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Spontaneous signals in neuroimaging data may provide information on cortical health in

disease and aging, but the relative sensitivity of different approaches is unknown. In the

present study, we compared different but complementary indicators of neural dynamics

in resting-state MEG and BOLD fMRI, and their relationship with blood flow. Participants

included patients with post-stroke aphasia, age-matched controls, and young adults.

The complexity of brain activity at rest was quantified in MEG using spectral analysis

and multiscale entropy (MSE) measures, whereas BOLD variability was quantified as

the standard deviation (SDBOLD), mean squared successive difference (MSSD), and

sample entropy of the BOLD time series. We sought to assess the utility of signal

variability and complexity measures as markers of age-related changes in healthy adults

and perilesional dysfunction in chronic stroke. The results indicate that reduced BOLD

variability is a robust finding in aging, whereas MEG measures are more sensitive to the

cortical abnormalities associated with stroke. Furthermore, reduced complexity of MEG

signals in perilesional tissue were correlated with hypoperfusion as assessed with arterial

spin labeling (ASL), while no such relationship was apparent with BOLD variability. These

findings suggest that MEG signal complexity offers a sensitive index of neural dysfunction

in perilesional tissue in chronic stroke, and that these effects are clearly distinguishable

from those associated with healthy aging.

Keywords: aging, aphasia, stroke, MEG, blood flow, BOLD variability, multiscale entropy

INTRODUCTION

Cerebrovascular stroke is a common cause of cognitive, language, and motor impairments.
Although lesion location is closely related to functional impairments, there is high individual
variability among patients with similar lesions in terms of the degree of impairment and recovery
outcomes. One reason for this variability may be that ischemic damage extends beyond the primary
infarct zone into neuroanatomically intact adjacent cortex. Noninvasivemethods are greatly needed
to reveal the entire extent of neural dysfunction, especially as dysfunction outside the primary
infarct zone may be reversible.
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Because stroke-induced infarcts are permanent, recovery is
assumed to occur as a result of cortical reorganization and
neuroplastic changes that take place in structurally intact brain
tissue (Thompson, 2000; Angrilli and Spironelli, 2005; Saur
et al., 2006; Thompson and den Ouden, 2008). It is generally
thought that recovery of function in perilesional areas offers
the best prognosis for clinical improvement after stroke (Heiss
et al., 1999; Léger et al., 2002; Heiss and Thiel, 2006). This
conclusion is supported by recent studies using transcranial
magnetic stimulation (TMS), which have shown improved
language performance after inhibitory stimulation to certain
contralesional right hemisphere (RH) regions (Naeser et al.,
2005, 2010; Winhuisen et al., 2007; Hamilton et al., 2011), or
excitatory stimulation to the preserved left hemisphere (LH)
cortex adjacent to the lesion (Baker et al., 2010; Fiori et al., 2011).
These findings are consistent with a critical role of perilesional
tissue in recovery. Therefore, assessing the functionality of these
areas using noninvasive methods is essential to tracking recovery
and targeting interventions.

Studies of brain electrical activity in stroke using
magnetoencephalography (MEG) and electroencephalography
(EEG) have indicated that perilesional tissue can produce an
abnormally large amount of high amplitude slow-wave activity,
mostly in the range between 1 and 6Hz (delta and theta waves;
Vieth et al., 1996; Butz et al., 2004; Meinzer et al., 2004; Tecchio
et al., 2005). The presence of increased slow-wave activity is a
marker of subtle neural damage associated with the long-term
effects of stroke beyond the primary infarct zone, and may be
an indicator of the extent of the “functional lesion.” In stroke,
a “functional lesion” can extend well beyond the borders of the
primary lesion, affecting an individual’s cognitive abilities and
capacity for recovery (Tecchio et al., 2006; Meinzer et al., 2007;
Laaksonen et al., 2013). Modulation of this slow-wave activity has
been linked to the improvement of language functions, and it has
been shown to change in response to behavioral interventions
(Meinzer et al., 2004, 2007).

Although increased slow-wave activity is one potential
indicator of cortical dysfunction in perilesional tissue, other
measures also show promise. Multiscale entropy (MSE) is one
nonlinear measure of complexity that has been used to analyze
EEG/MEG (Costa et al., 2005; Park et al., 2007). MSE comprises
estimates of sample entropy (Richman and Moorman, 2000)
across different time scales, and is thus suitable for applications
in which complexity may differ when considered at various
degrees of temporal resolution. Greater complexity is associated
with healthy processing, whereas reduced values of MSE have
been considered as a marker of dysfunction in a variety of
physiological signals (Costa et al., 2005; Norris et al., 2008). In
addition, reduced MSE has been reported in aging (Yang et al.,
2013), and in various clinical conditions, including traumatic
brain injury, tumors, and Alzheimer’s disease (de Jongh et al.,
2001; Park et al., 2007; Poza et al., 2007; Beharelle et al., 2012).

Spectral slowing is reflected in the MSE measure, in that a
signal dominated by a highly periodic low-frequency oscillation
will also show low entropy. Recently, we found that perilesional
tissue in chronic stroke consistently exhibits both increased delta
and theta activity, as well as reduced beta activity and reduced

MSE values. Of these measures, MSE was the most sensitive to
electrophysiological dysfunction in perilesional tissue (Chu et al.,
2015). The finding of decreased entropy in perilesional areas
suggests that MSE can be a useful marker of cortical dysfunction
in tissue that is structurally intact but not functioning optimally.

While questions remain about the best way to quantify neural
dynamics with EEG and MEG, other imaging methods also show
promise at revealing dysfunction. Several recent studies have
analyzed moment-to-moment variability in the blood oxygen
level dependent (BOLD) signal of fMRI, as a measure of neural
dynamics in resting-state data (Garrett et al., 2010, 2013a). Strong
effects have been seen in aging in particular. Garrett et al. (2010)
found, that compared to young adults, older adults exhibited less
variability in default mode structures and several other regions.
Additionally, greater BOLD signal variability was associated with
faster, more accurate and consistent performance on various
perceptual and cognitive tasks (Garrett et al., 2011, 2013a).
BOLD dynamics have also been quantified with sample entropy,
showing reduced complexity in aging (Sokunbi, 2014) and
ADHD (Sokunbi et al., 2013). Based on these results and others,
it was proposed that increased brain signal variability reflects
healthier neural dynamics, yielding more stable behavioral
performance and the ability to function at a higher cognitive
capacity (Ghosh et al., 2008; McIntosh et al., 2008, 2010; Garrett
et al., 2013b). These studies suggest that signal variability may be
an important index of cognitive functioning.

Therefore, if BOLD signal variability is an index of neuronal
robustness, it may serve as an important marker of individual
differences in clinical populations. Indeed, previous research
established links between brain signal variability and healthy
brain function, development, and various clinical conditions,
including schizophrenia, traumatic brain injury, epilepsy, and
congenital blindness (see Garrett et al., 2013b for review).
However, it is unknown whether BOLD variability is altered
in perilesional tissue in stroke patients, and how its sensitivity
compares with the reduced complexity seen in EEG/MEG.

Another key question is the relationship of resting-state
measures to cerebral perfusion. Although the causes of
perilesional slow wave activity are not well understood,
several mechanisms have been discussed in the literature,
including chronic hypoperfusion (Jordan, 2004; Machado et al.,
2004; Finnigan et al., 2006), white matter disconnection or
deafferentation of cortex (Huang et al., 2009), and ischemic
damage caused by the stroke that compromises the functional
integrity of the cortex, but does not lead to gross tissue
destruction (Claassen et al., 2004; Friedman and Claassen, 2010;
Sheorajpanday et al., 2010). These different causes are not
independent, as chronic hypoperfusion can lead to neuronal
damage and white matter disconnection. Furthermore, the
direction of causality can also be reversed; neuronal damage can
lead to reduced metabolic demand, reducing perfusion despite
an adequate arterial blood supply (Sasaki et al., 1997; Oku et al.,
2010). Therefore, sensitive measures of perilesional dysfunction
are likely to be correlated with blood flow.

Research from acute and subacute stroke indicates that
cerebral blood flow (CBF) is not only disrupted in the neural
regions that are directly infarcted, but also in the adjacent
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cortex (Chalela et al., 2000; Detre, 2001). Decreased CBF in
neuroanatomically intact regions has been found to correlate
with initial language symptoms in aphasia, as well as short-
and long-term recovery success (Mimura et al., 1998; Hillis
et al., 2001b,c, 2004a, 2008; Fridriksson et al., 2002; Love et al.,
2002). Medical treatment such as pharmacologic or surgical
reperfusion of the affected brain regions has been shown to
restore language functions in acute and subacute stroke (Hillis
et al., 2001a,b, 2004b; Hillis and Heidler, 2002). Although these
studies have established that CBF is disrupted in the acute
stages after the event, contributing to the cognitive deficits,
relatively little research has investigated whether blood flow
continues to be abnormal in the chronic stages. Aberrant CBF
may endure in the regions that appear anatomically intact (as
measured with T1 or T2 weighted clinical MRI), contributing
to impaired function and poor recovery outcome (Love et al.,
2002). Brumm et al. (2010) used ASL-FLAIR to investigate CBF
in three chronic stroke survivors, 2–11 years after stroke. They
found regional hypoperfusion in the perilesional areas as well
as in the anatomically intact regions, and decreased blood flow
was associated with language symptoms. Similarly, Mimura et al.
(1998) reported that increased perfusion was related to greater
recovery success, even up to 7 years after the stroke.

Several studies have assessed the relationship between EEG
and CBF in acute stroke survivors, finding that perfusion
is inversely correlated with measures of EEG delta power
(Claassen et al., 2004; Jordan, 2004; Friedman and Claassen,
2010; Finnigan and van Putten, 2013). Furthermore, successful
reperfusion by thrombolytic treatment in the acute or subacute
stages after stroke was associated with a reduction of delta
activity (Finnigan et al., 2006; Finnigan and van Putten,
2013). However, relatively little work has been done on the
long-term effects of chronic hypoperfusion and its role in
functional impairment at the later stages after stroke, or its
relationship with oscillatory activity. The findings reported in
the literature suggest that pathological slow-wave activity in
chronic stroke may reflect reversible dysfunction related to
hypoperfusion. However, more work is needed to investigate
this relationship between electrophysiological abnormalities,
alteration in blood flow, and cognitive dysfunction. It is not clear
if and how reduction in brain signal complexity, and variability
relate to compromised perfusion. Source localization of MEG
measurements in combination with more sensitive methods of
CBF quantification, such as Arterial Spin Labeling (ASL) provides
an exciting possibility.

Present Study
In the present study, we characterized the resting-state neural
dynamics using two complementary measures of spontaneous
neural activity: MEG and fMRI. Resting-state data were acquired
from patients with post-stroke aphasia resulting from a single
left-hemisphere stroke, from healthy young adults, and from
healthy older adults matched in age and education to the stroke
patients. The complexity of spontaneous brain activity was
quantified from MEG data using spectral and entropy measures,
as done in our previous MEG study of stroke patients (Chu et al.,
2015). In the present study, we extended previous findings by
calculating sample entropy at both short and long time scales,

taking advantage of the longer periods of resting data available
in this dataset. To estimate BOLD signal temporal variability,
we computed two popular measures of BOLD signal variance:
standard deviation (SDBOLD; Garrett et al., 2011) and mean
squared successive difference (MSSD; Mohr and Nagel, 2010; Leo
et al., 2012). We also computed the sample entropy (Sokunbi,
2014) of the BOLD signal, to provide a measure more directly
comparable to the MEG entropy measure.

The main goal of this study was to assess the utility and
sensitivity of signal variability and complexity measures in
MEG and fMRI, as indicators of perilesional dysfunction in
chronic stroke, and also of age-related changes. Since most
neuroimaging studies are conducted in young adults, it is critical
to distinguish stroke-related changes from the basic effects of
advanced age. Because reductions in complexity and variability
have been reported in both stroke and aging with these methods,
we conducted a comprehensive study comparing both stroke
patients and older controls with younger controls, evaluating the
ability of MEG and fMRI to reveal specific changes related to
either stroke-induced dysfunction or aging. To our knowledge,
no previous studies have investigated the effects of stroke on
BOLD signal variability.

In addition to measuring resting-state activity with MEG and
fMRI, we also obtained measures of resting blood flow in the
same participants. To estimate CBF, we used pulsed Arterial Spin
Labeling (pASL). We predicted that hypoperfused perilesional
tissue would be more likely to show a reduction in signal
complexity and variability.

In summary, the main aim of this study was to characterize
changes in the complexity and variability of spontaneous neural
signals associated with aging and stroke. In addition, we aimed
to characterize the relationship between these measures of
brain functional efficiency and abnormalities in blood flow. The
combination of complexity, variability, and blood flow measures
may help to define the extent of perilesional tissue that is
functionally compromised, allowing us to characterize patients’
functional lesions more accurately, and to target interventions to
ameliorate the dysfunction.

MATERIALS AND METHODS

Participants
MEG and MRI data were acquired from three groups of
participants: 19 patients with aphasia (3 females); 19 age-,
education-, and gender-matched healthy controls; and 24 young
controls. Of the young controls, 20 completed resting-state fMRI
and 19 completed ASL measurements, and 15 completed resting-
state MEG, with an overlap of 11 completing all components. All
older controls and patients completed all assessments. This study
was approved by the Research Ethics Board at Baycrest Health
Sciences. All volunteers gave their written informed consent
prior to the study and were compensated for their participation.
Individual patient demographic and clinical characteristics are
presented in Table 1. Three patients suffered hemorrhagic stroke,
and the rest of the stroke cases were ischemic. The most common
cause of ischemia was embolism or thromboembolism of cardiac
origin.
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Participants with aphasia suffered a single left hemisphere
stroke at least 6 months prior to the study. They were recruited
from several sources in Toronto, Ontario and surrounding areas.
These included the stroke clinics at Baycrest and Sunnybrook
Health Sciences Centres, the Aphasia Institute (www.aphasia.ca),
and Aphasia and Communication Disabilities Program, March
of Dimes Canada. Patients ranged in age from 46 to 84 years
(Mean = 65.1, SE = 2.49), and had 10–24 years of education
(Mean= 16.58, SE= 0.82). All aphasic participants but one were
right handed as measured by Edinburgh Handedness Inventory
(Oldfield, 1971; Williams, 2010). They were native speakers of
English, and had normal hearing and normal or corrected-
to-normal vision. All patients retained sufficient capacity of
language comprehension to consent for the study and follow task
instructions. Exclusion criteria were earlier neurological diseases,
language disorders, head traumas or brain surgery, epilepsy,
severe psychiatric disorders, and unstable or poor health. Aphasic
participants were matched with a group of healthy older controls
for gender, age [t(36) = 0.155, p > 0.05], and education
[t(36) = 1.02, p > 0.05]. Participants were diagnosed with aphasia
prior to the study by a speech language pathologist and/or
board-certified neurologist. Aphasia diagnosis was determined
on the basis of the convergence of the clinical presentation,
narrative speech samples, and the results of standardized
tests.

Healthy volunteers were recruited from the greater Toronto
area by REB-approved advertisements from the University of
Toronto community and from the Baycrest Health Sciences
subject pool. Both groups of neurologically unimpaired
participants were native speakers of English. All young (11
females; age: Mean = 24.63 years, SE = 0.58; education: Mean
= 16.88 years, SE = 0.48) and older age-matched controls
(3 females, age range: 45–80 years old, Mean = 65.63, SE =

2.31; education range: 12–21 years, Mean = 17.57, SE = 0.53)
were right handed and reported normal hearing and normal
or corrected-to-normal vision. Participants had no history of
neurological, psychiatric, language, or learning disorders and
none were taking neuroleptic or mood-altering medications at
the time of the study.

Cognitive and Language Assessment
Prior to participation in the MEG experiment, patients and age-
matched controls completed an extensive neuropsychological
battery to assess several domains of cognitive and language
functioning. The neuropsychological data were collected as part
of a larger study and will be reported fully elsewhere. Age-
matched controls participated in all behavioral and neuroimaging
assessments completed by the stroke patients, whereas the
younger controls only completed the neuroimaging components.
All control participants tested within normal limits on all
cognitive and linguistic tests. Table 2 presents selected language
and cognitive test scores for each patient, andmean scores for the
control group.

Resting MEG and fMRI Data Acquisition
Spontaneous brain activity was recorded while participants
looked at a white fixation cross presented in the center of
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TABLE 2 | Language test scores for individual patients and control group averages.

BNT PPVT NAVS_SCT NAVS_SPPT Western Aphasia Battery (Bedside form)

Can Non-Can Can Non-Can PALPA9 Flu Comp Rep Obj Nam Aphasia

Score

Language

Score

P1 8 118 93.33 93.33 20 26.67 NT 5 8 7.5 9.5 78.3 75

P2 NT 93 73.33 40.00 NT NT NT NT NT NT NT NT NT

P3 4 100 100 100 100 100 100 10 10 10 10 96.7 95

P4 2 105 100 73.33 66.67 53.33 98.75 8 10 7.5 7.5 80 77.5

P5 17 121 100 100 100 100 NT 8 10 9.5 10 95.8 91.9

P6 5 100 100 73.33 60 33.33 93.75 8 9 7.5 10 90.83 86.87

P7 3 90 80 40.00 NT NT NT 6 8 4 8 62 62.5

P8 6 98 100 100.00 86.67 80 NT 9 9 10 9.5 94.17 89.37

P9 8 122 80 66.67 93.33 86.67 NT 9 10 10 10 98.3 97.5

P10 1 0 60 53.33 NT NT 66.25 7 9 6 6 62 51

P11 9 118 66.67 73.33 40 20 NT 9 10 9 10 97 96

P12 1 93 80 86.67 33.33 6.67 81.25 2 10 5 2 45 38.75

P13 5 101 100 100 100 93.33 98.75 6 10 9.5 10 52.5 70.5

P14 1 74 80 46.67 NT NT 92.5 2 8 6 7 58.3 48.75

P15 1 87 53.33 80 NT NT NT 0 7 3.5 0.5 25 22.5

P16 10 98 100 60 100 100 97.5 9 9 10 10 95 96.25

P17 3 91 100 60 73.33 20 98.75 8 9 7 10 86.7 85

P18 2 94 86.67 86.67 40.00 40.00 88.75 4 9 9 9 75 66.88

P19 8 99 93.33 100.00 93.33 53.33 100 8 10 8.5 10 90.8 86.9

Mean 5.22 94.8 86.66 75.44 71.90 58.09 92.39 6.55 9.17 7.75 8.28 76.86 74.34

SD 4.22 26.1 15.1 21.09 28.67 34.34 10.42 2.87 0.92 2.12 2.85 21.46 22.03

Control Means 10.32 115.74 100 100 100 99.30 97.50

SD 2.77 13.09 2.1 2.68 N/A N/A N/A N/A N/A N/A

BNT, Boston Naming Test (Kaplan et al., 2001). Scores scaled based on age and years of education; PPVT, Peabody Picture Vocabulary Test (Dunn and Dunn, 2007); NAVS, Northwestern

Assessment of Verbs and Sentences (Thompson, 2011); NAV_SCT, Sentence Comprehension Test; Can, Total score on all canonical sentences; Non-Can, Total score on all non-

canonical sentences; NAVS_SPPT, Sentence Production Priming Test; PALPA, Psycholinguistic Assessments of Language Processing in Aphasia (Kay et al., 1992); PALPA_word

repetition, PALPA 9 total score on word repetition subtest, Western Aphasia Battery- Bedside version (Kertesz, 1982); Flu, Spontaneous Speech Fluency; Comp, Auditory Verbal

Comprehension; Rep, Repetition; Obj Nam, Object Naming; NT, Not tested. Bedside Aphasia Score was determined by summing the Speech Content, Fluency, Auditory Verbal

Comprehension, Sequential Commands, Repetition, and Object Naming scores, dividing the sum by 6 and then multiplying result by 10.

Bedside Language Score was determined by summing the Speech Content, Fluency, Auditory Verbal Comprehension, Sequential Commands, Repetition, Object Naming, Reading,

and Writing scores, dividing the sum by 8 and multiplying the result by 10.

the screen on a black background. During the recording
participants were asked to relax and to minimize head and body
movements. Resting-state data was collected for 5min during
MEG acquisition and 6min for BOLD fMRI.

Structural MRI Acquisition and Processing
MRI scans were conducted in a single 1 h session, and were
always acquired after the MEG session, either the same day or
up to 2 weeks after. MRI scans were acquired on a 3-Tesla
scanner (Siemens TIM Trio) located at Baycrest. Acquisition
included the T1-weighted MPRAGE, fMRI BOLD and ASL
scans reported here, as well as T2 FLAIR and diffusion tensor
imaging (to be reported elsewhere). A 3D high-resolution T1-
weighted anatomical image was used to construct a head model
for MEG source modeling (MPRAGE, 1mm isotropic voxels).
MR-visible markers were placed at the fiducial points for accurate
registration, aided by digital photographs taken during the MEG
session. Processing of anatomical images employed routines from
AFNI (afni.nimh.nih.gov/afni) and FSL (http://www.fmrib.ox.ac.

uk/research/analysis-group) software packages. T1 images were
skull stripped in AFNI.

In stroke patients’ MRIs, lesion borders were delineated using
segmentation tools in FSL and region of interest (ROI) drawing
tools in AFNI, based on a T1 intensity threshold followed by
manual adjustment. Regions of gliosis were included in the lesion
mask on the basis of the hyperintense signal seen in a coregistered
T2-FLAIR image. For spatial normalization into MNI space,
we computed a nonlinear warp of each subject’s brain to a
single-subject template, the “colin27” brain, using the software
package ANTS (Avants et al., 2011). Both T1 images and lesion
masks where warped into MNI space for group analysis of lesion
characteristics and to overlay source-localized MEG images. The
same spatial transformation was applied to the results of all
functional signal measures computed from fMRI and MEG data,
to allow for statistical analysis across participants.

For display of statistical maps derived from patient data, a
composite lesion mask was constructed to identify regions that
were damaged in the patient group. First, the spatially normalized
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T1-weighted anatomical images of all patients were averaged
together. Next, the lesion mask was overlaid on this image by
subtracting a percentage of the signal proportional to the number
of patients having a lesion at that voxel. This procedure provides
a visual approximation of the “average” pattern of lesion extent
across individuals, and provides a suitable anatomical underlay
on which to display group-averaged functional imaging data. A
lesion overlap map showing the distribution of lesions in the left
hemisphere is presented in Figure 1A. Selected slices from T1
images of individual aphasic participants showing lesion sites are
shown in Figure 1B.

To characterize physiological data in perilesional and
contralesional cortex, we constructed a customized “perilesional
rim” ROI in each participant, along with a contralesional control
ROI in the unlesioned right hemisphere. Tomake the perilesional

ROI, we dilated each patient’s lesion mask by 10mm in all
directions. The lesion mask was then subtracted from the dilated
mask, leaving a 10mm “rim,” and the resulting ROI was further
masked with a gray matter segmentation image, eliminating
voxels outside the cortex. The resulting perilesional ROI was
then downsampled to the resolution of the functional data. For
comparison, we also reflected the perilesional ROI onto the
undamaged right hemisphere. Thus, the size of the perilesional
rim ROI varied across patients according to the lesion size,
but the right hemisphere control ROI was the same size as the
perilesional ROI for each participant.

Resting fMRI Acquisition and Analysis
Resting-state fMRI was acquired using a gradient echo
echoplanar imaging sequence with 30 axial oblique slices

FIGURE 1 | (A) An overlay of stroke patients’ lesion distributions displayed on a template brain in MNI space. Colors represent the number of patients with a lesion in

each voxel. Warmer colors indicate areas of greater lesion overlap. (B) Selected slices from T1 images of individual aphasic participants showing lesion sites.
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covering the entire brain (TE = 30ms, TR = 2 s, voxel size
3.1 × 3.1 × 5mm3, 180 time points, acquisition time: 6min).
The functional data were preprocessed using AFNI. The data
were slice-time andmotion corrected by registering all functional
volumes to the third volume of the run. The functional volumes
were coregistered with each subject’s structural volume using a
12-parameter affine transformation. Data were smoothed using
an 8mm Gausian kernel. Next, voxel time series were further
adjusted by regressing out motion correction parameters and
averaged time series extracted from white matter (WM) and
cerebrospinal fluid (CSF) masks. For WM and CSF, the time
series were extracted from unsmoothed data. The resulting
adjusted time series were then normalized so that the overall four-
dimensional mean across all in-brain voxels was 100. Following
this preprocessing, the measures described below were computed
on the resulting time series. The results of these computations
were spatially normalized into MNI space.

BOLD Variability Measures
We computed two measures of BOLD variability that have been
previously employed in comparisons between clinical groups.
One is simply the standard deviation (SD) of the signal (Garrett
et al., 2010). Another is MSSD, which emphasizes successive
differences in the time series and is thereforemore immune to the
influence of long-term trends (Leo et al., 2012).MSSD is themean
of the squared differences between each successive time-point
and the next time point.

BOLD Sample Entropy (SampEnBOLD)
To more directly compare the sensitivity of MEG and fMRI, we
also computed Sample Entropy on the resting-state BOLD signal.
Sample entropy is identical to the MSE measure used for the
MEG data, except limited to only one scale—the TR of the fMRI
data. Averaging over successively longer time scales would have
yielded insufficient data points for robust calculation of SampEn.
Details of the entropy calculations are given in the MEG analysis
section. Parameter values for SampEnBOLD were the same as for
MEG:m = 2, r = 0.2.

MEG Acquisition and Processing
MEG signals were recorded with a 151-channel whole-head
system with axial gradiometers (VSMMedTech, Coquitlam,
Canada). MEG was recorded continuously at a sampling rate of
625Hz, and acquired with online synthetic 3rd-order gradient
noise reduction (Vrba and Robinson, 2001). In addition to the
resting-state measurements, participants completed a language
processing experiment in the MEG scanner, which will be
reported separately. The 5-min continuous resting data set was
arbitrarily divided into epochs of 5 s. Head position with respect
to the MEG helmet was monitored using three coils placed
at anatomical landmarks of the head (nasion, left, and right
pre-auricular points). The head position was measured at the
beginning and end of the resting-state run, and the average of
the two measurements was used for source analysis.

To construct head models for MEG analysis, the locations
of the fiducial points were marked manually in AFNI software
(Cox, 1996), and the T1-weighted MRI was spatially transformed

into the coordinate space of the MEG data. The skull was
stripped in AFNI, and a 3D convex hull approximating
the inner surface of the skull was constructed using the
software package Brainhull (http://kurage.nimh.nih.gov/meglab/
Meg/Brainhull). Taking into account the position of the head
relative to the sensors, a multi-sphere head model (Huang et al.,
1999) was computed for each MEG session, with the spheres
tangent to the inner surface of the skull. All maps of MEG
signal parameters were computed originally in the MEG-based
coordinate system, and then warped intoMNI space for statistical
analysis across participants.

MEG Data Analysis
Raw MEG sensor signals were screened for artifacts, and
epochs containing obvious signal disruptions were rejected
(<1% of all epochs). Signals were low-pass filtered at 80Hz
and downsampled to 208.33Hz prior to beamforming analysis.
All further signal analysis was conducted in source space
using Synthetic Aperture Magnetometry (SAM) beamforming.
Analysis of “virtual channel” signals in source space has two
advantages (beyond localization) compared to analysis of sensor
data: (1) the beamforming procedure attenuates extracranial
artifacts such as blinks, eye movements, and muscle activity
(Vrba, 2002; Cheyne et al., 2007), and (2) source-space analysis
compensates for differences in head shape and head position
across participants, which strongly affect the propagation of
electromagnetic activity from the brain to the sensors, which
are fixed in the MEG helmet. Note that we did not reject
trials based on blinks because the beamforming procedure
effectively removes them from the virtual signals estimated for
intracranial locations, with the possible exception of signals in
the orbitofrontal cortex adjacent to the eye orbits (Bardouille
et al., 2006). The remaining artifacts were caused by disturbances
arising from environmental noise and subject motion.

Resting-State MEG Analysis
MEG source analysis was conducted using SAM (Vrba and
Robinson, 2001), as implemented in CTF software (CTF; Port
Coquitlam, British Columbia, Canada). SAM is a beamformer
technique that can be used to compute the full time course of
virtual channels at selected individual locations, or on a regular
grid of locations (voxels) spread across the brain. SAM is a
scalar beamformer, in which a nonlinear optimization technique
is used to select one direction of current flow at each voxel
to maximize dipole power. In short, SAM provides a series of
sensor weights for each voxel; the weights are computed so as
to pass signal from a dipole located in the target voxel, while
minimizing signal power from all other locations. We computed
weights on a whole-brain grid of locations spaced 1 cm apart.
These weights were then multiplied with the original sensor time
series data to yield a new, spatially filtered, time series signal
at each voxel (1 cm3). Normalized weights were used to render
virtual signals in dimensionless units of signal-to-noise ratio,
with noise power estimated as the lowest singular value of the
sensor covariance matrix (Vrba and Robinson, 2001). Signals
were filtered at 0–80Hz prior to beamforming. Power spectra of
spontaneous signals at each voxel were estimated using Welch’s
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method in Matlab (Fast Fourier Transform of 500ms Hamming
windows with 50% overlap). Power spectra were averaged across
epochs.

To evaluate quantitative parameters related to slowing of
spontaneous activity, we computed measures of relative power
from the resulting power spectra. Relative power of the delta
(1–4Hz), theta (4–7Hz), alpha (8–12Hz), and beta (15–30Hz)
frequency bands were calculated as the ratio of the power of
each specific frequency band divided by the total power across
0–80Hz. Computing relative power over the frequency spectrum
avoids potential confounds introduced by the normalized
beamformer weights (Luckhoo et al., 2014) and effectively bases
the analysis on spectral shape rather than levels of absolute
power.

MSE was calculated from the time domain virtual signal at
each voxel and averaged across epochs (Costa et al., 2005; Park
et al., 2007). MSE provides a measure of the complexity of
biological signals, while accounting for the multiple time scales
inherent in such time series. It is usually defined as the sample
entropy of the original time series calculated across various time
scales, denoted by a scaling parameter. Sample entropy is the
negative natural logarithm of the conditional probability that the
two sequences ofm consecutive data points, with a tolerance= r,
will remain similar following the addition of the next consecutive
data point. Periodic or uncorrelated random signal (e.g., white
noise) is low in sample entropy, whereas complex irregular
signals are high in sample entropy. Reduced MSE values have
been considered a marker of dysfunction in variety of biological
systems, including heart rate and DNA sequences (Costa et al.,
2005). Reduced MSE has been also demonstrated in brain injury
(Beharelle et al., 2012) and Alzheimer’s disease (Park et al., 2007;
Poza et al., 2007).

Most relevant for the present study, the scaling parameter
allows MSE to measure changes in signal complexity at different
time scales. In the present study the sample entropy was
calculated with the parameters m = 2 and r = 0.2 from
scales 1–5, which corresponds to time steps of 4.8–24ms. In
our previous study with a different cohort of stroke patients
(Chu et al., 2015), we observed that perilesional tissue exhibiting
increased slow-wave activity also tended to have decreased MSE
at similar scales. In addition, in the present study we calculated
sample entropy at longer scales (MSE scales 7–20, corresponding
to 33–96ms) to better understand the changes associated with
stroke lesions and aging across different time scales.

For each relative power measure, and the MSE average for
short (scales 1–5) and long (7–20) time scales, we generated
whole-brain 3D maps and spatially normalized them to MNI
space.

ASL Data Acquisition and Processing
CBF measurements were made using a PICORE Q2TIPS pulsed
ASL (pASL) sequence (Luh et al., 1999). The label thickness
was 110mm, with a 29mm gap between the label and imaging
regions. TheQ2TIPS saturation pulse was applied to the proximal
boundary of the labeling slab. Flow crusher gradients were
applied with a threshold of 100 cm/s. Other imaging parameters
were: 64 × 64 in-plane matrix, 26 slices and 3.5 × 3.5 ×

5mm voxels, with a 0.25mm gap between slices. The ASL
acquisition consisted of 150 frames (75 tag and 75 control),
with TI1 = 700ms, TIs = 1600ms and TI2 = 1800ms, chosen
to accommodate a wide range of flow rates. The scans used a
repetition time (TR) of 3 s, and an echo-time (TE) of 13ms
resulting from GRAPPA echo-planar imaging (EPI) readout with
an acceleration factor of 2. A 2D gradient-echo EPI scan (with TR
set to 10 s) was used to estimate the equilibriummagnetization of
arterial blood.

The raw ASL time series were motion corrected and
coregistered to the anatomical MPRAGE image using SPM8.
Images were smoothed with a 6mm FWHM Gaussian blur.
To minimize BOLD-contamination, the control-tag difference
images were calculated using surround subtraction (Lu et al.,
2006), and difference images were averaged across timepoints.
CBFwas quantified using the one-compartment Standard Kinetic
Model (Buxton et al., 1998), implemented in ASLtbx (Wang
et al., 2008). Typical parameter values for gray matter CBF
(defaults in ASLtbx) were assumed based on prior literature
(Wong et al., 1997; Çavuşoǧlu et al., 2009). Quantitative CBF
maps were warped into MNI space using ANTS software, with
the same nonlinear warp used for the anatomical MPRAGE
images.

Statistical Analysis
Whole-brain maps of quantities described above were compared
between groups using voxel-wise independent sample t-test
implemented in AFNI. All statistical results were thresholded at
a voxelwise threshold of p < 0.01 uncorrected. Additionally,
a minimum cluster size of 20 voxels was used for display. To
control for multiple comparisons across voxels, we computed
the false discovery rate (FDR; Genovese et al., 2002) for each
map at the chosen threshold. FDR is an estimate of the upper
bound (q) for the proportion of colored voxels that are false
positives, and is dependent on the amount of true signal
present in the data. q-values are indicated for each map in the
figures.

RESULTS

BOLD Signal Variability (SDBOLD): Effects of
Aging and Stroke
One of the stroke patients did not complete the resting-state MRI
protocol due to claustrophobia, but did complete the anatomical
scan before requesting to stop, allowing for their inclusion in
the MEG analysis. In total, resting MRI data was available
for 18 stroke patients, 19 age-matched controls, and 20 young
controls. Figure 2A shows voxel-wise group comparison maps
of SDBOLD values. In all group-comparison brain maps in this
paper, but not for correlation analyses, the color scale represents
mean differences in the quantity of interest (e.g., SDBOLD in this
case), while the thresholding is based on p-values resulting from
a 2-sample t-test between groups. The locations of significant
clusters are listed in the Supplementary Materials in Table S1.
For comparisons with stroke patients, the results are overlaid on
top of a darkened rendering representing the lesion distribution
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FIGURE 2 | Between group voxel-wise contrast maps of SDBOLD and SampEnBOLD values (STP, stroke; YC, young controls; AM, age-matched

controls). For comparisons with stroke patients the results were overlaid on top of an artificially darkened anatomical image representing the lesion distribution across

patients. Darker colors represent greater lesion overlap in these areas. The maps represent the voxel-wise contrast resulting from a t-test. The statistical maps were

thresholded at a voxelwise threshold of p < 0.01 with a minimum cluster size of 20 voxels. False discovery rates (q-value) are indicated for each map. The same

anatomical underlay and thresholding are used in subsequent figures. Blue colors reflect the decrease in BOLD SDs and SampEn, and red colors reflect increases

present in significant voxel clusters within each activation map. (A) Group comparison maps of SDBOLD values. (B) Group comparison maps of SampEnBOLD values.

across patients. Darker regions represent greater lesion overlap
among stroke participants.

The comparison of SDBOLD values for stroke patients
with young controls revealed decreased variability for patients
primarily in default mode regions, including the left and
right anterior medial frontal cortex, posterior cingulate gyrus,
precuneus, cuneus, and a smaller cluster in the left lateral
parietal cortex (angular and supramarginal gyri). The analysis
also revealed areas of increased variability for the stroke patients
in the superior and medial frontal gyri, anterior cingulate
gyrus, fusiform gyrus, and cerebellum, bilaterally. However, the
comparison between age-matched controls and stroke patients
did not detect significant decreases in variability in the default
mode regions, indicating that patients and older age-matched
controls exhibited equivalent variability of the resting-state
BOLD signal in these areas. There was one cluster of significant
increase for stroke patients observed in the left postcentral gyrus,
extending to the inferior parietal cortex. The comparison of
SDBOLD maps for age-matched controls with young controls
revealed decreased BOLD signal variability for older participants
mainly in the default mode regions [i.e., posterior cingulate gyrus,
precuneus, cuneus, and lateral parietal regions (angular and
supramarginal gyri, bilaterally)]. The decrease was also observed

in the left inferior frontal gyrus, left middle frontal gyrus, left
middle temporal, and middle occipital gyrus, bilaterally. The
analysis also revealed areas of increased variability for the older
adults in the left and right medial frontal gyri and superior frontal
gyri, as well as anterior cingulate gyrus, left fusiform gyrus, and
cerebellum, bilaterally. MSSDBOLD values showed a very similar
pattern of results. The group comparison maps of MSSDBOLD

values are shown in Supplementary Materials (Figure S1 and
Table S2).

BOLD Signal Sample Entropy
(SampEnBOLD): Effect of Aging and Stroke
The comparison between patients and young controls using a
voxel-wise t-test, revealed that patients exhibited significantly
reduced SampEnBOLD, with a widespread distribution (see
Figure 2B). Because of the broadly distributed effects that this
measure produced we did not list individual regions in the
tables. Convergent with the variability measures, there were
no significant differences in the SampEnBOLD values between
patients and age-matched controls, indicating that patients
and age-matched controls did not differ in the complexity
of resting BOLD activity. Compared to young controls, older
participants showed reduced SampEn of the resting BOLD
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signal, with a widespread bilateral distribution. In summary,
all measures of resting-state BOLD variability and complexity
revealed significant changes in older participants compared to
younger participants, regardless of stroke status. Stroke patients
did not differ significantly from age-matched controls.

MEG Resting Data MSE (Scales 1–5):
Effects of Aging and Stroke
Resting MEG data was available for 19 stroke patients, 19
matched controls, and 15 young controls. The group comparison
maps of MSE at short time scales are presented in Figure 3A.
For MEG resting measures, we did not list individual regions
in the tables because these effects had a widespread distribution.
The maps represent the voxel-wise contrast resulting from a t-
test. Compared to young controls, patients exhibited significantly
lower MSE at the short time scales (1–5) along the left temporal
and parietal regions surrounding the region of maximal lesion
overlap. The analysis was significant at a voxel-wise threshold
p < 0.01 with a map-wise FDR of q = 0.09. The comparison
with age-matched controls revealed a similar pattern of reduced
MSE in patients that extended into the left inferior frontal
cortex, but with a map-wise FDR of q = 0.26, indicating
lesser reliability of individual voxels. When these analyses were
thresholded at p < 0.001 uncorrected, similar activation patterns
were present, but with smaller clusters (Figure S2A). There
were no significant voxels in the right, unaffected hemisphere
in the comparisons between patients and both control groups.
No significant differences in short time scale MSE were found
between older age-matched and young control groups.

MEG Resting Data MSE (Scales 7–20):
Effects of Aging and Stroke
The results of group comparisons at the longer time scales are
shown in Figure 3B (and Figure S2B at a higher threshold of
p < 0.001 uncorrrected). The maps represent the voxel-wise

contrast resulting from a t-test. The analysis was significant at a
voxel-wise threshold p < 0.01, with the map-wise FDR q = 0.01.
The comparison with age-matched controls revealed increased
entropy values for patients that were wide spread in the left
hemisphere, including the posterior part of the inferior frontal
gyrus, superior and inferior parietal regions, as well as superior,
middle and inferior temporal cortex affected by the lesion. There
were no significant voxels in the right, unaffected hemisphere
in the comparisons between patients and both control groups.
There were no significant differences between patients and young
controls.

In contrast, the comparison of older age-matched controls
with young controls revealed decreased MSE at the longer time
scales for older adults (see Figure 3B). This decrease was found
bilaterally in the superior and dorso-lateral frontal cortex, medial
frontal, and middle cingulate cortex, including temporal and
parietal regions and also precentral and postcentral cortex along
the central sulcus.

Spectral Measures of MEG Resting Data:
Effect of Aging and Stroke
To evaluate quantitative parameters related to slowing of
spontaneous activity, we computed measures of relative power
in the delta (1–4Hz), theta (4–7Hz), alpha (8–12Hz), and beta
(15–30Hz) frequency bands. Relative power was calculated as
the ratio of the power of each specific frequency band divided
by the total power across 0–80Hz. The results of between group
voxel-wise t-tests comparing relative power between patients and
control groups are presented in Figure 4.

Delta (1–4Hz)
In comparison to age-matched controls, patients exhibited
significantly increased delta power in the left hemisphere regions
adjacent to the lesion zone (see Figure 4A). The comparison
of older age-matched controls with young controls, revealed

FIGURE 3 | Between group voxel-wise contrast maps of MSE (STP, stroke; YC, young controls; AM, age-matched). (A) The between group t-test

comparison maps of MSE scales 1–5. (B) The between group t-test comparison maps of MSE scales 7–20.
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FIGURE 4 | Between group voxel-wise contrast maps of relative power (STP, stroke; YC, young controls; AM, age-matched). (A) T-test comparison maps

of relative delta power. (B) T-test comparison maps of relative theta power. (C) T-test comparison maps of relative alpha power. (D) T-test comparison maps of

relative beta power.

significantly diminished delta power for older adults. These
decreases had a widespread bilateral distribution and included
almost the entire temporal and parietal regions, extending into
the superior and inferior frontal cortex.

Theta (4–7Hz)
There were no significant differences in theta power between
patients and young controls, patients and age-matched controls,
and between older and younger control groups (see Figure 4B).

Alpha (8–12Hz)
The comparison of patients with age-matched controls revealed
significantly decreased alpha oscillatory activity for patients in
the temporal and parietal regions adjacent to the regions of
maximal lesion overlap (see Figure 4C). In comparison to young
controls, older adults exhibited alpha power increases in the
left posterior inferior frontal gyrus, precentral gyrus, left insula,
middle frontal gyrus, and left medial frontal cortex. Alpha
power increases extended into the bilateral temporal and parietal
regions.

Beta (15–30Hz)
Compared to young controls, patients showed widespread
bilateral beta power decreases that were most pronounced in

the left hemisphere areas adjacent to the lesion (see Figure 4D).
Beta power decreases were found in the left superior and
inferior parietal cortex and also extended over the entire
temporal lobe, and into inferior frontal gyrus, precentral
cortex, and middle frontal regions. In the right hemisphere,
power decreases were also observed in the temporal lobe.
When compared to age-matched controls, patients exhibited
significantly reduced beta power in the lesioned left hemisphere,
spanning the left temporal and parietal lobes, and extending
into the precentral and postcentral gyri, superior and middle
frontal gyri, anterior frontal and inferior frontal cortex. In
the right hemisphere, power decreases were found in the
precentral and postcentral gyri, temporal and parietal cortex,
and anterior frontal areas. Comparison of older age-matched
controls with young controls, revealed beta power increases
for older adults bilaterally along the superior and middle
frontal cortex, extending into the anterior medial frontal
cortex.

In summary, our results show that, in comparison to control
groups, stroke patients exhibited changes in electrophysiological
activity in the areas surrounding the lesion. To further illustrate
the frequency- and scale-dependent nature of the observed
changes, we computed averaged power spectra and MSE curves
from the perilesional rim ROI and the contralesional control ROI
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in the unlesioned right hemisphere. Example perilesional ROIs
from one participant are shown in Figure 5A, but the data shown
here are averaged across all 19 stroke patients. Figure 5B displays
averaged power spectra in the two ROIs. Relative to the healthy
right hemisphere, perilesional tissue showed a shift toward slower
frequencies, with increased power in the delta and theta bands up
to about 8Hz, but decreased power in the upper alpha and beta
bands, up to about 30Hz. MSE at different time scales are shown
in Figure 5C. Note that the time scales shown are dependent on
the sampling rate of the data as analyzed (here 208.33Hz), so
that scales 1, 2, 3 etc. represent time steps of 4.8, 9.6, 14.4ms
etc. Perilesional tissue exhibits decreased entropy at lower time
scales from 1 to 5, corresponding to faster changes in signal
values and therefore to higher frequencies. Perilesional tissue also
exhibits increased entropy at longer time scales, corresponding to
slower fluctuations and hence lower frequencies. Thus, analyses
of spectral power and MSE converge on similar conclusions:
perilesional tissue exhibits an overall slowing of physiological

activity, with greater power and signal complexity at longer time
scales and reductions in these quantities at finer time scales.

(See below for formal analysis of correlations between MSE
and spectral measures). Changes in MSE at longer scales also

distinguished older from younger controls, but in the opposite

direction: older controls had reduced MSE at scales 7–20 relative
to young controls, but stroke patients had an increase. In
contrast, MSE at the shorter scales (1–5) was specifically sensitive
to stroke and not aging, with consistent reductions in stroke
patients.

Cerebral Blood Flow: Effects of Aging and
Stroke
In total, CBF measurements were available for 17 stroke patients,
19 age-matched and 19 young control participants. The results
of between group voxel-wise t-tests comparing CBF values are
presented in Figure 6 and Table S3 (in SupplementaryMaterials).
The mean CBF values across the entire gray matter volume were
56ml/100 g/min in young controls, 39ml/100 g/min in older
controls, and 37ml/100 g/min in stroke patients.

In comparison to young controls, patients exhibited
significantly decreased CBF values in the regions surrounding
the lesion. The blood flow decreases spanned the entire left
temporal lobe, and included superior and inferior parietal
cortex, superior and middle frontal regions, and occipital cortex
(see Figure 6A, Figure S3A). When compared to age-matched
controls, patients showed reduced blood flow values in the
left parietal region, along the left middle temporal gyrus,
and extending into the precentral gyrus (Figure 6B). This
comparison was significant at voxel-wise threshold p < 0.01, but
only achieved a maximum FDR of q = 0.48, indicating that the
significance of individual voxels within the cluster is somewhat
unreliable. When thresholded at p < 0.001 uncorrected, one
cluster remained significant, in the parietal lobe at the superior
edge of the lesion zone (Figure S3B). However, the comparison
between older age-matched controls and young controls revealed
highly significant (q = 0.03) reduced blood flow values for older
controls along the occipital cortex, superior parietal regions,
superior frontal areas, and anterior prefrontal cortex, bilaterally

FIGURE 5 | Perilesional ROI analysis. (A) Example of perilesional and contralesional ROIs from one participant. (B) Averaged power spectra for all stroke patients

(n = 19) from the perilesional rim ROI and the contralesional control ROI in the unlesioned right hemisphere. (C) Averaged MSE values for all stroke patients (n = 19)

from the perilesional rim ROI and the contralesional control ROI in the unlesioned right hemisphere. Shaded regions represent the standard error of the mean power

estimate. Relative to the healthy right hemisphere, perilesional tissue showed a shift toward slower frequencies (delta and theta bands), decreased entropy at lower

time scales from 1 to 5, and increased entropy at longer time scales. Scales 1, 2, 3 etc. represent time steps of 4.8, 9.6, 14.4ms etc.
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FIGURE 6 | Group comparison CBF maps obtained with pulsed Arterial

Spin Labeling MRI (STP, stroke; YC, young controls; AM,

age-matched). Blue colors reflect a decrease in CBF. (A) CBF for Stroke

patients vs. Young controls. (B) Stroke patients vs. Older Age matched

controls. (C) Older controls vs. Young Controls.

(Figure 6C, Figure S3C), a very different distribution from
the apparently perilesional changes seen in stroke-patients vs.
age-matched controls (Figure 6B, Figure S3B).

These results indicate that the CBF changes associated with
normal aging can be dissociated from stroke related dysfunction.
The age-related decline in CBF values was found in the occipital
and superior brain regions bilaterally, whereas stroke related
reductions in blood flow were specific to the left hemisphere
regions affected by the lesion.

Relationship between Cerebral Blood Flow,
BOLD Time-Series, and MEG Signal
To identify the relationship between CBF and the variability and
complexity measures obtained from resting MEG and MRI data,
we examined correlations between corresponding voxel values
across all patients for whom data was available for each analysis,
at each voxel in the brain. Spearman’s rank-order nonparametric
correlation test was used for this analysis to account for possible
nonlinearity or nonnormality of the imaging data.

The resulting Spearman’s rank-order correlation maps are
presented in Figure 7. The locations of significant clusters are
listed in the Supplementary Materials in Table S4. The maps
show voxel-wise correlations between CBF and MEG measures
(MSE scales 1–5, MSE scales 7–20, relative spectral band power).
The correlations were significant at voxelwise threshold of p <

0.01, but the map-wise FDR values ranged from q = 0.14
to q = 0.78, making the localization value of these results
more questionable. However, another analysis based on a priori
perilesional ROIs also revealed significant changes that were
identical in directionality (see Section Relationship between CBF
and MEG Signal in the Perilesional Rim below). Furthermore,
thresholding the same maps at p < 0.001 uncorrected produced
similar but smaller clusters in the same locations (Figure S4). The
analysis revealed a significant positive relationship between CBF
values andMSE at time scales 1–5 in the LH regions surrounding
the lesion (see Figure 7A), indicating that reduced blood flow in
these areas is associated with reduced entropy values at short time
scales.

In addition, there was a significant negative correlation
between CBF and MSE at longer time scales (7–20), as well as
a negative relationship between CBF values and the relative delta
power in the LH regions affected by the lesion (see Figures 7B,C).
These results suggest that spectral “slowing” was associated with
reduced blood flow. In addition, there was a positive relationship
between CBF and alpha and beta power (Figures 7D,E).
However, there were no significant correlations between CBF and
SDBOLD and SampEnBOLD (figure not shown), and there was no
significant relationship present in the unaffected RH.

Relationship between Cerebral Blood Flow
and MEG Signal in the Perilesional Rim
The whole brain voxel-wise correlation analysis demonstrated
a relationship between reduced blood flow and MEG signal
abnormalities, but not resting BOLDmeasures in stroke patients.
However, these analyses were potentially affected by variability in
the lesion size and extent. To more directly test the relationship
between blood flow and electrophysiological abnormalities, we
computed Pearson’s correlations on the values extracted from
the perilesional rim. This was consistently the region that
bordered the lesion in each patient. This perilesional ROI was
masked by the lesion map and cortical segmentation in each
patient in order to exclude lesioned voxels, white matter, and
CSF. For comparison, the same values were extracted from the
contralateral mirror right hemisphere ROI for all patients. See
Figure 5A for example ROIs from one patient.

The results of these correlation analyses are presented in
Figure 8 and Table 3. The scatter plots in Figure 8A demonstrate
a significant negative correlation of CBF with MSE at scales 7–20,
and with relative delta power. This finding indicates that reduced
blood flow in the perilesional cortex tends to be associated with
higher entropy at longer time scales, and increased relative delta
power. There was also a significant positive correlation between
CBF and alpha and beta power, indicating that reduction in
blood flow tends to be associated with attenuation of higher
frequency oscillations in alpha and beta range (see Table 3).
The correlations between CBF and measures of BOLD signal
variability and complexity were not significant (see Figure 9A).
There were no significant correlations present in the contralateral
mirror ROI (see Figures 8B, 9B).

Overall these results suggest that MEG signal abnormalities,
but not resting BOLD measures were associated with reduced
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FIGURE 7 | Relationship between cerebral blood flow (CBF) and the MSE and spectral measures obtained from resting MEG data. The maps show

whole-brain, voxel-wise Spearman’s rank-order correlations between CBF and MEG measures (MSE scales 1–5, MSE scales 7–20, and relative spectral band power).

(A) Spearman’s rank-order correlation map between CBF and MSE scales 1–5. (B) Spearman’s rank-order correlation map between CBF and MSE scales 7–20. (C)

Spearman’s rank-order correlation map between CBF and relative delta power. (D) Spearman’s rank-order correlation map between CBF and relative alpha power.

(E) Spearman’s rank-order correlation map between CBF and relative beta power.

FIGURE 8 | Scatter plots showing the relationship between cerebral blood flow (CBF) and MEG measures (MSE values and spectral measures)

extracted from the perilesional rim and contralateral RH ROIs for stroke patients. (A) Relationship between CBF and MSE scales 7–20, relative delta, alpha

and beta power in the perilesional rim. (B) Relationship between CBF and MSE scales 7–20, relative delta, alpha and beta power in the contralesional RH ROI.

perfusion values in the perilesional areas, and these measures
were correlated across subjects.

Relationship between MSE and Spectral
Measures for Stroke Patients
In order to more fully understand the relationship between
spectral band power and MSE at different time scales, we
calculated Pearson’s correlations between relative power at each
frequency band and MSE measure. Table 4 shows correlations
between MSE at short (1–5) and long (7–20) time scales

vs. spectral power at different frequency bands for the
stroke patients, using values averaged across voxels within the
perilesional rim ROI for each patient. The analysis revealed
that MSE at scales 1–5 was positively correlated with alpha
and beta power, and negatively correlated with delta and theta
power. In contrast, the relationship between MSE at scales 7–
20 and spectral power went in the opposite direction. MSE at
scales 7–20 correlated positively with delta and theta power,
and negatively with alpha and beta power. These correlations
support the findings described in Section Spectral Measures of
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FIGURE 9 | Scatter plots showing the relationship between cerebral blood flow (CBF) measures of BOLD signal variability and complexity (SDBOLD,

MSSDBOLD, SampEnBOLD) extracted from the perilesional rim and contralateral RH ROIs for stroke patients. (A) Relationship between CBF and

SDBOLD,
MSSDBOLD,

SampEnBOLD in the perilesional rim. (B) Relationship between CBF and SDBOLD, MSSDBOLD, SampEnBOLD in the contralesional ROI.

MEG Resting Data: Effect of Aging and Stroke: perilesional areas
exhibit decreased signal power and complexity at short time
scales (higher frequencies), but increased power and complexity
at longer time scales (lower frequencies). Spectral analyses
and nonlinear complexity measures therefore reach similar
conclusions based on the time scales involved.

DISCUSSION

Emerging trends in neuroimaging suggest that resting-state
dynamics can identify localized abnormalities in cortex that is
dysfunctional, but structurally intact, and that such findings
can inform diagnoses and interventions. Although many
modalities and analysis techniques have been successfully used
to distinguish clinical populations from healthy controls, few
studies have compared multiple methods to determine their
relative sensitivity to different kinds of neural changes.

In the present study we examined the sensitivity of multiple
measures of resting-state neural activity to the distinct changes
associated with aging and stroke. For resting fMRI, we quantified
signal variability (SDBOLD, MSSDBOLD) and sample entropy
(SampEnBOLD). For resting MEG, we measured spectral changes
in different frequency bands as well as MSE. In addition,
we characterized the relationship between these measures
and abnormalities in blood flow, which was quantified with
pASL MRI.

The results suggest that reduced resting BOLD variability is
a good predictor of aging. We found that BOLD variability was
reliably reduced in older subjects, regardless of stroke, especially
in the default mode regions, although variability increased in

TABLE 3 | Pearson’s correlations (2-tailed) between cerebral blood flow

(CBF), multiscale entropy (MSE) at short (1–5) and long (7–20) time scales,

and spectral band power, and measures of BOLD signal variability and

complexity for stroke patients.

CBF_LH CBF_RH

r p r p

MSE_1–5 0.385 0.127 0.247 0.338

MSE_7–20 −0.485* 0.049 −0.381 0.132

Delta −0.506* 0.038 −0.311 0.224

Theta −0.135 0.606 −0.123 0.638

Alpha 0.524* 0.031 0.169 0.517

Beta 0.497* 0.042 0.331 0.195

SDBOLD −0.099 0.706 0.023 0.929

MSSDBOLD −0.088 0.738 0.020 0.940

SampEnBOLD 0.225 0.386 0.051 0.846

Values extracted from the LH perilesional rim and the RH contralateral ROI.

*Correlation significant at the 0.05 level.

Significant correlations are shown in bold font.

other regions. Similarly, older participants showed a widespread
reduction in resting BOLD signal complexity (quantified using
SampEnBOLD) and this decrease was not sensitive to the presence
of stroke. In contrast, we found that MEG measures were more
sensitive to the cortical abnormalities associated with stroke.
MEG abnormalities manifested in perilesional tissue as increased
slow-wave activity in the delta frequency bands, and reduced
activity in higher bands including the alpha and beta bands.
Stroke-related pathology was also associated with reduced MSE
at shorter time scales (MSE scales 1–5), and with increased
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TABLE 4 | Pearson’s correlations (2-tailed) between multiscale entropy

(MSE) at short (1–5) and long (7–20) time scales vs. spectral power at

different frequency bands for stroke patients.

MSE_1–5 LH MSE_1–5 RH

r p r p

MSE_7–20 −0.804** 0.000034 −0.773** 0.000103

Delta −0.849** 0.000004 −0.760** 0.000162

Theta −0.713** 0.001 −0.897** 0.0000002

Alpha 0.679** 0.001 0.302 0.209

Beta 0.693** 0.001 0.692** 0.001

MSE_7–20 LH MSE_7–20 RH

Delta 0.872** 0.000013 0.850** 0.000004

Theta 0.699** 0.001 0.808** 0.00003

Alpha −0.625** 0.004 −0.372 0.117

Beta −0.756** 0.00018 −0.723** 0.0005

Values extracted from the LH perilesional rim and the RH contralateral ROI.

**Correlation significant at the 0.01 level.

Significant correlations are shown in bold font.

MSE at the longer scales (7–20). In addition, we observed a
general effect of aging which manifested in the speeding of
electrophysiological activity, and it was in the opposite direction
to the slowing observed in stroke patients (decreased MSE at
scales 7–20, decreased delta power, increased alpha and beta
power). Furthermore, MEG signal abnormalities, but not resting
BOLD measures, were associated with reduced perfusion values
in perilesional areas, and these measures were correlated across
stroke patients.

fMRI Measures of Spontaneous Neural
Activity
Our finding that aging is associated with decreased variability
and complexity in the BOLD signal is consistent with previous
findings in the literature (Garrett et al., 2010, 2011, 2013a). It has
been proposed that increases in signal variability may represent
a more complex neural system that is able to more efficiently
process and respond to a wider range of stimuli. This greater
“dynamic range” allows the system to better adapt responses to
unexpected external events, and tomore easily transition between
different states. Another link between BOLD signal variability
and cognitive performance was reported by Protzner et al. (2013),
who observed that increased SDBOLD was correlated with verbal
memory retention in patients with temporal lobe epilepsy.

It has been suggested that some forms of brain variability
derive from coherent spontaneous fluctuations throughout the
cortex, with greater variability reflecting greater coherence
between different brain regions (Fox et al., 2006; Nir et al., 2008).
Other accounts propose that brain variability may be a function
of connectivity between different brain areas. Older adults often
exhibit reductions or alterations in both structural and functional
brain connectivity (Grady et al., 2010). Thus, it is possible that the
reduced BOLD variability found in our older adults may reflect
decreased network complexity and connectivity in the default
mode regions with increasing age. Another a related possibility is
that reduced BOLD variability in older adults reflects age-related
losses in white matter integrity or synaptic density.

Interestingly, we also found increased BOLD signal variability
in superior frontal, inferior temporal, and cerebellar regions
in older adults. Similar age-related bidirectional effects were
previously reported by Garrett et al. (2010, 2011). Although it is
not clear what the increases reflect, it has been suggested that they
relate to a compensatory process. In the context of the present
results it may reflect a process that attempts to counteract the
age-related reduction of resting brain network complexity and
integration. In some comparisons between stroke patients and
controls we found that SDBOLD values tended to be high inside
the lesions themselves. This increase was observed because the
raw fMRI signal strength in the lesions was much higher than
the rest of the brain. Normalizing the signal to a whole-brain
mean did not reduce this effect. We also considered normalizing
each voxel to it’s own percent signal change, but this resulted in
strong artifacts in SD measures, because noise at the edge of the
brain became strongly amplified. This is one limitation of the SD
measure when applied to stroke brains. In studies of individuals,
high signal within the lesions must be disregarded.

In addition to reduced signal variability in the default mode
regions, we also found that, compared to the younger group,
older adults showed a widespread reduction in the SampEnBOLD
of the resting fMRI signal. These results are broadly consistent
with the idea that increased BOLD variability reflects a more
complex and sophisticated neural system, and suggest that
reduction in resting brain signal complexity is associated with
the normal aging process. Entropy of brain signals in relation to
aging has been examined in previous studies. Yang et al. (2013)
used MSE analysis to quantify the complexity of BOLD activity
at rest. They found that the complexity of spontaneous BOLD
signal was reduced in older adults, and that this decrease in
complexity in the default mode network areas was related to
lower cognitive performance. In a more recent study, Sokunbi
(2014) applied SampEn analysis to resting-state data obtained
from young and elderly adults and found that whole brain
SampEn values decreased with age.

Convergent with previous findings, the present results
indicate that, to the extent that BOLD signal variability and
entropy measures index neural complexity, integration, and
connectivity between brain regions, they could serve as markers
of neural processing efficiency. The results suggest that estimates
of complexity and variability of spontaneous BOLD signal
can reveal subtle changes associated with the aging process.
Surprisingly, BOLD variability and complexity measures were
not sensitive to the neural abnormalities occurring in perilesional
cortex in chronic stroke patients. The reason for this lack
of sensitivity is not clear. The neural changes occurring in
perilesional tissue are different than those associated with normal
aging, and therefore might require different measures to detect
them. One possibility is that pathological changes following
stroke might result in increased BOLD variability in some cases,
and decreased variability in others, resulting in no consistent
significant effect on the group level.

MEG Measures of Spontaneous Neural
Activity
In contrast to BOLD signal measures, we found that MEG
measures were more sensitive to the functional abnormalities
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associated with stroke. In comparisons to both control groups,
stroke patients exhibited clear alterations of electrophysiological
activity in the areas surrounding the lesion. These changes took
the form of a “slowing” of the signal, shifting more toward slower
frequencies in the delta band, and away from the beta band.
Additionally, stroke patients showed changes in MSE that were
scale dependent. Perilesional tissue exhibited reduced MSE at
time scales 1–5, but increased MSE at the longer scales (7–20).

The MEG results of the present study extend our previous
findings (Chu et al., 2015) showing that aging is associated
with changes in spectral power and MSE (but only at longer
time scales). In particular, older adults showed a widespread
bilateral decrease in delta power, and an increase in alpha and
beta oscillatory activity. Aging was also associated with decreased
MSE values at the longer time scales (7–20, corresponding to
periods of 33–96ms). In contrast, MSE at the shorter scales (1–5,
corresponding to 4.8–24ms) was specifically sensitive to stroke
and not aging.

Thus, it appears that in some cortical regions older adults
show a general speeding of electrophysiological activity, which
is in the opposite direction of the slowing associated with
perilesional tissue in stroke. This increase in the alpha and beta
oscillatory activity in the superior frontal and anterior frontal
regions appears to be a general index of the aging process rather
than a sign of cortical pathology. The present finding supports
previous reports of age-related speeding of electrophysiological
activity. Holschneider and Leuchter (1995) reported resting-state
increases in EEG beta power with age, whereas it was decreased
in patients with dementia. Similarly, Bruce et al. (2009) found
decreased relative delta and increased relative beta associated
with aging. Similarly, Vlahou et al. (2014) observed reduced delta
and theta in older subjects using MEG. Our finding of age related
decreases in MSE at longer scales is similar to findings reported
by McIntosh et al. (2014). In that study, aging was associated
with increased entropy at short scales and decreased entropy at
longer scales.

It has been suggested that age-related speeding of the
frequency spectrum may reflect compensatory activity in
response to decreased nerve conduction velocities (Hong and
Rebec, 2012). In the present study, the findings of age-related
alpha and beta power increase, together with increased BOLD
signal variability in the frontal regions, are consistent with this
hypothesis.

Reduced MSE values have been considered a general indicator
of dysfunctional processing (Park et al., 2007; Poza et al., 2007;
Beharelle et al., 2012). In the present study, findings of altered
entropy values in the regions surrounding the lesion suggest
that MSE may be a sensitive indicator of perilesional cortical
dysfunction. This perilesional tissue appears to be structurally
intact, but—as indicated by the reduced entropy—it is processing
information in a suboptimal way. We note, however, that MSE
is not invariably reduced at all time scales in dysfunctional
perilesional tissue. Rather, it is decreased at finer time scales
and increased at coarser ones. Thus, studies using MSE as a
diagnostic/prognostic indicator should be careful to take time
scale into account. Our results indicate that linear spectral
analyses and MSE (a nonlinear measure) have similar sensitivity
to the altered physiology in perilesional tissue, and are highly

correlated with each other. Cortical tissue affected but not
destroyed by stroke is characterized by a shift to more activity
at longer time scales (lower frequencies) and less at shorter time
scales (higher frequencies). In our previous study (Chu et al.,
2015), we found that MSE at fine time-scales was correlated
with the ratio of high-frequency to low-frequency power, but
that study did not examine MSE at longer time scales because
it was based on shorter segments of data, taken from the inter-
trial interval of a cognitive task. In the present study, using true
resting data, we observed that the correlation with spectral power
reverses itself at longer time scales.

Overall, the present results indicate that both spectral slowing
and altered MSE values can serve as sensitive indicators of
neuronal damage associated with stroke. Furthermore, the
combination of these measures can reveal the extent of
perilesional tissue that is structurally preserved but functionally
compromised. The present findings are consistent with those
reported in the MEG and EEG literature. Other MEG studies
have found pathological shifts toward low frequency activity in
the affected hemisphere, in both acute and chronic stroke patients
(Butz et al., 2004; Meinzer et al., 2004; Laaksonen et al., 2013;
Chu et al., 2015). Convergent with the present findings, Tecchio
et al. (2005, 2006)—using analysis of MEG sensor data—reported
increases in delta and theta band power and decreases in beta and
gamma power on the side of the lesion, as well as a decrease in
spectral entropy when compared to controls and the unaffected
hemisphere.

Relationship to Blood Flow
Our results suggest that perilesional slowing and reduced entropy
(MSE scales 1–5) of spontaneous electrical activity are reliable
indicators of neuronal pathology and dysfunctional information
processing. However, underlying causes of this abnormal activity
are not well understood. One potential mechanism could be
related to chronic hypoperfusion, which can compromise the
functional integrity of the cortex without causing neuronal
necrosis. It is possible that ischemic damage at the time of
the stroke resulted in some neural cell death and synaptic loss,
but left enough living cells to maintain the basic structural
integrity of the tissue. This mechanism is also consistent
with our finding that reduced blood flow is correlated with
both reduced MSE (scales 1–5) and increased delta power.
Tissue that is less metabolically active will receive less blood
flow due to mechanisms of neurovascular coupling. Chronic
dysfunction in structurally intact cortex has been demonstrated
by nuclear imaging studies in chronic stroke, which have
revealed associations between hypoperfusion, hypometabolism,
and markers of neuronal injury, such as reduced benzodiazepine
receptor density (Sasaki et al., 1997; Oku et al., 2010).

Consistent with our findings, several EEG studies in acute
and subacute stroke found a relationship between reduced CBF
and increased delta power (Claassen et al., 2004; Jordan, 2004;
Friedman and Claassen, 2010; Finnigan and van Putten, 2013).
However, the effects of altered CBF on oscillatory activity and
its relationship to chronic stroke have not been well investigated.
In the present study, we characterized the relationships between
spontaneous electrical activity and chronic hypoperfusion. Our
results show that the brain regions that exhibited shifts to greater
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power and complexity at longer time scales (lower frequencies)
also showed reduced perfusion values. This relationship between
abnormalities in brain function and blood flow data was strongest
in the perilesional left hemisphere regions.

In addition, our results provide evidence of age-related
changes in CBF. In comparison to young controls, older adults
exhibited reduced blood flow along the occipital and superior
parietal and frontal regions bilaterally, whereas stroke damage
was associated with reduced CBF values along the temporal gyrus
and precentral areas surrounding the infarct. These blood flow
changes in older adults seem to be specific to the aging process,
and distinct from the cortical damage associated with the stroke
lesion. Our findings are in agreement with previously reported
patterns of age-related decreases in CBF (Chen et al., 2011,
2013).

One remaining question from this work concerns the causality
of the relationship between abnormal electrical activity and
hypoperfusion in perilesional tissue. The relationship between
these measures suggests that perilesional dysfunction may be
reversible. Investigation of interventions that may normalize
perilesional activity would help to clarify the relationship, and
would have obvious clinical applications for the treatment of
cognitive and motor deficits in stroke. For example, the GABA-
receptor positive allosteric modulator drug, zolpidem, has been
shown to induce increased blood flow in minimally conscious
patients (Brefel-Courbon et al., 2007; Nyakale et al., 2010), and
in one case report, an aphasic stroke patient (Cohen et al., 2004).
These blood flow increases have been accompanied by behavioral
improvement, and the therapeutic response to this drug has also
been associated with a normalization of abnormal slow-wave
activity (Hall et al., 2010;Williams et al., 2013). Noninvasive brain
stimulation techniques such as TMS and TDCS have also been
shown to produce functional gains in post-stroke aphasia (Martin
et al., 2009; Baker et al., 2010; Hamilton et al., 2011; Holland and
Crinion, 2012), but the physiological changes corresponding to
these gains are as yet poorly understood. Our findings suggest
that reduced MEG signal complexity and reduced blood flow
may index the physiological deficits in chronic stroke, and that
these imaging modalities should be further explored to assess the
success of potential interventions.

One limitation of the study is that our sample of stroke
patients was heterogeneous with respect to the aphasia type and
lesion size, and it was not possible within our sample size to define
subsamples based on more specific phenotypes. However, all of
the patients had their lesion in the left hemisphere, involving
perisylvian language regions. Thus, general differences between
the affected left hemisphere and the undamaged right hemisphere
are valid despite the variability. Furthermore, we supplemented
the voxel-wise analysis with individualized perilesional ROIs
in each subject, compared with healthy tissue occupying the
same areas in the contralesional hemisphere (Figures 5, 8, 9).
These results do lead to a consistent pattern of abnormalities
in perilesional cortex. The voxel-wise whole-brain maps confirm
that the abnormalities are most prominent in the border
zone of the lesions, rather than being distributed throughout
the damaged left hemisphere. Nonetheless, statistical power

in a study like this is reduced by the large heterogeneity
in lesion location across the participants. Some whole-brain
maps had large FDR q-values, indicating poor localization value
of the maps. The general pattern of results for all of those
maps was still present at a higher voxel-wise threshold of
p < 0.001 uncorrected (Supplementary Information). However,
ultimately the limitations of group analysis for perilesional
tissue abnormalities are somewhat irrelevant for their ultimate
clinical application. We believe that the techniques presented
in this study will be most useful at the individual subject
level. In our previous MEG study in aphasic stroke patients,
we demonstrated that maps can be made for single subjects
highlighting perilesional abnormalities (see Figure 5 of Chu et al.,
2015). In future work, we intend to target such dysfunctional
cortex for intervention with noninvasive brain stimulation.
For such treatments, mapping and quantification of abnormal
physiological activity on the individual level will be essential.

CONCLUSIONS

In the present study, we characterized spontaneous neural
activity using MEG and fMRI. We aimed to assess the utility
and sensitivity of signal variability and complexity measures as
indicators of age-related changes and perilesional dysfunction in
chronic stroke. Our results demonstrate that BOLD measures
of variability and complexity are associated with aging-related
changes, whereas measures of spontaneous MEG activity are
better indicators of neuronal dysfunction associated with stroke.
Furthermore, shifts of the MEG signal toward dynamics on
longer time scales (both in oscillatory power and entropy) were
associated with reduced blood flow in the brain regions adjacent
to the lesion. We suggest that these measures may be useful
indicators of cortical dysfunction that is potentially reversible
with treatment, and may be used to assess the effectiveness of
interventions.
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