performance in classification was always
achieved by the combination of views from different clusters.
However, it was not clear whether mutual divergence could be
used as a general performance predictor for any two biomarkers.
Therefore, we further asked this question, what could we expect
from the biomarkers when combining them in classification.

To answer this question, we first looked at the correlation
between the joint performance of the biomarker pair and
performance of individual biomarkers. We used the Ejoint ,
Ehigh, and Elow to represent the joint performance, the higher
performance and lower performance of the biomarkers. Table 4
shows the Pearson’s Correlation Coefficients (ρ) and the
corresponding p-values with a significant value of 0.05. It was
very clear that the multi-view classification performance was
strongly correlated to the performance of individual views, and
largely affected by the view with higher performance.

We further examined the correlation between the joint
performance and the mutual divergence Dmutual, as well as
the higher KL divergence Dhigh and lower KL divergence Dlow

between the two views. A large Dhigh and a large Dlow mean
that the two views have dramatically different patterns, such as
DoG-Z and CNV. A large Dhigh and a small Dlow mean one
pattern covers the other, such as M-IDX and CNV. If the Dhigh

and Dlow are both small, then the patterns are very similar,
such as DoG-M and M-IDX. As shown in Table 4, the mutual
divergence Dmutual did not show a correlation with the joint
performance Ejoint , except that it had a weak anticorrelation with
the accuracy (ρ = −0.1, p_value = 0.048). The higher KL
divergence Dhigh had a weak correlation with the NC precision
(ρ = 0.11, p_value = 0.040), whereas the lower KL divergence
Dlow, showed a decreasing linear relationship with the NC
precision (ρ = −0.12, p_value = 0.027), accuracy (ρ =
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TABLE 3 | The classification performance of the 36 combinations of the multimodal neuroimaging biomarkers.

Method NC MCI AD Accuracy Specificity Sensitivity

In
tr
a
-M

R
I

GMV / LGI 53.90± 9.39 63.83± 1.85 72.49± 18.80 64.28± 3.94 32.58± 13.38 91.31± 4.43

GMV / CNV 60.83± 22.54 66.81± 5.87 71.67± 7.45 63.43± 3.74 54.75± 25.44 84.60± 11.41

GMV / SLD 53.18± 11.18 67.49± 3.87 72.73± 13.31 63.13± 5.61 52.17± 18.78 83.07± 14.32

LGI / CNV 50.71± 8.17 60.82± 3.69 69.00± 18.17 58.01± 4.84 54.58± 18.37 82.25± 9.31

LGI / SLD 44.17± 3.37 64.01± 3.74 57.64± 7.93 56.81± 2.29 45.58± 21.85 82.29± 9.49

CNV / SLD 43.09± 5.66 64.40± 8.22 62.11± 9.95 55.59± 3.53 64.83± 14.84 74.42± 3.56

In
tr
a
-P

E
T

M-IDX / F-IDX 55.00± 2.65 68.22± 4.82 64.26± 9.03 62.55± 2.03 68.58± 17.62 82.65± 5.75

M-IDX / DoG-M 54.64± 6.08 65.06± 2.66 69.42± 16.09 62.85± 3.66 50.33± 16.17 87.39± 4.13

M-IDX / DoG-C 59.48± 14.50 64.54± 1.69 67.94± 8.80 62.85± 3.82 55.67± 10.50 86.60± 8.30

M-IDX / DoG-Z 51.75± 4.03 62.15± 3.50 68.55± 13.25 61.04± 3.73 47.67± 18.92 86.21± 5.75

F-IDX / DoG-M 65.70± 13.38 68.84± 5.29 73.07± 13.09 67.37±2.10 51.92± 18.19 91.36± 5.63

F-IDX / DoG-C 56.99± 8.28 63.19± 3.47 65.93± 7.93 60.72± 1.98 67.67± 12.66 83.47± 7.54

F-IDX / DoG-Z 55.11± 12.68 64.15± 1.32 68.35± 19.06 60.71± 2.57 59.75± 5.22 83.86± 7.77

DoG-M / DoG-C 57.33± 9.39 63.79± 4.67 65.78± 12.46 61.93± 6.74 53.25± 18.99 86.60± 9.18

DoG-M / DoG-Z 52.79± 7.67 64.53± 7.03 68.27± 12.69 61.94± 4.38 52.83± 22.03 85.01± 6.98

DoG-C / DoG-Z 46.16± 7.88 62.98± 5.35 68.66± 18.96 58.32± 4.09 51.08± 21.75 82.31± 7.54

In
te
r-
M
R
I
&
P
E
T

GMV / M-IDX 51.04± 4.05 67.69± 5.26 76.08± 17.25 63.75± 5.74 57.00± 18.27 83.07± 6.31

GMV / F-IDX 63.86± 10.71 64.47± 3.04 80.56±14.72 65.86± 4.85 54.33± 22.96 88.98± 8.72

GMV / DoG-M 55.28± 9.47 70.89±7.38 75.78± 22.48 64.94± 4.84 57.00± 20.01 85.00± 8.21

GMV / DoG-C 58.06± 9.15 64.26± 3.89 78.94± 15.07 65.26± 4.11 39.33± 20.02 90.96± 5.28

GMV / DoG-Z 50.57± 13.28 61.66± 6.45 70.44± 15.25 60.11± 4.22 45.67± 22.53 85.84± 9.83

LGI / M-IDX 62.90± 21.27 63.88± 4.15 69.47± 16.10 61.65± 3.23 45.25± 17.98 88.56± 6.90

LGI / F-IDX 58.09± 7.42 62.72± 2.94 61.83± 11.79 60.72± 2.50 61.00± 10.50 86.22± 5.00

LGI / DoG-M 57.89± 13.26 63.50± 3.80 67.33± 20.05 60.73± 3.43 45.00± 20.74 87.77± 8.54

LGI / DoG-C 49.01± 12.59 62.54± 10.77 59.33± 8.31 56.82± 6.00 53.75± 25.20 82.71± 8.77

LGI / DoG-Z 49.40± 16.61 60.14± 4.61 70.41± 20.40 56.49± 6.55 47.42± 23.58 79.99± 15.01

CNV / M-IDX 64.92± 21.45 63.25± 5.57 65.00± 10.63 61.04± 3.23 43.92± 23.57 88.60± 10.49

CNV / F-IDX 60.04± 9.77 63.82± 3.23 73.39± 17.07 63.42± 4.75 53.25± 14.31 88.19± 6.20

CNV / DoG-M 65.94±7.53 63.01± 5.48 71.38± 5.27 64.97± 5.29 40.08± 11.82 93.69±2.58

CNV / DoG-C 48.10± 8.06 68.06± 6.69 61.40± 7.99 58.01± 2.38 69.92±14.01 75.13± 11.62

CNV / DoG-Z 51.43± 5.45 60.89± 3.47 68.11± 19.51 58.31± 4.43 46.08± 26.15 85.35± 12.28

SLD / M-IDX 56.56± 25.18 65.23± 8.17 70.07± 12.33 59.82± 6.16 62.83± 21.53 79.22± 14.84

SLD / F-IDX 54.64± 7.30 65.28± 3.77 61.88± 10.26 60.41± 3.90 68.75± 11.87 81.91± 7.21

SLD / DoG-M 57.61± 19.28 69.84± 8.70 68.64± 18.33 63.54± 5.71 55.92± 15.00 83.91± 12.34

SLD / DoG-C 49.25± 4.79 63.48± 7.01 74.13± 9.40 58.62± 2.52 66.67± 23.22 78.38± 9.75

SLD / DoG-Z 46.68± 8.64 56.65± 4.21 62.01± 10.75 54.67± 6.15 49.50± 18.92 81.53± 11.94

The bold value is the highest value in each column.

TABLE 4 | Pearson’s correlation coefficient of the performance and the divergence.

Ejoint
NC MCI AD Accuracy Specificity Sensitivity

ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value

Ehigh 0.43 3.1e-17 0.43 2.5e-17 0.62 6.6e-39 0.66 8.2e-47 0.51 2.3e-25 0.26 3.4e-07

Elow 0.31 2.1e-09 0.35 1.6e-11 0.40 4.1e-15 0.45 4.7e-19 0.21 5.0e-05 0.13 1.5e-02

Dmutual 0.00 1.0e+00 −0.03 5.6e-01 −0.07 1.6e-01 −0.10 4.8e-02 0.09 9.8e-02 −0.07 2.2e-01

Dhigh 0.11 4.0e-02 0.02 6.5e-01 −0.03 5.4e-01 −0.01 9.0e-01 0.05 3.6e-01 −0.00 9.5e-01

Dlow −0.12 2.7e-02 −0.08 1.3e-01 −0.09 8.1e-02 −0.17 9.8e-04 0.10 6.1e-02 −0.11 4.1e-02
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−0.17, p_value ∼= 0.001), and sensitivity (ρ = 0.11, p_value =
0.041). In other words, an increase of Dhigh or a decrease of Dlow

might lead to better classification performance. Large divergence
does not necessary lead to better performance, as the views might
not only create synergy, but also cause the interference to each
other.

Therefore, our answer to the above mentioned question is
that the multi-view performance is primarily determined by the
performance of individual views. If one view’s pattern covers the
other, they tend to perform better than those with highly different
or similar patterns.

There are also limitations of the datasets and the classifiers
of this study. The datasets used in this study consisted of
331 subjects, but these subjects were not evenly distributed in
each group, i.e., MCI patients accounted for over 50% of the
entire population. The large disparity of number of patients in
individual groups might have an impact on the SVM classifier.
To offset such impact, we designed a cascade of three classifiers
instead of only one classifier to increase the chance of classifying
NC and AD. However, there might be a high correlation between
classifiers, which might result in redundancy and consequent
reduced performance. Such design is rather ad-hoc and would
not be necessary for the future datasets with evenly distributed
patients in each group. In this study, we adopted a design of 3-
class classification (AD / MCI / NC) with a focus on the staging
of the disease. However, such design poses great challenges
to interpret our detected patterns of ROIs, since we don’t see
which regions are significant for AD or MCI. In addition, MCI
is essentially a heterogeneous group and a substantial number
of MCI subjects had primary non-AD pathologies, such as
vascular dementia (VD) and frontotemporal dementia (FTD), as
suggested by a recent ADNI study (Nettiksimmons et al., 2014).
Therefore, it will be particularly useful to further distinguish the
MCI subjects, including stable MCI patients not converting to
other pathologies (ncMCI), and MCI converters who convert
to AD (cMCI) or other pathologies. Totally nine views of
neuroimaging biomarkers were investigated in this study. All
of the biomarkers were based on the same template with 83
pre-defined ROIs, thus their patterns can be compared to each
other. However, the multi-modal biomarkers might not always
be ROI-based, such as the voxel-based features and the non-
imaging biomarkers. In addition, certain biomarkers were able
to bring additional information than the ROI-based features. For
instance, the popular connectome (Wang et al., 2014) derived
from DTI could not only capture the features of the ROIs, but
also quantize the correlation between them. Currently, our cross-
view analysis framework could quantitatively analyze and predict
the synergy between two biomarkers. However, it is still very
challenging to predict the synergy of more than two biomarkers.

5. CONCLUSIONS AND FUTURE WORK

In this study, we presented a cross-view pattern analysis
framework to quantitatively analyze the synergy between
the multi-modal biomarkers derived from T1-MRI and
FDG-PET, and predict their performance in AD and MCI
classification. Several important conclusions can be draw based

on the preliminary experiment results. Firstly, the single-view
biomarkers had distinct pathology patterns, and no single-view
biomarkers were able to capture all the pathological changes.
Secondly, the MRI and PET views could be clearly separated, and
the views in the same modality could also form different clusters,
each depicting a certain type of pathological changes. Thirdly,
the different views had different strength in classification, and
the clusters could provide a good reference of their strength.
Fourthly, the combination of biomarkers could achieve much
better results than the single-view biomarkers, and the inter-
cluster biomarkers always gave the best results. Last but not
least, the multi-view classification performance was primarily
determined by the performance of individual views, but we
could use the divergence to estimate the trade-off between the
interference and synergy and predict the performance.

For the future work, we would include more subjects into
our datasets and refine the current design of classifiers to convey
more meaningful findings on AD / NC; MCI / NC; cMCI /
ncMCI; AD / cMCI / ncMCI / NC. Current framework could
only test two views at a time. We will extend this framework
to accommodate multiple (greater than 2) views using the
multivariate methods. Another future direction is that we will
employ this cross-view pattern analysis framework to investigate
cross-ROI synergies, since many ROIs have been repeatedly
reported in previous multi-modal neuroimaging studies, i.e., the
pattern of AD pathology start mainly in the hippocampus and
entorhinal cortex, and subsequently spreads throughtout most of
the temporal lobe and the posterior cingulate, finally reaches the
parietal, prefrontal and orbitofrontal regions (Fan et al., 2008;
Desikan et al., 2009; Risacher et al., 2009). It would also be
interesting to incorporate other non-imaging features, such as
ApoE genotype (Pastor and Goate, 2004) or CSF concentrations
of Aβ42 (Motter et al., 1995) and tau (Vandermeeren et al.,
1993). We will investigate their single-view and cross-view
patterns.
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