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This review outlines the basic psychological and neurobiological processes associated
with age-related distortions in timing and time perception in the hundredths of
milliseconds-to-minutes range. The difficulty in separating indirect effects of impairments
in attention and memory from direct effects on timing mechanisms is addressed. The
main premise is that normal aging is commonly associated with increased noise and
temporal uncertainty as a result of impairments in attention and memory as well as
the possible reduction in the accuracy and precision of a central timing mechanism
supported by dopamine-glutamate interactions in cortico-striatal circuits. Pertinent to
these findings, potential interventions that may reduce the likelihood of observing age-
related declines in timing are discussed. Bayesian optimization models are able to
account for the adaptive changes observed in time perception by assuming that older
adults are more likely to base their temporal judgments on statistical inferences derived
from multiple trials than on a single trial’s clock reading, which is more susceptible
to distortion. We propose that the timing functions assigned to the age-sensitive
fronto-striatal network can be subserved by other neural networks typically associated
with finely-tuned perceptuo-motor adjustments, through degeneracy principles (different
structures serving a common function).
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INTRODUCTION

We often hear that time flies by as we get older, but that idea is most applicable to our retrospections
on years gone by e.g., Gallant et al. (1991), Hinton and Meck (1997a), Ukraintseva (2001), Wearden
(2005), Friedman and Janssen (2010), Sucala et al. (2010), Janssen et al. (2013); (cf., McAuley
et al., 2006). Our ability to time intervals in the milliseconds-to-minutes and extending into the
hours-to-days range of circadian timing (Lewis and Miall, 2009) relies largely on different neural
systems (Hinton and Meck, 1997b; Buhusi and Meck, 2005; Buonomano, 2007; Agostino et al.,
2011; Hass and Durstewitz, 2016). Age differences in the temporal window of integration and
performance on various timing tasks in the milliseconds-to-minutes range are often quite subtle
or nonexistent (e.g., Rammsayer et al., 1993; Horváth et al., 2007), and in many cases almost
completely accounted for by age differences in other cognitive functions such as attention and
working memory (Krampe et al., 2002; Wittmann and Lehnhoff, 2005; Desai, 2007; Ulbrich et al.,
2007; Bartholomew et al., 2015) and/or in circadian rhythms (Meck, 1991; Lustig and Meck,
2001; MacDonald et al., 2007; Halberg et al., 2008; Anderson et al., 2014; Golombek et al., 2014).
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The age differences that do exist have traditionally been
explained using an information-processing framework, typically
with an attentional gate and/or switch that allows pulses that
mark the passage of time to accumulate and be passed to working
memory, where they are compared with standard values drawn
from reference memory (Meck, 1984; Zakay and Block, 1997;
Vanneste and Pouthas, 1999; Vanneste et al., 2001; Lustig, 2003;
Allman et al., 2014b).

However, the neurophysiological plausibility of these
pacemaker-accumulator models has been called into question
(Matell and Meck, 2000; van Rijn et al., 2014). More current
timing models instead emphasize the role of neural oscillations
in providing the ‘‘raw material’’ analogous to the pulses
or ticking of the clock, and the coincidence detection of
patterns in those oscillations that mark relevant durations
(e.g., Matell and Meck, 2004; Lustig et al., 2005; Allman and
Meck, 2012; Merchant et al., 2013). A related development is
the proposal that Bayesian processes govern decisions about
time when a participant is comparing the current duration
to the stored values of some previously timed standard (e.g.,
Jazayeri and Shadlen, 2010; Cicchini et al., 2012; Shi et al.,
2013; Gu et al., 2015a; Shi and Burr, 2016; van Rijn, 2016).
To our knowledge, these theoretical proposals have not yet
been integrated into the broader literature on aging and
time perception. Here, we take the first steps towards such
an integration, and address the question of whether age
differences in interval timing reflect ‘‘nothing more’’ than
age differences in general cognition (especially attention and
working memory). Alternatively, there may be fundamental
age differences in the quality of timing information that older
adults may attempt to compensate for via attention, working
memory, as well as increased reliance on environmental
support and timing circuitries other than cortico-striatal timing
circuits.

The idea that attention influences our perception of time is
intuitive and is reflected in popular culture, e.g., ‘‘time flies when
you’re having fun’’ but ‘‘a watched pot never boils’’. In other
words, the less attention that is paid to the time dimension, the
slower one’s internal clock runs relative to the passage of physical
time. This leads to the under-estimation and over-production
of intervals relative to physical time (i.e., a person with a slow
internal clock may perceive a 5-s stimulus as lasting only 3 s,
and when asked to produce a 3-s interval, instead produce a 5-
s one). Supporting this intuitive understanding of the relation
between attention and time, laboratory studies consistently find
that interval-timing performance is highly sensitive to attentional
manipulations (e.g., divided attention and distraction) and that
timing tasks and other tasks (e.g., memory search) that also load
on attention and working memory show mutual interference
(e.g., Penney et al., 1998, 2014; Bherer et al., 2007; Brown et al.,
2015; Fortin and Schweickert, 2016). Not surprisingly, then, most
studies comparing young and older adults on interval-timing
tasks find that the presence and size of young adults’ performance
advantage depends heavily on attention and memory demands
(see review and discussion by Block et al., 1999; Lustig, 2003;
Balci et al., 2009; Lustig and Meck, 2009; Szymaszek et al., 2009;
Krampe et al., 2010; Bisiacchi and Cona, 2016).

On the other hand, it would be surprising if older adults
showed no decline in timing per se, as the dopaminergic functions
and cortico-striatal circuits that support our sense of time
(e.g., Hinton and Meck, 2004; Matell and Meck, 2004; Meck and
Malapani, 2004; Lustig et al., 2005; Meck and N’Diaye, 2005;
Meck et al., 2008a; Merchant et al., 2013; Agostino and Cheng,
2016) are among the most sensitive to age-related decline (e.g.,
Rubin, 1999; Raz et al., 2010; Seidler et al., 2010; Abedelahi
et al., 2013; Bauer et al., 2015; Kleerekooper et al., 2016). Most
reviews emphasize the age differences observed in timing when
demands on attention and working memory are high. However,
age differences are also found in situations where the opportunity
for such processes to make a contribution appears to be quite
low. For example, Turgeon and Wing (2012) tested healthy adults
across ages 19–98 on a series of unpaced timing tasks where
performance relies largely on internal representations and the
opportunity to detect and correct errors is relatively low (see
also McAuley et al., 2006). These included spontaneous motor
tapping (SMT), where the participant is simply told to tap at their
most comfortable pace, serial interval production (SIP), where
the goal is to tap at a rate of 1 s and 1

2 s, but no external standard is
presented, fastest regular tapping (FRT), where the goal is to tap
regularly as quickly as possible, and continuation tapping (CT),
where participants first tap in rhythm to an external stimulus,
but are then asked to continue tapping at that rate when the
stimulus is discontinued. Across all of these tasks, greater age
was associated with longer and more variable tapping rates,
indicating a slower and more variable internal clock. Additional
analyses indicated that these increases were reflective of clock
rather than motor variance. In most cases, the increases with age
were quite subtle until advanced age (75+ years), suggesting that
previous studies failing to find age effects (e.g., Surwillo, 1964;
Arenberg, 1968; Salthouse et al., 1979; Block et al., 1998) may
have suffered from a lack of power due to smaller participant
numbers and older adults who were primarily in the ‘‘young-old’’
(under 75 years) age range. See Kołodziejczyk and Szelsg (2008)
for a study of temporal order judgments including centenarians.

In a similar manner, Ramos et al. (2015, 2016) measured
tactile temporal discrimination thresholds (TDT) in healthy
individuals from 18 to 79 years of age. The TDT was measured
as the individual’s ability to discriminate two short (0.2 ms)
tactile stimuli from each other as a function of the inter-stimulus
interval (ISI). Consequently, the TDT is the shortest ISI that
allows a participant to reliably perceive successive stimuli, tested
using 6 trials of alternating ascending and descending limits. No
effect was observed for gender, race, ethnicity, or handedness,
and the reproducibility of the results was good. The overall
finding was that every year of increased age was associated with
a 0.66 ms increase in TDT. These findings were discussed in
terms of models for interval timing involving clock, memory, and
decision stages (Allman and Meck, 2012) with the conclusion
that age-related effects at the clock stage were most likely to
account for the data. The slowing down of an internal clock as a
function of age would be expected to lead to the ISI separating
the 0.2 ms duration electrical stimulations to be subjectively
shorter, making it more difficult to separate sequential stimulus
presentations. This finding is of interest given the potential
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importance of TDT as a behavioral screen for various genetic
components of neurological dysfunction (e.g., Conte et al., 2010,
2012, 2014, 2015).

On the one hand, the results of these relatively simple
tapping and duration discrimination tasks, which would seem to
minimize the involvement of attention and memory processes,
seem to point to a ‘‘true’’ age difference in clock speed and
time perception. In a seeming paradox, however, there is
little evidence that the accuracy and precision of magnitude
estimations decline with age on more difficult or ‘‘cognitively
based’’ duration discrimination or production tasks once age
differences in general intelligence/cognitive function (attention,
working memory, resource-sharing, and processing speed) are
taken into account (e.g., Salthouse, 1996; Wearden et al., 1997;
Greenwood and Parasuraman, 2003; Baudouin et al., 2004;
Wearden, 2005; Hancock and Rausch, 2010; Lambrechts et al.,
2013; Bartholomew et al., 2015). For example, in the largest
timing study to date, evaluating 647 participants, Bartholomew
et al. (2015) found that both discrimination and production
were strongly correlated with scores on a general cognitive
battery; more importantly, after controlling for cognitive scores,
timing performance was unrelated to age. However, a potential
caveat is that the age range of participants was limited to
18–67 years, precluding the observation of potential aging
effects on timing accuracy and precision that may only become
evident or independent of cognitive processes sometime after
approximately 75 years of age (c.f., Turgeon and Wing, 2012).

These patterns could be explained in two ways. From a
‘‘timing-centric’’ perspective, they may reflect that ‘‘timing is
everything’’, that is, a hallmark of general intelligence and
cognitive function that may fundamentally underlie other
cognitive functions. This view receives some support from the
increasing interest in oscillatory function in general cognition
(for reviews, see Siegel et al., 2012; Henry and Herrmann,
2014). Alternatively, timing may depend on the interaction and
output of those cognitive functions. Teasing apart these two
possibilities is an important challenge for current research, and
the explanation may differ depending on the level of analysis.
However, in either case, the proposition that interval timing and
cognition are intricately linked leads to two predictions. First,
the scalar property—reflecting the proportional relationship
between the mean of the duration being timed and the
standard deviation (SD) of these estimates (i.e., coefficient of
variation [CV] is constant)—is the hallmark of interval timing
(e.g., Gibbon and Church, 1984a,b; Gibbon et al., 1984; Church,
2003; Buhusi and Meck, 2005; Cui, 2011). This suggests that there
should be a similar relationship between sources (e.g., clock,
memory, and decision) and forms of variability (e.g., Bernoulli,
Gaussian, or Poisson distributions) for other cognitive processes
(e.g., Gibbon, 1992; Rakitin et al., 1998, 2005; Cordes et al.,
2001; MacDonald and Meck, 2004; Baudouin et al., 2006a,b;
Jazayeri and Movshon, 2006; Rakitin and Malapani, 2008;
Cordes and Meck, 2014; Namboodiri et al., 2014; Gu et al.,
2015b) given the need for the synchronization of oscillatory
processes among brain areas for information transfer (e.g., Cheng
et al., 2008b; Buehlmann and Deco, 2010; Gu et al., 2015b).
Second, from a translational perspective, engaging in mental and

physical exercises that require precise timing, balance, and motor
coordination during practice (e.g., musical drumming, piano
playing, flamenco dancing, video gaming, etc.) should improve
not only our sense of time, but also other cognitive processes
(e.g., Krampe and Ericsson, 1996; Lustig et al., 2009; Donohue
et al., 2010; Anderson et al., 2012, 2013; Cicchini et al., 2012;
Kattenstroth et al., 2013; Szabo et al., 2013; Bamidis et al., 2014;
Benoit et al., 2014; Szelag and Skolimowska, 2014; Dallal et al.,
2015; Kshtriya et al., 2015). Moreover, recent results suggest
that rhythmical training exercises can counteract the lengthening
errors of total duration in rhythmic reproduction observed after
60 years of age (Iannarilli et al., 2013). Earlier findings, however,
provide a note of caution by indicating that moderate levels of
skill do not protect against the negative age-related decline in
temporal processing and that a certain level of expertise needs
to be achieved in order for benefits to be observed (Krampe et al.,
2001, 2002; Krampe, 2002).

AGE AND TIMING PERFORMANCE:
DECLINE, PRESERVATION, AND
COMPENSATION

One interpretation of the above statements is that age differences
in cognition (e.g., attention, memory, and decision-making)
provide more proximal and parsimonious explanations of age
differences in timing than does the proposal that older adults
generally have a slower internal clock (e.g., Block et al., 1998;
Lustig and Meck, 1998, 2001, 2002, 2005, 2011; Lustig, 2003;
Bherer et al., 2007; Gooch et al., 2009; cf., Ragot et al., 2002;
Pouthas and Perbal, 2004; Moni et al., 2014). Nonetheless,
numerous brain areas (e.g., caudate and frontal lobes) tend to
atrophy as a consequence of normal aging and the shrinkage of
these neural networks is a mediator of reduced dopamine-related
temporal processing (e.g., Rubin, 1999; Cheng et al., 2006, 2007;
Li et al., 2010; Coull et al., 2011; Gu et al., 2015a). As noted above,
the cortico-striatal circuits that support our sense of time (e.g.,
Matell and Meck, 2004; Lustig et al., 2005; Meck and N’Diaye,
2005; Meck, 2006a,b,c; Meck et al., 2008a; Merchant et al., 2013)
are one of the most sensitive neural networks in terms of age-
related changes, suggesting that decreases in clock speed per se
and increases in temporal variability should also be associated
with normal aging (e.g., Bäckman et al., 2010; Hurley et al., 2011;
Klostermann et al., 2012).

Age-related changes in brain and behavior likely involve
long-term dynamic interactions between neural degeneration
and recovery processes both within ‘‘canonical’’ regions
involved in timing by both young and old adults, possibly
involving compensatory sprouting within the damaged pathways
(Song and Haber, 2000), buffering of noisy and sustained
environmental perturbations (Domijan and Rand, 2011), and
compensatory recruitment of other neural networks (Cabeza
et al., 2002). This last form of compensation has been referred
to as ‘‘degeneracy’’ (Edelman and Gally, 2001; Whitacre, 2010;
Whitacre and Bender, 2010), namely, the ability of different
brain regions and networks to produce the same or highly
similar output, especially when the primary or canonical circuits
are dysfunctional or impaired (e.g., Meck, 2002a; Jahanshahi
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et al., 2010; Lewis and Meck, 2012; Jones and Jahanshahi,
2014, 2015; Harrington and Jahanshahi, 2016). We will use
the term ‘‘de-generacy’’ as suggested by Mason et al. (2015)
to minimize the common association between degeneracy
and degeneration1. De-generacy is apparent in many of our
neural systems, including vision, hearing, movement, etc. and
is distinctive from redundancy in that structurally different
mechanisms are involved in the former and multiple copies of
identical mechanisms are involved in the latter (Mason, 2010).
In the simplest sense, de-generacy can be thought of as a strategy
by which the organism protects itself against loss of a vital
function by having distribution of function in combination with
structural variation. When it comes to purely neural systems,
however, de-generacy can be more complex and subtle. It is
unlikely that any two separate neural systems perform a given
function in exactly the same way unless they have an almost
identical neural architecture (as in the examples listed above).
Instead, it is becoming increasingly apparent that the brain
frequently provides several alternate routes to any given goal,
with each of these drawing upon quite separate machinery
(Price and Friston, 2002; Brandtstädter and Rothermund, 2003).
Evidence for this type of ‘‘synergistic replication’’ comes both
from patients with brain damage and from neuroimaging studies
of normal, healthy participants. The former group frequently
show a remarkable resiliency, still performing well on tasks such
as semantic judgment and motor control even when the regions
that are most strongly associated with these functions have
been fully resected. Similarly, the huge variability in functional
imaging results show that different participants perform the
same task in different ways (e.g., using different neural systems).
These data have been elegantly explained as evidence for
de-generacy (Price and Friston, 2002; Noppeney et al., 2004).
Furthermore, the proponents of this approach argue that such
de-generacy is highly adaptive because it allows flexibility at an
evolutionary level: if no single system is 100% essential, then it is
more feasible to experimentally alter them without causing fatal
side effects (Whitacre, 2010, 2012; Whitacre and Bender, 2010,
2013). The applicability of this line of thought to time perception
should be obvious—it is very difficult to completely abolish
time perception, especially as a result of focal, unilateral brain

1In neural Darwinism (Edelman and Gally, 2001), the term degeneracy refers
to the concept of heteromorphic isofunctionality (i.e., different structures
subserving the same function). On the other hand, degeneration is a term
much more familiar to the lay public; it refers to deleterious decay, including
that of neural structures. In a seemingly paradoxical way, de-generacy
is a highly adaptive feature of complex biological systems like the brain
given the inevitable degenerative processes (i.e., degeneration at many levels
of neural organization) that ensues with their aging. Unlike redundancy
(same structures subserving same functions), the structural diversity arising
from de-generacy in the nervous system is highly conducive to functional
plasticity or pluripotentiality (one structure subserving different functions).
In Mason’s words: ‘‘A key corollary of degeneracy is that, because it entails
diversity at the structural level, different circumstances may elicit different
outputs from the same degenerate set. Thus, one-to-many structure-function
relationship has been dubbed pluripotentiality’’ (Mason, 2015). In sum, de-
generacy (many-to-one structure-function relationship) is as essential for the
emergence of complexity through evolution, and by extension the brain, as is
pluripotentiality.

lesions where redundancy from the opposite hemisphere is likely
to contribute to recovery (Lewis and Meck, 2012). Moreover,
it has been proposed that de-generacy occurs as an active
monitoring process during sleep, much like the sleep-dependent
consolidation of temporal rhythms and other memories (e.g.,
Cheng et al., 2008b, 2009; Soshi et al., 2010; Lewis et al., 2011;
Lewis and Meck, 2012; Scullin and Bliwise, 2015).

Regardless of the proximal cause of aging (Blagosklonny,
2012), de-generacy could explain why timing dysfunctions are
likely to be less obvious in normal aging and/or during the
initial stages of neurodegenerative disorders such as Parkinson’s
and Huntington’s diseases than in experimental subjects with
targeted bilateral brain lesions or genetic manipulations (e.g.,
Liu et al., 2002; Meck and Benson, 2002; Meck, 2006a,b; Desai,
2007; Centonze et al., 2008; Wild-Wall et al., 2008; Balci et al.,
2009; Meck et al., 2012a; Church et al., 2014). That is, older
adults (and these other patient populations) may be able to
recruit alternative cognitive processes and neural networks to
maintain performance, at least until those alternatives also
‘‘break down’’ under cognitive demand or due to age-related (or
disease-related) physical declines (e.g., Paulsen et al., 2004). This
would also explain the seeming paradox that on the one hand,
age differences are quite reliable on the simplest timing tasks
that attempt to minimize cognitive involvement (i.e., there is
little or no opportunity for these alternative processes/networks
to intervene), but on the other hand, once one enters the
‘‘cognitive realm’’, age differences tend to increase with demands
on functions such as attention and working memory (i.e.,
the task demands eventually exceed the ability of older adults
to compensate). Interestingly, the effects of de-generacy and
the application of a Bayesian decision rule would lead to the
‘‘migration’’ of temporal memories towards each other and
violation of the scalar property of interval timing whereby longer
durations are timed with less variability than shorter durations
(e.g., Malapani et al., 1998; Rakitin et al., 2006; Shi et al., 2013; Gu
et al., 2015a).

As we grow older, the speed of our internal clock seemingly
winds down over the course of a day and take longer to recover
than when we were younger. This ‘‘fatigue effect’’ has been
proposed to be the result of the gradual depletion of striatal
dopamine as a function of sustained cognitive engagement
during skill learning acquisition (Kawashima et al., 2012) and
is facilitated by certain dopamine-related disorders such as
normal aging, adult attention deficit hyperactivity disorder, and
Parkinson’s and Huntington’s diseases (e.g., Malapani et al.,
1998; Meck, 2005; Balci et al., 2009; Allman and Meck, 2012; Gu
et al., 2015a). This more rapid depletion in dopamine function
is accompanied by our sense that the external world is going
faster, when in fact it may be our internal clock that is going
slower, thereby suggesting to us that sequences of events are
occurring in a shorter amount of time than would typically be
expected (see Cooper and Erickson, 2002). An example of this
‘‘fatigue effect’’ was reported by Malapani et al. (1998) in their
study of Parkinson’s disease patients and aged-matched controls
trained and then tested on a duration reproduction procedure
without feedback (see Yin et al., 2016a for procedural details).
Over the course of a 2 h session, healthy aged participants
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FIGURE 1 | Reproduced time (s) in a peak-interval procedure with 8-s
and 21-s target durations for young (19–28 years, n = 7) and aged
(67–90 years, n = 12) participants as a function of 30 min blocks during
a 2 h session without feedback. Participants received training with inter-trial
interval feedback prior to the discontinuation of feedback during the test
phase. Data are taken from test sessions described by Malapani et al. (1998)
and Rakitin et al. (1998). See Lustig and Meck (2005), Lake and Meck (2013),
and Yin et al. (2016a) for a review of the benefits of the peak-interval
procedure.

showed proportional rightward shifts in the reproduction of
8-s and 21-s target durations that increased as a function of
30-min session blocks as illustrated in Figure 1. In contrast,
young participants (Rakitin et al., 1998) demonstrated a much
smaller trend that didn’t reach significance. This relative
discrepancy between physical and psychological measurement is
what most influences our sense of time in every day life (e.g.,
McAuley et al., 2006; Matthews et al., 2014; Wearden et al., 2014;
Matthews and Meck, 2016).

Like memory and intelligence, our sense of time is
multifaceted and some timing abilities are likely more resilient
to the aging process than others. Timing tasks that do not
involve controlled attention and working memory, or at least
do so with a very minimal load (e.g., remembering the
current task instructions like ‘‘tapping every second’’) are more
indicative of our ability to perceive and produce temporal
intervals than those that do (e.g., reproducing a series of
intervals of a complex rhythm in the correct order). Even
within less cognitively demanding (or low level) timing tasks,
there is substantial heterogeneity in how performance varies
with age. Results from paced and unpaced tapping tasks,
respectively reported in Turgeon et al. (2011) and Turgeon
and Wing (2012), demonstrate that timing error detection and
correction abilities are preserved into advanced age, despite
a reduction in timekeeping abilities. Indeed, individuals in
their 8th and 9th decades of age were as sensitive to the
presence of unpredictable temporal perturbations (a sound
happening slightly later than it should have were the sequences
completely regular, the rhythm being preserved from that

point on) as those in their 3rd decade of age. Specifically,
the just detectable phase shifts varied from 5 to 15% of
Inter-Onset Interval (IOI) across individuals independently
of age.

Weber fractions were estimated for intervals spanning a wide
portion of the pulsation zone (i.e., IOIs of 300, 600 and 900 ms),
that is, intervals that while repeated evoke the sensation of a
pulse (or rhythm) and a tendency to move in unison with
it (i.e., entrainment). Hence, the high sensitivity to deviations
from regularity in old age is likely to reflect adjustments in
motor preparedness (i.e., when to perform the next move).
Indeed, when tapping in time with the sounds of sequences
containing such unpredictable perturbations, elderly participants
were as efficient in adjusting for the timing of their taps (i.e.,
within 1–3 tone(s) from the phase-shift location) as their young
counterparts; whether these errors were consciously detectable
or not. This suggests that predictable timing mechanisms, that
is, the neural processes allowing an individual to generate
accurate predictions as to when the next event or series of
events should happen and adjust behavior accordingly, are
quite resilient to the aging process (cf., Bornkessel-Schlesewsky
et al., 2015). In contrast, the same elderly individuals are more
variable in tasks depending mainly on the integrity of an
internal clock, like tapping regularly as fast as possible (fastest
regular rate of FRT) or at the most comfortable rate referred
to as SMT.

Other timing tasks showing a clear increase in variability with
age were: SIP and the continuation part of synchronization-
continuation (SC). While SIP involved tapping every second
or half of a second (i.e., twice as fast), SC requires tapping
at a regular rate after the pacing sequence ends at the same
rates as sensorimotor synchronization (SMS) task, i.e., IOIs
of 300, 600 and 900 ms. Moreover, the age-related increased
variability in CT could not be attributed to motoric factors
(see Figure 5 in Turgeon and Wing, 2012). Interestingly, even
though elderly participants tended to produce longer intervals
when asked to tap every second or every half second (i.e.,
age-related impairment in timing accuracy), relative timing
accuracy did not decline with age, that is, they produced taps
twice as fast for the 0.5-s target interval as for the preceding
1-s one to the same degree as young participants. This is
consistent with the use of the just-produced slow sequences as
a baseline reference for the adjustment of the ongoing ‘‘twice-
as-fast’’ rate. Accordingly the initial 1-s SIP trials are more
likely to reflect an internal representation of an interval of
1 s than the subsequent 0.5-s SIP trials in which the just-
produced series of slower taps serve as highly useful external
cues forming a 1–2 ratio with the current target interval
of half a second. These results are in general agreement
with the use of all available contextual information (in this
case that of concurrent and/or previous event sequences) to
improve precision (reduce temporal uncertainty) as predicted
by Bayesian models of interval timing (Shi et al., 2013; Gu
et al., 2015a). As we will discuss below, Bayesian optimization
models can be fruitfully integrated with more general theories
of neurocognitive aging in order to provide a new perspective
on when (and how) age differences in timing performance
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are and are not likely to be observed (De Ridder et al.,
2014).

A BAYESIAN DECISION THEORY
PERSPECTIVE

The idea of increased noise and variability in older adults
coordinates with Bayesian decision theory to explain patterns of
age differences and preservation in timing performance. From
this perspective, the proposal would be that older adults build
an internal representation of both the experimentally imposed
distribution of signal durations (the prior) and of the error
(the loss function). This means that when participants are asked
to reproduce or compare a recently presented signal duration
they incorporate the knowledge of the distribution of previous
durations into the perception of the current duration, thus
biasing the reproduction towards the mean of the distribution
of all durations experienced within a particular context (e.g.,
Jazayeri and Shadlen, 2010; Acerbi et al., 2012; Cicchini et al.,
2012; Gu et al., 2015a). In Bayesian models of this sort, it
is hypothesized that a tradeoff exists between accuracy and
precision, such that the distribution of durations within a
particular context is used to optimize timing performance
by reducing uncertainty at the cost of accuracy. In this
case, the implicit knowledge of the underlying distribution
of durations from which a sample is drawn would be useful
when the current clock reading is unreliable due to the effects
of variability which may result from age-related declines in
dopaminergic function and clock speed (e.g., Malapani et al.,
1998; Lake and Meck, 2013; Gu et al., 2015a; Cheng et al.,
2016). This explains how the inter-mixing of the memories
of previous trials signal durations with the current trial’s
clock reading could bias performance (Penney et al., 1998;
Gu and Kukreja, 2011; Gu and Meck, 2011; Matell and
Kurti, 2014; van Rijn et al., 2014). Under challenging or
stressful conditions, however, this statistical analysis provides
an efficient strategy for reducing variability in the presence
of high levels of uncertainty that may accompany age-related
declines in temporal processing (Gu and Kukreja, 2011; Shi
et al., 2013; Gu et al., 2015a). In order to justify such an
approach, however, one must first demonstrate that older
adults do in fact have a slower and/or more variable internal
clock. Unfortunately, previous applications of Bayesian decision
models have made this assumption without providing direct
evidence of such effects (e.g., Sato and Aihara, 2011; Gu et al.,
2015a).

A SLOWER/NOISER CLOCK: DIRECT
EVIDENCE IN SUPPORT OF A BAYESIAN
OPTIMIZATION APPROACH TO AGE
DIFFERENCES IN TIMING

Regular tapping at the most comfortable rate (i.e., SMT
procedures) has been assumed to reflect the natural resonance
(or referent) period of the internal clock (McAuley et al.,
2006). Variability in SMT is thus a good indicator of how
noisy the clock becomes with age. When asked to tap at a

rate that feels comfortable and natural for 30 s, older people
produced longer inter-tap intervals (ITI) than younger people
(see Figure 2A—Turgeon and Wing, 2012); this is consistent
with a slowing of their internal clock (Vanneste et al., 2001).
In addition, age was associated with relatively large increases in
variability. Compared to the variability in tapping performance
for the 15 youngest participants (age 19–30 yrs) who were quite
stable (SD = 65 ms or 12% of mean of 549 ms), those produced
across the 15 eldest participants (age 78–98 yrs) varied almost
twice as much (SD = 177 ms or 21% of mean of 839 ms).

Within-trial variability as measured by the CV for each of
the 60 participants (3 trials at the beginning and 3 trials at the
end of the study) increased with age (see Figure 2B—Turgeon
and Wing, 2012), age accounting for 13% and 11% of the
variance among CV scores at the beginning and end, respectively.
As most of the age-related changes observed in this study
occurred at the top end of the age spectrum, we performed
a more focused analysis for the 26 participants aged between
58–98 years for whom we have measures of general cognitive
abilities using the Mini Mental State Examination (MMSE —
Folstein et al., 1975). This additional analysis of the Turgeon
and Wing (2012) data allowed for the examination of both
the within-trial CV and the inter-trial SD as a function of age
and MMSE at the beginning of the study when participants
performed without practice and at the end of testing after having
completed a variety of unpaced and paced tapping tasks. The
results from these additional analyses (as illustrated in Figure 2)
provide further evidence for a noisier internal clock in older
adults, even when taking into account general cognitive abilities
(MMSE scores) and practice effects (beginning vs. end of study
measures).

Notably, even in this supposedly minimally-cognitive timing
task, the effects of attention and memory can be seen and may
interact with age. Although the MMSE is a rough measure of
general cognitive abilities, the score accounts for a substantial
proportion of the variance at the beginning of testing, namely
27% of the variance among within-trial CV (Figure 2B) and
48% among inter-trial SD (Figure 2D). In contrast, MMSE no
longer predicts variability within or across trials at the end of
testing, only 5–6% of the variance being accounted for by the
MMSE. That general cognitive abilities contribute to a reduction
in variability on the very first task seems plausible as older
adults with high MMSE scores are more likely to understand
the instructions rapidly, while those with lower MMSE scores
might require a bit longer to ‘‘get into the swing’’ of tapping tasks.
For instance, they might need to be reminded to be as regular
as possible and maintain the same pace for the whole half-a-
minute period. The lack of a relationship between MMSE and
variability at the end of testing suggests that practice overcame
any initial cognitive challenges of the SMT task. Interestingly,
the predictive effect of Age on within-trial CV (Figure 2A) and
inter-trial-SD (Figure 2C) is actually higher at the end (43–48%
of variance accounted for) than at the beginning (27–28% of
variance accounted for). This suggests that despite the age-related
decline in performance due to general cognitive factors, there
is an increased variability within and across trials arising from
slower and less reliable timing mechanisms consistent with our
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FIGURE 2 | Spontaneous motor tempo (SMT) across age and its associated variability at the beginning and end of testing. The top two panels show the
mean coefficient of variation (CV) across the first 3 trials (beginning) and the last 3 trials (end), each CV equaling to the standard deviation (SD) of inter-tap intervals
(ITI) divided by its mean on a given 30-s trial) across Age (A) and mini mental state examination (MMSE) scores (B). The bottom two panels show the SD of the mean
ITI across the 3 trials at the beginning and end of the study across Age (C) and MMSE scores (D). Data represent additional analyses of the findings reported in
Turgeon and Wing (2012).

earlier discussion of dopamine depletion and cognitive ‘‘fatigue
effect’’ across a session. On a methodological front, these findings
point to the importance of including enough trials and analyzing
performance only after it has stabilized to increase the likelihood
of testing ‘‘true’’ age differences in timing while minimizing
artifacts and confounds due to individual or group differences
in task acquisition and learning.

The age-related increase in inter-trial variability in
combination with the age-related decrease in precision (i.e.,
increase of CV with age) on SMT as well as other unpaced
tapping tasks reported by Turgeon and Wing (2012) is consistent
with a noisier and less reliable clock in older participants with
otherwise intact predictive timing mechanisms—as assessed
from error detection and correction performance, with the
external sound sequence providing some ‘‘feedback’’ that
reduces uncertainty. The fact that age does not predict relative
timing accuracy in SIP (see Figure 3C—Turgeon and Wing,
2012) provides further evidence that when a temporal context
is available (i.e., a target period with a simple 2:1 ratio in SIP
or a pacing sequence in SMS), it is used to compensate for a
slower, more variable internal clock in an aging nervous system
as opposed to effects on motor variability (e.g., Wing and
Kristofferson, 1973).

Procedural limitations (e.g., limited range of durations and
the use of magnitude estimation or reproduction procedures

allowing for the calibration and rescaling of stimulus durations)
as well as inadequate statistical power and improper control for
general intelligence factors may have precluded the observation
of age-related decreases in clock speed in numerous reports
(e.g., Surwillo, 1964; Arenberg, 1968; Salthouse et al., 1979;
Block et al., 1998). In general, the observation of age-related
rightward horizontal shifts in psychometric timing functions
is consistent with the internal clock slowing down if trial-
by-trial and/or session-by-session analyses show appropriate
temporal dynamics as a function of within-session feedback
(e.g., Vanneste et al., 2001; Lustig and Meck, 2005; Rakitin
and Malapani, 2008) and/or between-session train and test
conditions (e.g., Meck, 1983, 1996, 2005; Malapani et al., 1998;
Lake and Meck, 2013). Moreover, the observed reversals in
duration categorization around the point of subjective equality
for pairs of anchor durations and larger modality differences
would be expected to occur with age-related decreases in clock
speed as a result of duration discriminations becoming more
difficult with a slower, less precise clock that normally exhibits
differential sensitivity to auditory and visual stimuli (e.g., Penney
et al., 1998, 2000, 2005; Cheng et al., 2008a, 2011) particulary
when timing multiple signal durations concurrently (e.g., Lustig
and Meck, 2001, 2002; Buhusi and Meck, 2009a,b; McAuley
et al., 2010; Todorov et al., 2014). In contrast, systematic
changes in temporal accuracy (e.g., horizontal rightward shifts

Frontiers in Aging Neuroscience | www.frontiersin.org 7 May 2016 | Volume 8 | Article 102

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Turgeon et al. Aging and Time

FIGURE 3 | Outline of the Striatal Beat-Frequency (SBF) model of interval timing with the incorporation of a cerebellar adjustment mechanism into
the time code. (A) At the start of a to-be-timed signal a phasic pulse of dopamine from the ventral tegmental area (VTA) synchronizes cortical oscillations. Cortical
oscillations in areas such as the prefrontal cortex (PFC) can be modulated with synchronous stimuli possibly through efferents from the thalamus. (B) These
dispersed cortical neurons synapse onto medium spiny neurons (MSNs) within the striatum, which are activated at specific target durations based on the oscillatory
activity pattern of synapsing projections. These neurons project from non-motor regions in the thalamus such as the caudal portion of ventralis lateralis, pars caudalis
(VLcc) and receive extensive inputs from the cerebellar dentate nucleus (DN). (C) The DN also exhibits changes in population activity in response to synchronous
stimuli, which may drive the modulation seen in cortical regions of the cerebrum. (D) The change in DN activity is likely modulated by decreases in tonic Purkinje cell
activity (pauses) allowing for the precise tuning of timing mechanisms through disinhibition. Adapted from the initiation, continuation, adjustment, and termination
(ICAT) model of temporal integration described by Lusk et al. (2016) and Petter et al. (submitted).
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in psychometric timing functions that are gradually acquired
over the course of the lifespan and maintained in the face
of corrective feedback) are indicative of age-related decreases
in memory storage speed (K∗) resulting in proportional
increases in the durations stored in long-term memory
(e.g., Meck, 1983, 1996, 2002a,b, 2006c; Meck and Church,
1985, 1987; Meck et al., 1986; Meck and Williams, 1997;
Lejeune et al., 1998; McCormack et al., 1999, 2002; Lustig, 2003;
Meck et al., 2008b; Balci et al., 2009; Oprisan and Buhusi,
2011).

In summary, the findings reviewed here lend support to
the application of Bayesian models of optimization in order
to account for decision-making made under increased levels of
uncertainty in the aging brain as a function of age and cognitive
fatigue. Moreover, it appears justified to assume a slower and/or
noiser internal clock as a contributing factor to this uncertainly
above and beyond any age-related changes in attention and
memory.

STRIATAL BEAT-FREQUENCY (SBF)
MODEL: NEUROBIOLOGICAL BASIS FOR
BAYESIAN TIMING

The striatal beat frequency (SBF) model of interval
timing accounts well for much of the pharmacological,
neurophysiological, and psychological data on timing and
time perception (e.g., Matell and Meck, 2000, 2004; Coull
et al., 2011; Oprisan and Buhusi, 2011, 2013, 2014; van Rijn
et al., 2011; Allman and Meck, 2012; Buhusi and Oprisan,
2013; Oprisan et al., 2014; Kononowicz, 2015; Kononowicz and
van Wassenhove, 2016). The SBF model proposes that time
perception is largely subserved by connections between the
striatum, cortex, and thalamus, with the dorsal striatum being
specifically crucial for proper timing abilities (Meck, 2006a,b).
According to this model, the start signal to time a stimulus is
marked by the phasic release of dopamine from dopaminergic
midbrain projections to the cortex and dorsal striatum (Matell
and Meck, 2004; Gu et al., 2011). This neurotransmitter release
causes oscillatory cortical neurons to synchronize their firing
and resets activity in the dorsal striatum. Thousands of these
oscillating cortical neurons converge on individual medium
spiny neurons (MSNs) in the striatum. As ensembles of cortical
glutamatergic pyramidal neurons oscillate with varying intrinsic
frequencies, their oscillations fall out of phase after the initial
synchronizing action of dopamine. The different cortical
oscillation frequencies result in input activation patterns to
striatal neurons that vary with the time elapsed from the cortical
synchronization event (e.g., van Rijn et al., 2014; Gu et al., 2015b;
Hashimoto and Yotsumoto, 2015; Murai et al., 2016). Each
MSN in the striatum is thought to integrate these oscillatory
cortical inputs and respond to select patterns of cortical neuronal
firing, based on previous reinforcement through long-term
potentiation (LTP). In the striatum, cortical firing results in
long-term depression, unless there is a concurrent release of
dopamine in which case LTP may occur. This dopaminergic
input, originating from the dorsal midbrain, and the LTP it

induces along this pathway, may strengthen connections with
cortical inputs active at the time of reinforcement or feedback. In
this way, striatal neurons may become specialized in responding
to specific temporal intervals, as the threshold for firing is
reduced when the correct cortical inputs are present. Prior
to learning, the delivery of an unexpected reinforcement or
feedback causes a phasic surge of dopamine release in the
striatum that may represent the dopaminergic input necessary
for LTP. Striatal output influences activity of the thalamus
via a direct and an indirect pathway, which have opposing
effects on thalamic activity. In turn, the thalamus has excitatory
projections to the cortex, which then project back to the striatum,
completing the cortico-thalamic-striatal loop (Buhusi and Meck,
2005; Agostino et al., 2011). The direct and indirect pathways of
the basal ganglia are suggested to play a role in the start, stop,
and resetting of the timing process, though further research
is necessary to elaborate the proposed roles of these pathways
in anticipatory timing, intertemporal choice, and temporal
discounting (Wiener et al., 2008; Kim and Zauberman, 2009;
Cui, 2011; Löckenhoff et al., 2011; MacDonald et al., 2012;
Agostino et al., 2013; Heilbronner and Meck, 2014). In addition
to cortico-striatal circuits, cortico-cerebellar circuits provide
feedback and fine tuning of the processes described above for
the cortico-striatal circuits as illustrated in Figure 3 (see Cheng
et al., 2016; Lusk et al., 2016; Petter et al., submitted).

As described above, the SBF model provides the necessary
neurobiological substrates and neural firing properties in order
to identify sources and forms for increased variability associated
with aging effects on timing and time perception (e.g., Meck
and Malapani, 2004; Buhusi and Oprisan, 2013; Oprisan and
Buhusi, 2014; Cheng et al., 2016). For example, a slower clock
with increased variability in clock speed could be accounted for
by the effects of tonic and phasic dopamine release from the
ventral tegmental area (VTA) to the frontal cortex. This would
involve specific changes in the period, variability, resetting, and
phase of cortical oscillatory processes being monitored by striatal
median spiny neurons in the dorsal striatum (e.g., Oprisan and
Buhusi, 2011; Gu et al., 2015b; Kononowicz, 2015; Cheng et al.,
2016; Kononowicz and van Wassenhove, 2016).

DE-GENERACY IN PREDICTIVE TIMING
MECHANISMS AS A POTENTAIL ROUTE
FOR COMPENSATION

Though not specifically addressed by the SBF model, diminished
striatal functioning might also engage brain circuits that
compensate via de-generacy mechanisms (Lewis and Meck,
2012), wherein different anatomical networks are engaged
(Meck, 2002a; Merchant et al., 2013). De-generacy in timing
systems is plausible since time-related cell activity is not only
found in the basal ganglia, but also the cerebellum, thalamus,
posterior parietal cortex, prefrontal cortex (PFC), and the
supplementary motor area (SMA and preSMA; Merchant et al.,
2013; Strenziok et al., 2013; Lusk et al., 2016; Petter et al.,
submitted). Timing in different behavioral contexts is also
associated with different neural architectures. For example,
explicit timing is thought to depend on the striatum and basal
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ganglia, whereas activation of the SMA, inferior cortex, and
cerebellum is considered to be more task specific. In contrast,
implicit perceptual timing is associated with a different set of
brain regions, most frequently the parietal cortex (e.g., Coull and
Nobre, 2008; Coull et al., 2011)—although the cerebellum has
been argued to be involved in both explicit and implicit motor
timing as well as explicit and implicit perceptual timing, perhaps
distinguished from the striatum along a discrete vs. dynamic
or duration-based vs. beat-based dimension (e.g., Liverence and
Scholl, 2012; Teki et al., 2012; Breska and Ivry, 2016; Petter
et al., submitted). Similarly, cortico-cortical systems are more
engaged when timed movements are externally paced, whereas
the striatum is engaged when movements are self-paced or
internally timed (Taniwaki et al., 2003).

The results reported by Turgeon and colleagues (Turgeon
et al., 2011; Turgeon and Wing, 2012) provide evidence that
the adjustment component of timing is preserved up until
the 9th decade of age in healthy, aged brains, that is, those
without any diagnosed pathologies. By adjustment timing, we
mean the adaptive use of predictable intensity fluctuations
or temporal dynamics (e.g., the abrupt rise of intensity or
onsets of the regularly-spaced events of a metronome) to
initiate an action (e.g., when to jump) or series of actions
(e.g., when to switch directions when running an obstacle
course) and/or regulate an ongoing act/behavior (e.g., in a jazz
performance, a double bass player delaying the plucking of a
chord following a missed beat by the drummer). Predictability
in temporal dynamics is inherent to rhythmic patterns (beat-
based timing); however, it is also present whenever the
signal provides enough information to generate expectations
as to what should happen when (perceived and/or produced
events). For instance, well-trained contemporary musicians
or dancers can learn complex arrhythmic patterns; that is,
they can prepare, initiate and smoothly execute the right
moves at the right time despite the lack of metrical structure
(present in most western music) or non-metrical regularity
(as in speech prosody). Adjustment can also be made in the
timekeeper’s settings. For instance, the detection of a phase
shift in an otherwise perfectly regular sequence presumably
leads to a resetting of the clock period, even if no external
movement is produced. Of course, the correct detection of
temporal perturbations is not informative per se for the
underlying internal timekeeping parameters. However, the fact
that the same participants with the same sequences correct
for these errors rapidly when asked to tap in time with the
sounds of the pacing sequence is a strong indicator of a
resetting of the period of the internal clock following the
detection of a phase-shift perturbation. It’s important to note,
however, that apart from the age-related effects observed for
auditory duration discrimination, the effects of variable rhythmic
grouping on temporal sensitivity is greatest among older listeners
independent of hearing loss. Such findings have implications for
speech discrimination in degraded/noisy environments in terms
of identifying deficits in temporal processing that are unrelated
to the loss of hearing sensitivity associated with normal aging
(Gordon-Salant et al., 2011; Fitzgibbons and Gordon-Salant,
2015).

CONCLUDING REMARKS

Our review of the literature suggests that there are fundamental
age-related changes in the functioning of the cortico-thalamic-
basal ganglia circuits that implement timing in the hundredths
of milliseconds-to-minutes range. There are also instances of
at least partial compensation that can in many cases mask
age-related declines in timing and time perception and allow
older adults to perform as well or nearly as well as young
adults until the load of either cognitive demands or physical
decline pushes them past their threshold for being able to
compensate. Reuter-Lorenz and colleagues (e.g., Reuter-Lorenz
and Lustig, 2005; Reuter-Lorenz and Cappell, 2008; Lustig et al.,
2009; Lustig and Jantz, 2015) have referred to this as the
compensation-related utilization of neural circuits (CRUNCH)
hypothesis. Despite age-related declines in cognitive functions
such as attention and working memory, older adults are
still able to rely on these processes by recruiting additional
cognitive resources and capitalizing on the availability of external
cues that serve as environmental support. This leads to an
increased reliance on predictive timing circuits, monitoring
deviations from expectations (i.e., temporal errors) and allowing
for adaptive corrections (i.e., online adjustments) to the
parameters of internal timekeeping mechanisms and/or external
movements like the olivocerebellar and parietofrontal networks
(e.g., Turgeon and Wing, 2012; Gu et al., 2015a; Petter et al.,
submitted).

As a consequence of the above observations, we propose that:
(1) as the functioning of MSNs in cortico-thalamic-basal ganglia
circuits serving as coincidence detectors of patterns of cortical
oscillations become more variable and therefore less reliable
with age (see Allman and Meck, 2012), cortico-cerebellar or
hippocampal regions that are less affected by the aging process
are recruited to influence and/or take over some of these timing
functions through de-generacy principles (e.g., Meck, 2002a;
Merchant et al., 2013; Lusk et al., 2016; Petter et al., submitted);
(2) the dynamic adjustments performed by error correction
pathways implement Bayesian optimization principles, namely
to estimate the likelihood of an actual event distribution (prior
function) with as much relevant data as possible and to minimize
error (loss function), that is the disparity between predicted (via
internal clock) and actual (via external feedback) interval series
(e.g., Jazayeri and Movshon, 2006; Jazayeri and Shadlen, 2010;
Shi et al., 2013; Gu et al., 2015a).

It is important to note that the interplay among the regulation
of multisensory integration, clock speed, feedback, and brain
dopamine levels that contributes to distortions and preservations
in time perception and timed performance are relevant not only
to normal aging, but also to the timing differences associated with
psychosis, dementia, and other types of neurodegeneration (e.g.,
MacDonald and Meck, 2005; Meck, 2005; Bonnot et al., 2011;
Allman and Meck, 2012; Lake and Meck, 2013; Piras et al., 2014;
Gu et al., 2015a; Bedard and Barnett-Cowan, 2016). The overall
conclusion is that normal aging is commonly associated with
reductions in the speed and increased variability in the operation
of a core timing circuit supported by distributed dopamine-
glutamate and GABA interactions in cortico-striatal circuits (e.g.,
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Buhusi and Meck, 2002; Tseng and O’Donnell, 2004; Cheng
et al., 2006, 2007, 2016; Merchant et al., 2013; Matthews et al.,
2014; Terhune et al., 2014). These age-related changes in interval
timing and relative time-sharing function at the level of multiple
time scales, systematically affecting reaction time and unpaced
finger tapping, the playing of sports and musical instruments,
consciousness, retrospective and prospective memory processes,
and other types of time, number, and reward-based decision
making (e.g., Tulving, 2002; Fortin, 2003; Zakay and Block, 2004;
Buonomano, 2007; Buhusi and Meck, 2009a; Fortin et al., 2009;
Nyberg et al., 2010; Meck et al., 2012b; Turgeon and Wing, 2012;
Aagten-Murphy et al., 2014; Allman et al., 2014a; Bermudez and
Schultz, 2014; French et al., 2014; MacDonald, 2014; MacDonald
et al., 2014; Wolkorte et al., 2014; Zakay, 2014; Yin et al.,
2016b).

Given that senescence is observed in natural populations
of animals—affecting their foraging strategies based, in part,
on interval timing and the setting of temporal horizons
(Bateson, 2003; MacDonald et al., 2007), the understanding
of age-related changes in timing and time perception would
appear to have widespread implications for bio-gerontology,
emotional regulation, time-based prospective memory and other

types of temporal cognition (e.g., Löckenhoff and Carstensen,
2007; Löckenhoff, 2011; Alexander et al., 2012; Nussey et al.,
2013; Anderson et al., 2014; Fingelkurts and Fingelkurts, 2014;
Matthews and Meck, 2014, 2016; Tucci et al., 2014; Vanneste
et al., 2015; Lake, 2016; Lake et al., 2016; Mather, 2016). By
providing a foundation for evaluating brain aging effects on
timing and time perception we are now better prepared to
evaluate the need for and effectiveness of interventions designed
to alleviate age-related declines in temporal cognition (Roberts
and Allen, 2016).
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