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Parkinson’s Disease (PD) is a progressively neurodegenerative disorder, implicitly

characterized by a stepwise loss of dopaminergic (DA) neurons in the substantia nigra

pars compacta (SNpc) and explicitly marked by bradykinesia, rigidity, resting tremor

and postural instability. Currently, therapeutic approaches available are mainly palliative

strategies, including L-3,4-dihydroxy-phenylalanine (L-DOPA) replacement therapy, DA

receptor agonist and deep brain stimulation (DBS) procedures. As the disease proceeds,

however, the pharmacotherapeutic efficacy is inevitably worn off, worse still, implicated

by side effects of motor response oscillations as well as L-DOPA induced dyskinesia

(LID). Therefore, the frustrating status above has propeled the shift to cell replacement

therapy (CRT), a promising restorative therapy intending to secure a long-lasting relief of

patients’ symptoms. By far, stem cell lines of multifarious origins have been established,

which can be further categorized into embryonic stem cells (ESCs), neural stem cells

(NSCs), induced neural stem cells (iNSCs), mesenchymal stem cells (MSCs), and induced

pluripotent stem cells (iPSCs). In this review, we intend to present a compendium of

preparation and application of multifarious stem cells, especially in relation to PD research

and therapy. In addition, the current status, potential challenges and future prospects for

practical CRT in PD patients will be elaborated as well.

Keywords: Parkinson’s Disease, dopaminergic (DA) neurons, stem cells, transplantation, preparation, cell

replacement therapy (CRT)

INTRODUCTION

Parkinson’s Disease (PD) is one of the most prevalent neurodegenerative disorders, second only
to Alzheimer’s Disease, affecting approximately 1% of the population over the age of 60 and 4%
over 80 (de Lau and Breteler, 2006). It is a progressively deteriorative disorder characterized by
the stepwise loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc),
a region in the ventral midbrain (VM), and neurons from other regions of the peripheral and
central nervous systems (CNS). During the unbeknown preclinical course, degeneration of non-DA
neurons in the brainstem, olfactory bulb and cortex has already occurred insidiously. Moreover,
the peripheral nervous systems, once involved, incur similar pathological changes as well, for
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instance, in the gut and heart (Braak et al., 2003; Sundberg
and Isacson, 2014). Because of the importance of nigrostriatal
DA neurons in dominating somatic movement, PD is chiefly
marked by bradykinesia, rigidity, resting tremor, and postural
instability. However, other non-motor manifestations such as
anxiety, passivity, depression, psychosis, dementia, and sleep
disturbance also set out to emerge insidiously as the disease
progresses (Chaudhuri et al., 2006). As a result of the systemic
involvement and multifunctional impairment, therefore, PD has
been described as a clinical syndrome (Fahn, 2003). Currently,
therapeutic approaches available are mainly aiming to relieve
PD motor symptoms including L-3,4-dihydroxy-phenylalanine
(L-DOPA) replacement therapy, administration of DA agonist,
and deep brain stimulation (DBS; Foltynie and Hariz, 2010) in
subthalamic nucleus and globus pallidus via surgically implanted
electrodes (Politis and Lindvall, 2012), all of which are palliative
and incapable of counteracting the progression course.Moreover,
as the disease proceeds, the efficacy of pharmacotherapy is
gradually undermined, implicated by the development of various
types of motor response oscillations such as on-off, wearing off
phenomena, as well as L-DOPA induced dyskinesia (LID; Poewe
et al., 2010). Up to now, there still lack restorative treatments for
PD, which plus the frustrating therapeutic status partly account
for why current research efforts conformably shift to the field of
stem cell research.

By definition, cells that can self-renew and produce progenies
as well as differentiating into multiple cell lineages are termed
as stem cells (Lunn et al., 2011). Since proposal of the
concept, subsequently yielded research achievement has enabled
the establishment of multifarious stem cell lines, many of
which have been employed for DA neurons derivation and
differentiation so as to be applied to disease modeling, drug
screening, and cell replacement (sometimes termed as “cell
transplantation”) therapy (CRT) for PD (see Figure 1). At
present, the most commonly studied stem cell sources for
DA neuron derivation are human fetal ventral midbrain
(hfVM) cells, human embryonic stem cells (hESCs), human
neural stem/precursor/ progenitor cells (hNSCs/hNPCs), human
mesenchymal stem cells (hMSCs), human induced neural stem

Abbreviations: BDNF, brain derived neurotrophic factor; L-DOPA, L-3,4-

dihydroxy-phenylalanine; bFGF, basic fibroblast growth factor; LIF, leukemia

inhibitory factor; BMSCs, bone mesenchymal stem cells; MEFs, mouse embryonic

fibroblasts; cDNAs, complementary DNAs; MSCs, mesenchymal stem cells; CNS,

central nervous system; NGF, nerve growth factor; CPP, cell penetrating peptide;

NPCs, neural progenitor cells; CRT, cell replacement therapy; NSCs, neural

stem cells; DA, dopaminergic; ONSL, Oct4, Nanog,Sox2, Lin28; DBS, deep brain

stimulation; OSKM, Oct3/4, Sox2, Klf4, c-Myc; Ebs, embryoid bodies; PCR,

polymerase chain reaction; ECM, extra cellular matrix; PD-iPSCs, PD patient

specific iPSCs; EGF, epidermal growth factor; piPSCs, protein-based iPSCs; ESCs,

embryonic stem cells; PD, Parkinson’s Disease; FGF, fibroblast growth factor;

SeV, Sendai Virus; GDNF, glial cell derived neurotrophic factor; SDIA, stromal

cell derived inducing activity; GID, graft induced dyskinesia; SNpc, substantia

nigra pars compacta; GMP, good manufacturing practice; SVZ, subventricular

zone; hESCs, human embryonic stem cells; TFs, transcription factors; hfVM,

human fetal ventral midbrain; TH, tyrosine hydroxylase; hiPSCs, human induced

pluripotent stem cells; TLR3/4, toll-like receptor3/4; IL, interleukin; VEGF,

vascular endothelial growth factor; iNSCs, induced neural stem cells; VPA, valproic

acid; iPSCs, induced pluripotent stem cells; VM, ventral midbrain; LID, L-DOPA

induced dyskinesia.

cells (hiNSCs), and human-induced pluripotent stem cells
(hiPSCs; Pittenger et al., 1999; Cooper et al., 2010; Hargus et al.,
2010; Kriks et al., 2011; Kirkeby et al., 2012; Sundberg et al.,
2013), which hold great promise to be restorative therapeutic
regimens (see Figure 1). In relation to PD, an estimation of
30% DA cells loss in the SN combined with a greater than
60% reduction of DA neurons innervation to the striatum
can result in the emergence of clinical features (Cheng et al.,
2010). Thus, any type of CRT protocol needs to restore the
nigrostriatal system at least back to 30% of normal level
so as to be effective. To warrant future standardization and
homogenization of stem cell-based CRT, the ideal appraisal
criteria should conform to the protocols below (Laguna Goya
et al., 2008):

1. Yielding sufficient neural lineage specific cell lines available for
transplantation;

2. Sustained survival (i.e., years) of the cells post implantation;
3. Differentiation into nigral DA neurons in sufficient numbers

(approximately 100,000) with evidence for release of
dopamine from the grafted cells;

4. Behavioral recovery consequent upon the transplantation of
these cells;

5. No evidence of tumor formation or differentiation into
neurons/cells that disrupt the nigrostriatal circuits further;

6. Subordinate to Good Manufacturing Practice (GMP)
standards;

Here in this review, we propose to present an elaborate
compendium of the preparation and application of stem cell
lines, especially ESCs, NSCs/NPCs, iNSCs, MSCs, and iPSCs for
research and therapy of PD (see Figure 1). As a result of the more
superior pluripotency, more distinctive differentiation features
and more approbatory sources, iPSCs appear to be a more
preferential CRT candidate. In addition, the current status, future
prospects and CRT related inflammation issues for practical stem
cell based therapy in PD patients will be elaborated as well.

EMBRYONIC STEM CELLS (ESCs)

ESCs, derived from the inner mass of a developing blastocyst,
have the potential to self-renew and give rise into cells of all
three primary germ layers-ectoderm, mesoderm and endoderm
under certain normal circumstances (see Figure 1). Inspired
by the fascinating differentiation potencies, murine and human
ESCs have been established in succession (Evans and Kaufman,
1981; Martin, 1981; Thomson et al., 1998). In the context
of the initial derivation of human ESCs (hESCs), essential
characteristics of primate ESCs have been proposed to include
the features below: (i) derivation from the pre-implantation
or peri-implantation embryo; (ii) prolonged undifferentiated
proliferation; and (iii) stable developmental potential to form
derivatives of all three embryonic germ layers even after
prolonged culture (Thomson et al., 1998). Given that hESCs
have the ability to provide a virtually limitless supply of
homogenous DA progenitors/precursor cells and neurons of
specific neural lineages, neural transplantation of this cell lines
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FIGURE 1 | Schematic illustration of the derivation, differentiation, and application of stem cells currently available in PD research and therapy. The

stem cells above can be divided into four categories: ESCs, NSCs, MSCs, and iPSCs, accompanying a gradually declining totipotency. (1) ESCs, mainly derived from

blastocyst inner mass, can differentiate into endoderm, mesoderm, and ectoderm simultaneously under normal circumstances. In certain cases, ESCs can be

induced to differentiate into NSCs and MSCs as well. (2) NSCs, isolated directly from specific brain niches or reprogrammed from fibroblasts, can fulfill neural lineage

differentiation into neurons and almost all neuroglia cells. (3) MSCs, primarily derived from mesenchymal tissues, can commitedly differentiate into almost all cells of

mesodermal origins. Noteworthy, MSCs can be induced to differentiate into DA neurons as well under specific combinations of induction protocols. (4) iPSCs, a

promising stem cell source with multi-lineage differentiation potency, can be reprogrammed from adult human somatic cells (such as fibroblasts) by retro-virally

introducing the classical OSKM (Oct3/4, Sox2, Klf4, and c-Myc) transcription factors. Guided by the GMP standards, the stem cells above and the terminally

differentiated cells can be further sorted, purified, and expanded so as to be applied to disease modeling, drug screening, and CRT practice. For example, ESCs,

MSCs, NSCs, and DA neurons can be employed in (i) PD models preparation; (ii) potential drugs screening; (iii) CRT treatment of PD.

is a promising strategy to restore DA dysfunction and modify
disease progression in PD.

Attempts to induce further differentiation of ESCs in vitro
involve several different approaches (see Figure 2). For instance,
a significant improvement of neural lineages induction achieved
by application of several morphogens such as all-trans retinoic
acid (RA), sonic hedgehog (SHH), fibroblast growth factor
(FGF), epidermal growth factor (EGF), bone morphogentic
proteins (BMPs), and glial cell derived neurotrophic factor
(GDNF; Fraichard et al., 1995; Ciccolini and Svendsen, 1998;
Guan et al., 2001; Buytaert-Hoefen et al., 2004; Perrier et al.,

2004; Li et al., 2005), all employed as neurogenic stimulators
which are essential for normal embryonic development and
differentiation as well (Ross et al., 2000; see Table 1). Apart from
morphogens above, there exist several tissue culture protocols
available to induce production of A9 DA neurons from hESCs,
including co-culturing feeder cells (Kawasaki et al., 2000; Perrier
et al., 2004; Zeng et al., 2004; Park et al., 2005; Brederlau
et al., 2006), soluble growth factors (Lee et al., 2000; Schulz
et al., 2004; Takagi et al., 2005; Yan et al., 2005; Yang et al.,
2008), genetic manipulation (Kim et al., 2002; Chung et al.,
2005; Andersson et al., 2006) and specific combination of
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FIGURE 2 | Flow chart of the isolation, induced differentiation, and application as a renewable replacement cell source in PD treatment. The entire

procedures fall into three steps as follows: (1) ESCs isolation from blastocyst inner mass; (2) induced differentiation of ESCs into DA neurons by virtue of (i) application

of morphogens or soluble growth factors; (ii) feeder cell co-culture; (iii) genetic manipulation; (iv) floor plate lineage induction strategy; (3) transplantation of the induced

DA neurons in PD treatment via functional integration and endogenous NPCs motivation.

the methods above (see Table 1). One method involves co-
culturing ESCs with feeder cells that possess stromal cell derived
inducing activity (SDIA). Co-culturing mouse PA6 stromal cells
with murine and human ESCs have been demonstrated to
induce differentiation of DA neurons, nevertheless, with different
percentage of TH+ (tyrosine hydroxylase, a critical enzyme
involved in DA synthesis) neurons (Kawasaki et al., 2000; Zeng
et al., 2004; Brederlau et al., 2006). Besides, a number of soluble
growth factors and chemicals such as ascorbic acid, cAMP, TGF-
beta3, BDNF (brain-derived neurotrophic factor) and GDNF
are also capable of inducing differentiation of ESCs into beta-
tubulin III+/TH+ DA neurons (Lee et al., 2000; Schulz et al.,
2004; Takagi et al., 2005; Yan et al., 2005; Yang et al., 2008).
Moreover, transplantation of the induced DA neurons into PD
animal models can relieve its functional deficits (Schulz et al.,
2004; Takagi et al., 2005; Yan et al., 2005; Yang et al., 2008).
Of note, combining soluble growth factors with feeder cell have
efficiently produced an enriched population of midbrain DA
neurons as well (Perrier et al., 2004; Park et al., 2005; Roy
et al., 2006; Sonntag et al., 2007). In addition, it is feasible
to successfully facilitate the differentiation of ESCs to certain
lineages by genetic manipulation consisting of specific activation
of key fate-determining transcription factors such as Nurr1,
Lmx1a, Pitx3, Pax4, and GATA (Zetterstrom et al., 1997; Castillo
et al., 1998; Saucedo-Cardenas et al., 1998; Fujikura et al., 2002;
Kim et al., 2002; Blyszczuk et al., 2003; Chung et al., 2005;
Andersson et al., 2006), among which Nurr1, Lmx1a, and Pitx3
can facilitate the induction of midbrain DA neurons frommurine
ESCs (mESCs; Kim et al., 2002; Chung et al., 2005; Andersson
et al., 2006). Better yet, a rapid and concise protocol employing
wholly chemically defined human additives such as SHH, FGF8
(Yan et al., 2005) or recombinant human noggin, bFGF (basic

FGF), dibutyryl–cAMP (Iacovitti et al., 2007) or FGF8b and
SHH (Yang et al., 2008), omitting the collaboration of feeder
cells and transcription factors, have successfully facilitated the
differentiation of hESCs into DA neurons. As a matter of fact,
development of midbrain DA neurons is tightly orchestrated
by a cluster of transcription factors (such as OTX2, LMX1a,
FOXa2, LMX1b, MSX1, EN1, NGN2, NURR1, and PITX3) and
signaling molecules (such as SHH, WNT, and FGF8) apart from
synergism of SDIA labeled feeder cell, specifically instructing
the differentiation into DA neurons. Moreover, a recent elegant
floor-plate based strategy involving tight temporal control of
key factor exposure of cultures have yielded TH+ neurons
exhibiting A9 phenotype with higher reprogramming efficiency
and shorter period (Kriks et al., 2011; Ryan et al., 2013).
Therefore, joint employment of stromal feeder cell, genetic
manipulation signaling molecules and elaborate regulation of key
factor exposure in culture system can synergistically facilitate the
induction of DA neurons from ESCs. As for the CRT of ESCs in
PD, apart from in vivo functional integration, transplanted cells
may stimulate neurogenesis through recruitment and activation
of endogenous NPCs (Tomaskovic-Crook and Crook, 2011; see
Figure 2).

Current Status and Future Prospects
Up to now, there have existed several demonstrations that DA-
rich transplants derived from ESCs have generally maintained
their DA-induced phenotype, extended neurite outgrowths,
expressed synaptic markers and produced considerable
behavioral recovery following grafting into the PD animal
models (Kim et al., 2002; Takagi et al., 2005; Brederlau et al.,
2006; Yang et al., 2008; Muramatsu et al., 2009; Takahashi et al.,
2009; Kriks et al., 2011; Daadi et al., 2012; see Table 1). Similar
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TABLE 1 | Existing DA neurons differentiation protocols and corresponding application in PD models of ESCs, NSCs/NPCs, and MSCs.

Stem cell sources DA neurons differentiation protocols Manifestations in post-transplantation PD models

ESCs I. Co-culturing with feeder cells (SDIA) (Kawasaki et al., 2000;

Zeng et al., 2004; Brederlau et al., 2006)

1. DA phenotype

2. Extended neurite outgrowth

II. Soluble growth factors/chemicals (Lee et al., 2000; Schulz

et al., 2004; Takagi et al., 2005; Yan et al., 2005; Yang et al.,

2008)

3. Synaptic marker

4. Considerable behavioral recovery (Kim et al., 2002; Schulz et al., 2004;

Takagi et al., 2005; Yan et al., 2005; Brederlau et al., 2006; Yang et al.,

2008; Takahashi et al., 2009; Kriks et al., 2011; Daadi et al., 2012)III. genetic manipulations (Kim et al., 2002; Chung et al., 2005;

Andersson et al., 2006)

IV. Specific combinations of I, II, and III (Perrier et al., 2004; Park

et al., 2005; Roy et al., 2006; Sonntag et al., 2007)

V. Several morphogens (such as all-trans RA, SHH, FGF, EGF,

BMPs, GDNF) facilitate neural lineage induction (Fraichard

et al., 1995; Ciccolini and Svendsen, 1998; Guan et al., 2001;

Buytaert-Hoefen et al., 2004; Perrier et al., 2004; Li et al., 2005)

NSCs/NPCs I. Soluble neurotrophic factors (GDNF et al.) and cytokines

(IL-1, IL-11, LIF) (Nishino et al., 2000; Yang et al., 2004;

Christophersen et al., 2006; Harrower et al., 2006)

1. Integration into nigrostriatal pathway

2. Restoration of SN-striatum projection

3. Resumption of DA synthesis and release
II. Genetic modification factors (Nurr1, SHH, Bcl-XL, Mash1,

Pitx3) (Liste et al., 2004, 2007; Park et al., 2006; O’Keeffe et al.,

2008)

4. Relief of PD-like symptoms (Studer et al., 1998; Harrower et al., 2006;

Park et al., 2006; Redmond et al., 2007; O’Keeffe et al., 2008)

III. TH+ neurons output can be further enhanced by low oxygen

culturing condition (Studer et al., 2000)

MSCs I. Chemical induction, growth factors, signaling molecules,

co-culturing with feeder cells and employment of conditioned

medium (Hermann et al., 2004; Long et al., 2005; Wang et al.,

2005; Chu et al., 2006; Choong et al., 2007; Anghileri et al.,

2008; Fu et al., 2008; Zhang et al., 2008; Barzilay et al., 2009;

Trzaska et al., 2009; Datta et al., 2011)

1. Survival of grafted cells

2. Expression of TH

3. Obvious behavior recovery (Rosenblad et al., 1999; Bjorklund et al.,

2000; Kozlowski et al., 2000; Woodbury et al., 2000; Kordower et al.,

2006; Gasmi et al., 2007; Herzog et al., 2007; Offen et al., 2007; Ye et al.,

2007; Bouchez et al., 2008; McCoy et al., 2008; Eberling et al., 2009;

Johnston et al., 2009; Kells et al., 2010; Delcroix et al., 2011; Fierro et al.,

2011; Xiong et al., 2011; Mathieu et al., 2012)

II. Genetic engineering of MSCs (by virtue of protein or gene

delivery of neurotrophic factors, particularly GDNF, VEGF, and

neurturin) (Rosenblad et al., 1999; Bjorklund et al., 2000;

Kozlowski et al., 2000; Kordower et al., 2006; Gasmi et al.,

2007; Herzog et al., 2007; Eberling et al., 2009; Johnston et al.,

2009; Kells et al., 2010; Fierro et al., 2011)

All-trans RA, all-trans retinoic acid; BMPs, bone morphogentic proteins; SHH, sonic hedgehog; Nurr1, Nuclear receptor related 1 protein; Bcl-XL, B-cell lymphoma-extra large; Mash1,

achaete-scute homologueiy ash1; Pitx3, Pituitary homeobox 3.

to the outcomes in PD animal models, patients receive human
fetal tissues transplantation demonstrate significant reduction
in motor deficits with considerable graft survival, dopamine
release and synaptic integration of DA neurons (Kordower
et al., 1995; Piccini et al., 1999; Mendez et al., 2005; Barker
et al., 2013; Petit et al., 2014). However, owing to limited tissue
availability and other related issues, the employment of fetal
tissue is unlikely to become a routine treatment for PD. To break
through the dilemma, the established ESCs lineage induction
protocols (see Figure 2) can produce theoretically limitless
population of homogenous mesencephalon DA neurons, thus
holding great promise for ESCs based CRT strategies. As is the
case for all pluripotent stem cells, nevertheless, hESCs possess
the potential concern of teratoma generation in the intended
zone of transplantation. Besides, the graft ESCs may cross blood
brain barrier, integrate into ectopic brain regions functionally
and secret active factors to produce adverse effects on central
nervous system (CNS). Moreover, allogeneic hES cells and their
derivatives may induce immune rejection when grafted into the

recipient’s brain (Tomaskovic-Crook and Crook, 2011). Apart
from that, the graft induced dystonia and dyskinesia is another
tough nut to crack (Freed et al., 2001; Olanow et al., 2003). As for
the concerns above, what can we do in future stem cell research?
On the whole, it is imperative to remove or reduce remnant ESCs
to safe levels from the final graft product by means of fluorescent
activated cell sorting (FACS), magnetic activated cell sorting
(MACS), mitotic retardation, and/or directed differentiation so
as to reduce the tumorigenic hazards (Brederlau et al., 2006). In
addition, an evaluation of the graft cell biodistribution, potential
ectopic toxicity and understanding of the immune status of
ESCs-derived cells and the CNS undergoing neurodegenerative
insult will better guarantee the success of ESCs based CRT
in PD. Regrettably, there are no, by far, US Food and Drug
Administration (FDA)-approved ongoing clinical trials using
hESC-derived cells for transplantation in PD patients as a
result of the potential concern above. Whereas, given the
fascinating intrinsic differentiation potencies and concerted
efforts of researchers worldwide, the hESCs derived DA neurons
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will be bound to reach clinical stage and translated to clinical
application.

NEURAL STEM CELLS (NSCs)

The discovery in the early 1990s of stem and progenitor
cells in the adult mammalian CNS (Reynolds and Weiss,
1992) challenged the long-standing “no new neuron” doctrine
attributed to the eminent scientist Ramony et al. opening the
window to the potential of NSCs for CRT of PD. NSCs, a subtype
of stem cells capable of self-renewing and generating the main
phenotypes of the nervous system in both embryo and adult, are
committed to the neural lineage differentiation and presumably
form neurons, oligodendrocytes, and astrocytes in vivo. In case
of physiological condition, the proliferation and self-renewal
of NSCs sustain a delicate balance by means of dividing
symmetrically to maintain their quantities and asymmetrically
to give rise to multifarious differentiated progenies. There are
miscellaneous origins of NSCs, which, by and large, can be
classified into two types: endogenous NSCs and stem cell-derived
NSCs. Endogenous NSCs exist throughout life and are mainly
found in specific niches of brain such as subventricular zone
(SVZ), subgranular zone (SGZ) of hippocampal dentate gyrus
(DG), corpus striatum, olfactory bulb, and cortex (Davis and
Temple, 1994; Gage et al., 1995; Gage, 2000; Smith et al., 2003),
which are responsible for the regeneration of new neurons to

restore the functions of the brain and spinal cord. While the
latter such as ESCs, MSCs, and iPSCs can also serve as a source
for NSCs production, holding a great promise for regeneration
and restoration of the CNS. In summary, there exist two culture
protocols to induce the differentiation of NSC lines: (1) add to
brain tissue culture medium encompassing growth factors (FGF,
EGF), neurotrophic factors (GDNF, BDNF), cytokines (ILs, LIF,
and so on) and then form free-floating colonies (neurospheres);
(2) co-culturing with immortalized NSC lines to introduce
genetic modification factors(Bcl-XL, Nurr1, Mash1, and Pitx3;
see Figure 3). Besides, it has been reported that Sox2, with
or without other transcriptional factors, is capable of directly
reprogramming mouse or human fibroblasts into a bran-new
NSCs identity termed as iNSCs (Han et al., 2012; Lujan et al.,
2012; Ring et al., 2012; see Figure 3).

PD, a neurodegenerative disease associated to aging and
suggested to be a consequence of deficiency of NSCs pool
in the affected brain regions, is an appropriate candidate for
CRT. Therefore, the replacement of NSCs, either endogenous
NSCs, iNSCs, or stem cell-derived neural stem cells, into
impaired brain is highly expected as a possible therapeutic
mean for PD (see Figure 1). After the successful establishment
of neural stem/precursor/progenitor cells (NPCs/NSCs) of
multifarious origins, a rapid, reliable, and long-term production
of human NPCs would be of immense practical value to both
neuroscientists and clinical neural transplantation trials. In terms

FIGURE 3 | Flow diagram of the preparation (direct isolation or induced differentiation) and respective application of NSCs in PD treatment. The NSCs

can be divided into three categories: (1) Endogenous NSCs, isolated directly from adult human CNS tissue (A); (2) Stem cell derived NSCs, induced from various stem

cells via diverse differentiation protocols (A); (3) iNSC, reprogrammed from mouse or human fibroblast by Sox2, with or without other transcription factors (B); all of

which can be further sorted and purified to obtain feasible NSCs. Among others, the stem cell derived NSCs can be further induced to differentiated into DA neurons

by means of two protocols below: (i) addition of growth factors, neurotrophic factors, cytokines, and et al. to culture medium to induce the neurosphere formation; (ii)

co-culture with immortalized NSC lines to introduce genetic modification factors. Ameliorative neuronal survival state and restorative functional deficits can be

observed when the feasible NSCs and competent DA neurons above are applied in CRT treatment of PD.
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of proliferation and differentiation of fetal NPCs, Studer et al. in
1998 demonstrated that NPCs from the rat VM could grow and
expand in bFGF-embedded system and then differentiate to yield
a significant number of TH+ neurons, accompanying functional
recovery when transplanted into rat PD models (Studer et al.,
1998). As a matter of fact, introduction and specific combination
of soluble factors, neurotrophic factors and genetic modification
factors have enhanced the production of DA neurons as well
(Sanchez-Pernaute et al., 2001; Storch et al., 2001; Liste et al.,
2004, 2007; Yang et al., 2004; Christophersen et al., 2006). Since
then, a number of studies explicitly exploring the formation
of DA neurons from NPCs have been attempted with the
introduction of either soluble factors such as interleukin-1 (IL-
1), IL-11, leukemia inhibitory factor (LIF), and GDNF (Nishino
et al., 2000; Sawamoto et al., 2001; Harrower et al., 2006; Timmer
et al., 2006) or genetic modification factors involved in DA
neurons specification and survival (such as Nurr1, SHH and Bcl-
XL; Nurr1 and Mash1 or Pitx3; Park et al., 2006; O’Keeffe et al.,
2008), resulting in remarkable DA differentiation and significant
functional recovery on grafting into PD animal models (Nishino
et al., 2000; Sawamoto et al., 2001; Harrower et al., 2006; Park
et al., 2006; Timmer et al., 2006; Redmond et al., 2007; O’Keeffe
et al., 2008; see Table 1). Additionally, the proportion of TH+
neurons could be further enhanced by culturing the cells in low
oxygen conditions (Studer et al., 2000), and studies involving
hNPCs have demonstrated similar outcomes as well, but with low
percentage of TH+ DA neurons (Svendsen et al., 1997).

Current Status and Future Prospects
Full scale evaluation of the NSCs grafted PD models
demonstrates that NSCs can integrate into nigrostriatal
pathway, restore the projection of substantia nigra to striatum,
resume DA synthesis and release and relieve PD-like symptoms
(Studer et al., 1998; Harrower et al., 2006; Park et al., 2006;
Redmond et al., 2007; O’Keeffe et al., 2008; see Table 1). Given
the condition that NSCs possess unique capacity to expand and
potential to differentiate into variously “wanted” neurons and
glias, it seems that NSCs can be a perfect therapeutic candidate
for neurological diseases, especially PD. Moreover, compared to
the approach of generating DA neurons from an ESC source, the
employment of NPCs is of obvious advantage as a result of its
decreased tumorigenic potential and immunological rejections.
However, it is difficult, as a matter of fact, to secure enough
adult human CNS tissues for preparation of adult NSCs. It
is imperative, for this reason, that a stable and homogeneous
human NSC lines should be established to serve as an ideal
alternative cellular source.

In future NSCs based CRT studies, the obstacles below should
be overcome so as to enable NSCs be translated to PD therapy:
(1) generating specific cell types of neurons or glia suitable
for cellular grafts in great quantity from NSCs; (2) erasing
safety concerns related to tumor formation, immunological
rejection and biodistribution related toxicity following NSC
transplantation; (3) exploring the implicit mechanism that
enable the NSCs mediated functionally recovery. Continued
and extensive progress in stem cell research in both basic and

pre-clinical settings will prompt the NSCs-based therapy in
neurodegenerative diseases, especially in PD.

MESENCHYMAL STEM CELLS (MSCs)

MSCs, a non-haematopoietic, multipotent subtype cell lines
arising mainly from the stromal structures of the bone marrow
(Prockop, 1997) other than adipose tissue (Schaffler and Buchler,
2007), umbilical cord (Fu et al., 2006), dermis (Kuroda et al.,
2011), and peripheral blood (Kim et al., 2006), generally
differentiating into osteocytes, chondrocytes and adipocytes
in vivo (Bianco et al., 2001; see Figure 1). Apart from the regular
differentiation subclasses, MSCs possess the trans-differentiation
potential to form other non-mesenchymal cell types (Jiang et al.,
2002), especially the neurogenic potential to trans-differentiate
into nestin-positive neurospheres in the presence of EGF and
bFGF (Kim et al., 2006). Furthermore, MSCs with neurogenic
potential (neurally-induced MSCs), especially the MSCs derived
from the accessible source of peripheral blood, may represent
a wholly new source of cells for autologous transplantation
therapies in neurodegenerative disease. As for PD, due to the
focused loss of DA neurons, it is a particularly suitable candidate
for MSC mediated CRT.

In general, there are two categories of MSCs: naive MSCs
(directly isolated from mesenchymal tissues) and neurally-
induced MSCs, which all hold immense promise for PD
treatment (see Figure 4). MSCs isolated from different tissues
can adopt morphological and phenotypical characteristics of
neuronal cells under various culture conditions, part of which
have been transplanted into PD models with observed functional
recovery. Among them, Naive bone MSCs (BMSCs) and
neurally-induced bone MSCs (BMSCs) all have been tested
for therapeutic effects in PD models by several groups, both
demonstrating survival of grafted cells, expression of TH and
obvious behavior recovery (Woodbury et al., 2000; Offen et al.,
2007; Ye et al., 2007; Bouchez et al., 2008; Delcroix et al.,
2011), but restoration effects of neurally-induced BMSCs seem
to be more pronounced (Woodbury et al., 2000). Besides,
MSCs isolated from adipose tissue and umbilical cord have
equally shown beneficial effects in PD models as well (McCoy
et al., 2008; Xiong et al., 2011; Mathieu et al., 2012).Moreover,
genetically engineered MSCs have also been demonstrated to
exhibit therapeutic potential in PD treatment. Numerous studies
have demonstrated that protein or gene delivery of growth
factors, particularly GDNF, VEGF and neurturin, effectively
protects DA neurons in a succession of rodent and primate
models of PD (Rosenblad et al., 1999; Bjorklund et al., 2000;
Kozlowski et al., 2000; Kordower et al., 2006; Gasmi et al., 2007;
Herzog et al., 2007; Eberling et al., 2009; Johnston et al., 2009;
Kells et al., 2010; Fierro et al., 2011; see Table 1).

Similar to ESCs induction, most MSCs induction protocols
demand different combinations of chemicals, growth factors
and signaling molecules (Long et al., 2005; Wang et al., 2005;
Chu et al., 2006; Choong et al., 2007; Anghileri et al., 2008;
Fu et al., 2008). In summary, differentiation of MSCs into
DA neurons can be achieved through different protocols based
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FIGURE 4 | Illustration of the direct isolation, induced differentiation, and respective application of MSCs in PD treatment. MSCs can be classified into

three types: naïve MSCs, neurally induced MSCs and genetically engineered MSCs, all of which can directly exert intrinsic therapeutic effects upon transplantation,

such as (i) secretion of neutrophic factors, growth factors, and et al.; (ii) endogenous MSCs motivation, neurogenesis, and angionesis; (iii) immunomodulation and

anti-inflammatory effects. In addition, MSCs can be inductively differentiated into DA neurons by virtue of (i) chemical stimulation; (ii) gene transfection; (iii) feed cell

co-culture; (iv) employment of conditioned culture medium. Upon transplantation, the MSCs and differentiated DA neurons demonstrate (a) sustained neuronal survival

upon toxin insult; (b) enhanced DA neurons regeneration and repair; (c) functional deficits restoration.

on chemical induction, gene transfection, co-culturing with
glial, neuronal and neuronal stem cells, and employment of
conditioned medium (Hermann et al., 2004; Zhang et al., 2008;
Barzilay et al., 2009; Trzaska et al., 2009; Datta et al., 2011;
see Figure 4). To date, there are several possible underlying
mechanisms below interpreting the therapeutic effects of MSCs
for PD (see Figure 6).

1. Secretion of various growth factors, cytokines, extra cellular
matrix (ECM) proteins, and potent neuro-regulatory
molecules to create a favorable environment for neural
regeneration.

MSCs have been reported to secrete an array of growth
factors and cytokines, including BDNF, nerve growth factor
(NGF), GDNF, vascular endothelial growth factor (VEGF),
neurotrophin-3 (NT-3) and stromal cell-derived factor-1
(SDF-1; Arnhold et al., 2006; Crigler et al., 2006; Croitoru-
Lamoury et al., 2007; Pisati et al., 2007; Park H. J. et al., 2008;
Wilkins et al., 2009; Blandini et al., 2010; Jiang et al., 2010;
Kim et al., 2010; Lattanzi et al., 2011). It is presumable that
the growth factors secreted from grafted MSCs and stimulated
host cells are implicated in the therapeutic effects of MSCs
in different animal models of PD (Crigler et al., 2006; Park
H. J. et al., 2008; Blandini et al., 2010). Besides, MSCs can
produce extracellular matrix (ECM) proteins that can support
neural cell attachment, growth, neuritogenesis, and functional
restoration (Aizman et al., 2009; Lai et al., 2010). Therefore,
the secretion of multiple paracine factors by MSCs is involved

in DA protection and repair, which may partially account for
the therapeutic effects of MSCs for PD.

2. Activation of endogenous restoration mechanisms to facilitate
neurogenesis, angiogenesis and decrease the loss of DA
neurons (anti-apoptosis).

In vitro studies have shown that transplantation of MSCs

can stimulate proliferation, migration and differentiation of

the endogenous NSCs (Munoz et al., 2005; Bai et al., 2007;
Robinson et al., 2011). In addition, MSCs can exert an

influence on endogenous NSCs indirectly through stimulation
of astrocytes to secrete growth factors, such as BDNF and

NGF, which promote neurogenesis (Song et al., 2002; Munoz
et al., 2005). In addition, another study has shown that

transplantation of human MSCs to an MPTP mouse model of

PD augments neurogenesis both in SVZ and SN and increases

differentiation of NSCs toward DA neurons, suggesting effects

achieved through EGF secretion and an increased expression
of EGF receptor in the SVZ (Park et al., 2012a). Another
significant feature of the regenerative effects of MSCs is
their ability to promote endothelial cell proliferation and
angiogenesis, since angiogenesis and neurogenesis are coupled
processes (Kinnaird et al., 2004a,b; Teng et al., 2008; Park et al.,
2012a). In a word, through release of paracrine factors, MSCs
can exert an effect on the host tissue to facilitate intrinsic
restorative processes such as neurogenesis and angiogenesis
and decrease loss of DA neurons simultaneously.

3. Immunomodulation and anti-inflammatory effect.
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There are enormous evidences showing that extensive
proliferation of activated microglia has been observed
postmortem in the SN of PD patients (McGeer et al.,
1988; Langston et al., 1999). Moreover, elevated levels of
pro-inflammatory cytokines, such as tumor necrosis factor
(TNF), interleukin-1 beta (IL-1 β), and interferon-gamma
(IFN-γ) have been detected in brains of PD patient (Hunot
et al., 1999; Nagatsu et al., 2000). Additionally, it has been
shown that immunosuppressant cyclosporin A attenuates
DA degeneration in PD animal models (Kitamura et al.,
1994). Together these studies illustrate the importance of
MSCs immunomodulatory and anti-inflammatory effects in
developing treatments for PD.

Current Status and Future Prospects
As a promising restorative therapeutic alternative, stem cell
therapy has come to the forefront of the PD research field
as a promising regenerative therapy, especially in relation to
MSCs. On the one hand, MSCs can be easily procured and
expanded, without the use of other supportive cells. On the other,
MSCs are not burdened with the ethical and immunorejection
issues associated with ESCs. Regrettably, the number of observed
MSCs-derived neurons and glial cells is rather small and fail to
restore a normal cyto-architecture, though several in vivo studies
have demonstrated MSCs are capable of differentiating into
neuronal cells following graft (Mimura et al., 2005; Lu et al., 2006;
Alexanian et al., 2008). Therefore, how to generate sufficient and
specific subtype of neurons or glia suitable for cellular grafts
in future study is a primary knot to be straightened out. As is
the case for ESCs and NSCs, safety concerns related to tumor
formation, immunological rejection and biodistribution related
toxicity should be resolved as well so as to translate MSCs into
PD therapeutic options eventually. We are convinced that MSCs
hold great promise to be a member of stem cell pool available for
CRT of PD, despite MSC research is still in the start-up phase of
clinical pipeline.

INDUCED PLURIPOTENT STEM CELLS
(iPSCs)

In 2006, Yamanaka et al. have shown that ESC-like cells could be
derived from embryonic and adult mouse fibroblasts by means
of retrovirally introducing OSKM (Oct3/4, Sox2, Klf4, and c-
Myc) gene transcription factors (Takahashi and Yamanaka, 2006),
latterly awarded Nobel Prize for “the discovery that mature
somatic cells can be reprogrammed to reenter into pluripotency.”
The ESC-like pluripotent cells obtained from reprogramming
procedure are coined as iPSCs (see Figure 1). Interestingly, iPSCs
share similar properties to ESCs in morphology, proliferation,
expression of specific ESCs marker genes, embryoid bodies (EBs)
formation in vitro, teratoma formation in vivo, and tripotent
differentiation into three germ layers (Rodolfa and Eggan, 2006;
Takahashi and Yamanaka, 2006). However, what is frustrating
is that these iPSCs, derived from non-human origins, occupy
a different global gene expression profiles from ESCs and fail
to produce adult chimeric mice. There has been a substantial

lack of iPSCs that directly reflects the genetic and physiological
uniqueness of the human condition until the maiden prominent
induction of iPSCs from human somatic cells accomplished
by two different set of transcription factors (Takahashi et al.,
2007; Yu et al., 2007). Since then, many research groups have
successfully established iPSCs from various types of human
somatic cells (Park I. H. et al., 2008; Hanna et al., 2010), further
demonstrating that epigenetic mechanism is implicated in the
reprogramming process of many, if not all, types of somatic cells.

For PD research in particular, the iPSC technology enables the
generation of sufficient physiologically relevant, patient-specific
midbrain DA neurons, which may be highly valuable for basic
research on the molecular and cellular mechanisms of PD, for
drug discovery research to identify disease-modifying therapies,
and for cell-based therapy utilizing autologous donor materials
(Pu et al., 2012). Besides, the PD patient-specific iPSCs (PD-
iPSCs) offer the possibility for autologous transplant, which
would significantly reduce graft rejection. However, enormous
concerns culminate for the employment of integrating viruses
that probably intrinsically modify the genome of host cells,
especially the introduction of integrated oncogenes such as c-
Myc and Klf4. Therefore, new reprogramming methods such
as reduction of the integrating transcription factors, especially
the oncogenic c-Myc (Nakagawa et al., 2008) and application of
non-integrating viruses (Stadtfeld et al., 2008; Zhou and Freed,
2009; Ban et al., 2011) have been employed to circumvent the
viral integration events. In addition, several non-viral delivery
vectors such as expressing plasmids (Okita et al., 2008, 2010;
Hartung et al., 2013), episomal vectors (Yu et al., 2009; Choi
et al., 2011; Chou et al., 2011; Okita et al., 2011; Wang et al.,
2011; Dowey et al., 2012), minicircle vectors (Jia et al., 2010),
piggyBac transposon (Woltjen et al., 2009; Tsukiyama et al.,
2011; Kues et al., 2013), synthetic modified RNAs (Warren
et al., 2010; Anokye-Danso et al., 2011; Miyoshi et al., 2011;
Yoshioka et al., 2013), protein (Kim et al., 2009; Zhou et al.,
2009; Cho et al., 2010) and small molecules (Huangfu et al.,
2008; Shi et al., 2008; Li Y. et al., 2011; Hou et al., 2013) have
also successfully been used to established integration free iPSCs
(see Table 2). Compared with other types of stem cells, iPSCs
appear to be a more preferential CRT candidate by virtue of more
superior pluripotency, more distinctive differentiation features
and more accessible sources. The preparation, application,
current status, potential challenges, and future prospects of
the multifarious iPSCs are further elaborated in the text
below.

Integrating Virus Mediated Induced
Pluripotent Stem Cells (iPSCs)
Since the initial astonishing establishment of iPSCs by enforced
expression of the OSKM transcription factors mediated by
retroviral integration (Takahashi and Yamanaka, 2006), emerging
studies have relied on viral vectors, such as adenovirus
(Zhou and Freed, 2009), lentivirus (Yu et al., 2007; Fierro
et al., 2011) and retrovirus (Huangfu et al., 2008), to deliver
transcription factors into target cells aiming to reprogramme
to pluripotent state for subsequent lineage specification. No
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TABLE 2 | Constellation of multifarious delivery methods to induce iPSCs.

Delivery methods Vectors Crews References

Integrating viral delivery Retrovirus OSKM Takahashi and Yamanaka, 2006

Oct4, Sox2, VPA Huangfu et al., 2008

Lentivirus ONSL Yu et al., 2007

Non-integrating viral delivery Non-integrating adenovirus OSKM Stadtfeld et al., 2008

Zhou and Freed, 2009

Temperature–sensitive Sendai Virus OSKM Fusaki et al., 2009

OSKM Seki et al., 2010

OSKM Ban et al., 2011

OSKM Nishishita et al., 2012

Expressing plasmids OSKM Okita et al., 2008

OSKM Okita et al., 2010

OSKM Hartung et al., 2013

Episomal vectors(oriP/EBNA1) OSKM, Nanog, Lin28 Yu et al., 2009

SV40 larger T gene

OSKM, Lin28 Choi et al., 2011

Chou et al., 2011

Dowey et al., 2012

Oct4, Sox2, Klf4, Nanog Wang et al., 2011

Oct4, Sox2, Klf4, L-Myc Okita et al., 2011

Minicircle vectors ONSL Jia et al., 2010

Polycistronic Vectors/Cre-loxP System OSKM Kaji et al., 2009

OSKM Karow et al., 2011

OSKM, picornaviral 2A peptide Loh et al., 2012

Transposon

piggyBAC OSKM Woltjen et al., 2009

piggyBAC OSKM Tsukiyama et al., 2011

Sleeping beauty OSKM Kues et al., 2013

Non-viral delivery RNAs

mRNA OSKM Warren et al., 2010

Oct4, Sox2, Klf4, c-Myc, or GLIS1 Yoshioka et al., 2013

miRNA miRNA302/367cluster Anokye-Danso et al., 2011

miRNAfamily(miRNA200c, miRNA302s, miRNA369s) Miyoshi et al., 2011

Protein CPP, OSKM, VPA Zhou et al., 2009

CPP,OSKM Kim et al., 2009

ESC-derived proteins Cho et al., 2010

Small molecules VPA, Oct4, Sox2 Huangfu et al., 2008

Oct4, Klf4, BIX-01294 Shi et al., 2008

Oct4, VPA, CHIR99021, 616452 Li Y. et al., 2011

Wholly small-molecule compounds Hou et al., 2013

matter Yamanaka’s OSKM reprogramming formula, Yu’s ONSL
(Oct4, Nanog, Sox2, and Lin28), recombination recipe or other
versatile combinations, iPSCs have been proving to exhibit
pluripotency at levels similar to ESCs. And a recent study
indicates that OSKM and ONSL cocktails can act synergistically
to reprogramme human somatic cells into iPSCs (Jung et al.,
2014). Although highly efficient lineage trans-differentiation
and long-term expression can be achieved with viral vectors,
however, iPSCs technology is complicated by the potential
risks posed by genome-integrating viruses, which are randomly

but permanently integrated into the host genome at multiple
sites together with viral vector backbone. Such genome-
integrating viral vectors can produce insertional mutations
which may influence differentiation potential, or even result
in tumorigenesis especially due to reactivation of the c-Myc
oncogene (Thomas et al., 2003; Okita et al., 2007). Besides, viral
delivery is also plagued by limited cargo capacity, resistance
to repeated infection, complicated operation procedures and
unbridled genome alterations (Thomas et al., 2003; Park et al.,
2012b). Therefore, alternative ways such as non-integrating viral
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and non-viral reprogramming methods have been developed to
circumvent these risks and drawbacks.

Non-Integrating Virus Mediated Induced
Pluripotent Stemcells (iPSCs)
Although mouse and human somatic cells have been successfully
reprogrammed into iPSCs by viral delivery of specific and
versatile cocktail of transcription factors and chemicals (small
molecules), the incorporation of viral DNA into host genome
may lead to disruption of gene transcription and malignant
transformation, posing as a serious safety concern. To proceed
with iPSCs for PD research and therapy, non-integrating viral
vectors have been proposed as alternatives. Replication-defective
adenovirus has been proven to be a perfect candidate of viral
vector to enable the insertion of reprogramming genes into
somatic cells without integration into the host chromosomal
DNA (Graham and Prevec, 1992; He et al., 1998). Moreover, the
transient gene expression, which persists for several days, can
provide sufficient time to reprogram fibroblasts into pluripotent
cells. Stadtfeld et al. have used adenoviral vectors to establish
mouse iPSCs without viral integration from liver cells and
fibroblasts (Stadtfeld et al., 2008). Following his pioneering
work, Zhou et al. has also successfully generated human iPSCs
from human embryonic fibroblasts employing non-integrating
adenoviral vectors expressing the OSKM transcription factors.
Southern blots and polymerase chain reaction (PCR) have
demonstrated that there does not display viral DNA integration;
fingerprinting and karyotype analysis have confirmed that
these iPSCs are derived from the parent human fibroblasts.
Additionally, the established iPSCs are capable of differentiating
into all three germ layers in vitro, including DA neurons (Zhou
and Freed, 2009). Since Sendai Virus (SeV), a negative sense
single-stranded RNA virus residing in the cytoplasm of infected
cells, does not integrate into the host genome, moreover, readily
removed by Ab-mediated negative selection, Fusaki and Li et al.
have respectively reported efficient establishment of transgene-
free induced pluripotent stem cell lines employing a vector
based on Sendai virus without host genome integration (Li
et al., 2000; Fusaki et al., 2009). Another defined method for
the generation of iPSCs by the employment of non-integrating
temperature-sensitive Sendai Virus Vector (SeV TS7) from a
single subcloning in the naive state under feeder-free conditions,
which solves some of the safety concerns related to use of
xeno- or allogeneic-material in culture, and contribute to the
characterization and the standardization of iPS cells intended for
use in a clinical setting (Nishishita et al., 2012). Furthermore,
human terminally differentiated circulating T cells (hTDCTCs)
have also been reprogrammed into iPSCs with mediation of
temperature-sensitive mutated SeV vector which can reduce
transgene expression and SeV residue in generated cell lines (Seki
et al., 2010; Ban et al., 2011). In summary, the non-integrating
viruses such as adenovirus (Stadtfeld et al., 2008; Zhou and Freed,
2009; Ban et al., 2011) and Sendai virus (Li et al., 2000; Fusaki
et al., 2009; Seki et al., 2010; Ban et al., 2011; Nishishita et al.,
2012) have been regarded as ideal vectors for generating iPSCs
without exogenous gene integration. However, iPSCs research is

entering an age dedicated to epigenetic reprogramming without
genetic modification. Therefore, the development of non-viral
integration-free iPSCs is a necessity.

Non-Viral Vector Induced Pluripotent Stem
Cells (iPSCs)
Despite the imposed viruses are silenced or removed and in turn
the endogenous genes encoding reprogramming transcription
factors are activated during the process of viral vector mediated
iPSC generation, the utilization of integrating or non-integrating
viruses still raises several potential safety concerns, known or
unknown, which restrict the further clinical application of this
technique. Therefore, non-viral vector induced pluripotent stem
cells (iPSCs) have been exploited as alternative methods.

Expressing Plasmids
Expressing plasmids have been explored as a viral vector
substitute to attempt to establish transgene free iPSCs, the first
alternative to be investigated among the enormous classes of
non-viral vectors. Repeated transfection of mouse embryonic
fibroblasts (MEFs) with one expression plasmids containing
the complementary DNAs (cDNAs) of Oct3/4, Sox2, and Klf4
and the other one involving the c-Myc cDNA, has enabled
generation of non-plasmid integration iPSCs, which could
produce teratomas when transplanted into mice and contributed
to adult chimeras, but with a reprogramming efficiency falling
far below that of viral vectors (Okita et al., 2008, 2010).
Besides, a more recent study employing transient transfection
approach with conventional expression plasmids has successfully
established iPSCs as well, eliminating the risk of insertional
mutagenesis and providing a straightforward platform for
further optimizations and translation to other lineages (Hartung
et al., 2013). Although the plasmid mediated iPSCs preparation
method could tremendously reduce the host genome integration
risk, the unsatisfactory reprogramming efficiency needs to be
refined before its further clinical application for PD treatment.

Episomal Vectors
Episomal iPSC reprogramming vectors are a bran-new non-
viral vectors designed to provide the optimal delivery system
for generating transgene-free and virus-free iPSCs in a feeder-
free culture system. Derived from the Epstein-Barr (EB) virus,
oriP/EBNA1 (Epstein-Barr nuclear antigen-1) based vector,
involving three plasmids expressing seven reprogramming
factors (Oct4, Sox2, c-Myc, Klf4, Nanog, Lin28, and SV40 large
T gene), is a perfect candidate for introducing reprogramming
factors into human somatic cells, as these plasmids can be
transfected without the need for viral packaging, and can be
subsequently removed from cells by culturing in the absence
of drug selection. It is originally developed by Yu et al. to
establish human iPSCs from human foreskin fibroblasts by
the employment of oriP/EBNA1 based vector, and further
genome analysis detects no episomal vector integration in
the host genome but with a iPSCs yield far below that of
viral vectors (Yu et al., 2009). Choi et al. have shown that
fibroblasts and EBV (Epstein-Barr virus)-immortalized B cell
lines derived from multiple inherited disease patient could be
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reprogrammed into iPSCs via single transfection of EBNA-
1/OriP based episomal vector, with no integration of the
reprogramming-related transgenes or the EBV-associated genes
(Choi et al., 2011). Following these studies, several research
groups have established iPSCs employing the oriP/EBNA1 based
vector, but with fewer reprogramming factors, especially the
absence of c-Myc (Wang et al., 2011), and higher reprogramming
efficiency (Chou et al., 2011; Okita et al., 2011; Dowey et al.,
2012). These studies demonstrate that the establishment of
hiPSCs does not require genomic integration or the continued
exposure to exogenous reprogramming factors, which move one
step forward to the clinical application of human iPSCs for PD
treatment.

Minicircle Vectors
Minicircle vectors, supercoiled DNA molecules lacking a
bacterial replication origin and antibiotic resistance markers,
are predominantly composed of eukaryotic expression profiles,
possessing higher transfection efficiencies and more sustained
ectopic expression compared to plasmids as a result of its lower
activation of exogenous silencing mechanisms (Chen et al.,
2003, 2005), thus may representing an ideal mechanism for
generating iPSCs. Jia et al. have reported to obtain hiPSCs
from human adipose stem cells (hASCs) by means of a
minicircle vector, encompassing a single cassette of ONSL
reprogramming factors plus a green fluorescent protein (GFP)
reporter gene, yielding a reprogramming efficiency (∼0.005%)
similar to that (∼0.01%) of viral-based method (Jia et al., 2010).
The minicircle vector delivery method, generating transgene-
free iPSCs from adult donor sources, and requiring only a
single vector without the need for subsequent drug selection,
vector excision, or inclusion of oncogenes such as c-Myc and
SV40, is ideally suited for facilitating iPSCs application in PD
treatment.

Polycistronic Vectors/Cre-loxP System
A non-viral transfection of multiple transcription factors
expressing polycistronic vectors combined with subsequent site-
specific Cre-recombinase excision to remove the reprogramming
cassette has been employed to generate iPSCs without transgene
integration. With the preparation protocols described above,
iPSCs free of exogenous reprogramming factors have been
secured via ensuing Cre-recombinase treatment from murine
and human fibroblasts (Kaji et al., 2009; Karow et al., 2011).
Moreover, it has been reported that, after the reprogramming
procedure identical to the studies above have been accomplished,
the reprogramming cassette can also be removed using mRNA
transfection of Cre recombinase (Loh et al., 2012). In relation
to PD, direct reprogramming of viral reprogramming factor-free
iPSCs have been demonstrated to be generated from patients with
idiopathic PD via Cre-recombinase excisable viral constructs. In
addition, these PD specific iPSCs can further differentiate into
DA neurons (Soldner et al., 2009). Although the obvious merits
implicit in the iPSCs preparation methods above, insertional
mutation concerns resulting from residual vector sequences still
remain.

Transposons
The piggyBAC (PB) transposon is a mobile genetic element
efficiently transposing between vectors and chromosomes by
means of “cut and paste” mechanism. Inverted Terminal
Repeats (ITRs) derived from the PB transposon are used to
flank a transgene with recognition sequences for a transposase
enzyme. Insertions and excisions can then be triggered by
regulated, transient expression of the transposase. On the basis
of the principles above, the non-viral piggyBac transposon
and transposase system have been originally employed by
Woltjen et al. to reprogram murine and human embryonic
fibroblasts into iPSCs, from which the reprogramming factors
are then removed from established iPSCs using transposase-
stimulated piggyBac excision mechanism (Woltjen et al., 2009).
Following this study, Dox-inducible system has been employed
to remove the transgene expression, establishing iPSCs without
exogenous gene expression (Tsukiyama et al., 2011). More
recently, another type of transposon system, the Sleeping
Beauty, has been used to deliver the transcription factors, thus
enabling iPSCs establishment from fibroblasts (Kues et al.,
2013). In accordance with expressing plasmids, episomal vectors,
minicircle vectors, and Polycistronic Vectors/Cre-loxP System,
the low reprogramming efficiencies and residual vector sequences
may restrict its further clinical application for PD treatment.

RNAs (mRNA and miRNA)
RNAs, such as mRNA and miRNA, have been demonstrated, as a
non-viral delivery system of transcription factors, to be capable of
driving induction of pluripotency from terminally differentiated
somatic cells. In 2010, Warren et al. demonstrated that repeated
administration of synthetic mRNAs, incorporating modifications
designed to bypass innate anti-viral responses, could reprogram
differentiated human cells to pluripotency with conversion
efficiencies and kinetics substantially surpassing established viral
protocols (Warren et al., 2010). Besides, this simple, non-
mutagenic, and highly controllable technology possess a broad
reprogramming spectrum, capable of reprogramming multiple
human cell types to pluripotency (Warren et al., 2010). Moreover,
additional transfection of Lin28-encoding synthetic modified
mRNA under hypoxic condition has been proven to facilitate
reprogramming to iPSCs, with a much higher reprogramming
efficiency and much shorter time period (Warren et al., 2010).
What is interesting is that innate immune suppression enables
frequent transfection with protein-encoding RNA, which may
represent a versatile tool for investigating expression dynamics
and protein interactions by enabling precise control over levels
and timing of protein expression (Angel and Yanik, 2010).
Recently, Yoshioka et al. has reported a simple but highly
reproducible RNA-based iPSCs generation approach utilizing
a single, synthetic self-replicating VEE-RF (Venezuelan Equine
Encephalitis Encephalitis—reprogramming factor) RNA replicon
that expresses four reprogramming factors, OCT4, KLF4, SOX2
with c-MYC or GLIS1(Glis Family Zinc Finger 1) at consistent
high levels prior to regulated RNA degradation (Yoshioka et al.,
2013). The VEE replicon, a positive-sense, single stranded RNA
mimicking cellular mRNAwith a 5′-Cap and poly(A) tail without
encompassing a DNA intermediate, can be selectively retained
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or removed from the cell, so there does not exist a potential for
genomic integration (Kinney et al., 1989). Therefore, the non-
DNA and non-integrating, self-replicating VEE RNA approach
has the potential to simplify the generation of human iPSCs for
application in disease modeling and CRT for PD.

MicroRNAs (miRNAs) are a class of 18–24 nucleotides
single stranded RNAs associated with a protein complex called
the RNA-induced silencing complex, which has been found
to function in numerous important processes in recent years.
miRNAs are emerging critical regulators of cell function that
frequently reside in clusters throughout the genome. In the wake
of Warren et al.’s pioneering contribution, direct transfection of
miRNAs has been demonstrated to be capable of reprogramming
terminally differentiated somatic cells to pluripotent state.
Anokye-Danso et al. have also shown that expression of the
miR302/367 cluster can be capable of rapidly and efficiently
reprogramming mouse and human somatic cells to pluripotency
without a requirement for exogenous transcription factors.
Besides, miRNA-based reprogramming approach is two orders
of magnitude more efficient than standard OSKM-mediated
methods (Anokye-Danso et al., 2011). Moreover, Miyoshi et al.
indicate that it is possible to reprogram mouse and human
cells to pluripotency by direct transfection of a combination of
miR-200c plus miR-302s and miR-369s family miRNAs without
vector-based gene transfer (Miyoshi et al., 2011), which holds
significant potential for CRT of PD treatment. Besides, miRNAs
have been proven to regulate iPSCs generation, as knock-
down of key microRNA pathway proteins, in contrast, result in
significant decreases in reprogramming efficiency (Li Z. et al.,
2011). In fact, miRNAs influence a myriad of cell functions,
implicit in the process of iPSCs establishment, starting from
somatic cell isolation to iPSCs induction to colony derivation
and characterization (Liao et al., 2011; Yang et al., 2011; Henzler
et al., 2013; Dang and Rana, 2016). In transcription factor-
induced reprogramming, it is speculated that miRNAs function
in feedback loops with transcription factors and represent a key
mechanism for fine-tuning gene expression. However, in-depth
analyses of miRNA expression changes during reprogramming at
the level of deep sequencing need to be further elaborated, which
may hold enormous promise for PD research and therapy.

Proteins
Alternative iPSCs preparation methods to directly deliver
reprogramming proteins rather than genetic materials or
potentially mutagenic molecules into target cells, thus avoid
introducing exogenous genetic modifications to target cells,
have been established. However, a major hurdle for intracellular
delivery of macromolecules such as proteins and exogenous
genes is their limited ability to transverse the cellular membrane
which are developed to ensure genetic diversity and for the
protection from disadvantageous alien genes (Belting et al.,
2005). Previous studies have demonstrated that various proteins
can be delivered into cells in vitro and in vivo by means of
conjugating them with a short peptide that mediates protein
transduction, such as HIV tat and poly-arginine (Wadia and
Dowdy, 2002; Michiue et al., 2005; Inoue et al., 2006), processing
inclusion body proteins in E. coli with various solubilization and

refolding techniques (Lafevre-Bernt et al., 2008), thus enabling
facile and large-scale production of therapeutic proteins. Just as
reported in Zhou et al.’s study, to generate recombinant proteins
that could penetrate the plasma membrane of somatic cells, a
poly-arginine (i.e., 11R) protein transduction domain has been
designed and fused to the C terminus of the classic OSKM
reprogramming factors. When the cell penetrating peptide
(CPP)—OSKM reprogramming proteins complex being added
to the cell culture system, the recombinant transcription factors
readily enter cells and translocate to the nucleus. After four
repeated protein transduction cycles, combined with the addition
of valproic acid (VPA), a histone deacetylase inhibitor, iPSCs
can be obtained with significantly improved reprogramming
efficiency (Zhou et al., 2009). Likewise, Kim et al. has established
the human protein-based iPSCs (piPSCs) by means of repeated
transduction of OSKM reprogramming proteins, fused with a
CPP, but without the alignment of VPA (Kim et al., 2009).
On the whole, the DNA vector-free, direct protein transduction
system described here eliminates limitations caused by viral
or any other DNA-based reprogramming methods. However,
the generation of human piPSCs is very slow and inefficient,
in particular, the further purification of the protein involved
requires further optimization. More recently, a single transfer
of ESC-derived proteins into primarily cultured adult mouse
fibroblasts, rather than repeated transfer or prolonged exposure
to materials, has also been demonstrated to achieve iPSCs
without the forced expression of ectopic transgenes. During the
process, gene expression and epigenetic status were converted
from somatic to ES-equivalent status, but little is known about
the molecular mechanisms underlying reprogramming process
by cellular proteins (Cho et al., 2010). The approach above is
relatively simple and reproducible and does not require repeated
transfer or prolonged exposure to materials or a combinatorial
approach involving proteins and chemicals, which may could be
further developed to provide tailored or patient-specific CRT for
PD treatment.

Small Molecules
Another way to avoid viral integration during iPSC generation
is to employ chemicals or small molecules which are non-
immunogenic and can be more easily administrated and
standardized. Moreover, their effects on specific substrates are
often reversible and dose-dependent. Small molecule libraries
and combinations of compounds have been screened to identify
substitutes to replace one or more reprogramming factors during
iPSCs generation. For example, VPA, a histone deacetylase
inhibitor, has been demonstrated to be capable of enabling
reprogramming of primary human fibroblasts with only two
factors, Oct4 and Sox2, without the need of the oncogenes c-
Myc or Klf4 (Huangfu et al., 2008). Besides, another study
has affirmed that the small molecule BIX-01294 (BIX), an
inhibitor of the G9a histone methyltransferase, can improve the
reprogramming efficiency in NPCs transduced with Oct3/4-Klf4
to a level comparable to transduction with the classic OSKM
transcription factors. Thus, in this particular setting, this single
small molecule, BIX, has been proven to be able to functionally
replace viral transduction with c-Myc and Sox2 (Shi et al., 2008).
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Moreover, a specific chemical combination of VPA, CHIR99021
(a GSK3-β inhibitor), and 616452 (a TGF-β inhibitor, also termed
VC6) have been identified to be sufficiently reprogramming from
mouse embryonic and adult fibroblasts in the presence of a single
transcription factor, Oct4, replacing Sox2, Klf4, and c-Myc (Li
Y. et al., 2011). Based on these findings, a screen assay could
be designed to identify alternative molecules that could replace
Oct4, in combination with the small molecules, which could
facilitate the establishment of wholly chemical iPSCs without any
genetic modifications. More recently, a proof-of-principle study
demonstrated that somatic reprogramming toward pluripotency
could be manipulated using only small-molecule compounds,
which revealed that the endogenous pluripotency program can be
established by the modulation of molecular pathways nonspecific
to pluripotency via small molecules rather than by exogenously
provided “master genes” (Hou et al., 2013). The wholly chemical
iPSCs enable the establishment of functionally desirable cell
types in regenerative medicine by the employment of specific
chemicals or drugs, instead of geneticmanipulation, and difficult-
to-manufacture biologics.

Application of iPSCs in Parkinson’s
Disease
Incipiently, iPSCs are generated from mouse and human
fibroblasts by enforced expression of the OSKM transcription
factors, mediated by retrovirus or lentivirus, which might
result in insertional mutagenesis, altered differentiation potential
and virus-incurred immunoreaction and this would pose a
risk for translational application in eventual PD treatment.
Subsequently, in order to address these issues, previously
employed retrovirus and lentivirus vectors have been substituted
by non-integrating viral vectors and even non-viral vectors such
as expressing plasmids, episomal vectors, minicircle vectors,
polycistronic vectors/Cre-loxP system, piggyBac transposons,
RNAs (mRNA and miRNA), protein and small molecules to
generate mutagenesis- and integration-free iPSCs. However,
in relation to the CRT for PD treatment, the application
of iPSCs is regrettably lagging far behind the multifarious
established iPSCs available, which is still by far confined to
virus- and protein based iPSCs. Among the numerous iPSCs
established by means of different vectors, virus-based iPSCs were
primarily developed and most frequently applied in practical
application of PD animal test. In 2008, Wernig et al. reported
the reprogramming of mouse fibroblasts into iPSCs through
retroviral transduction of the classical OSKM transcription
factors, and the iPSCs derived DA neurons could synaptically
and functionally integrate into a PD rat model (Wernig et al.,
2008). In a following up study, patient specific iPSCs (PD-
iPSCs)-derived TH expressing DA neurons could reduce motor
asymmetry after transplantation into adult rodent brain, which
was the maiden demonstration of human DA neurons derived
from PD-iPSCs that could yield functional restoration in a
preclinical model of PD (Hargus et al., 2010). Likewise, hiPSCs–
derived NSCs/NPCs have also been proven to survive (Kikuchi
et al., 2011) and morphologically and functionally integrate
(Han et al., 2015) into the brain of transplanted PD primate

(Kikuchi et al., 2011) and rats (Han et al., 2015) respectively
and differentiate into neurons smoothly, including DA neurons
in vivo. More recently, cynomolgus monkey iPSC-derived
midbrain DA neurons have been certified to be capable of
morphologically and functionally integrating into a non-human
PD primate model after autologous unilateral engraftment,
yielding a gradual onset of functional motor improvement
contralateral to the side of DA neuron transplantation without a
need for immunosuppression (Hallett et al., 2015). To overcome
the potential safety issues associated with the employment of
viruses, human piPSCs have been obtained without genetic
manipulation and thus are emerging as a promising therapeutic
source of CRT for PD treatment. Recently, two studies have
demonstrated that human (Rhee et al., 2011) and murine (Kwon
et al., 2014) piPSCs can efficiently generate functional DA
neurons, respectively. Moreover, transplantation of the piPSCs
derived DA neurons can significantly rescue motor deficits in PD
rat models (Rhee et al., 2011; Kwon et al., 2014). Furthermore,
these studies demonstrate that protein-based human iPSCs hold
great promise to be a promising source of cells for clinical
translation, these hiPSCs behave similar to hESCs without
abnormal senescence/apoptosis, not showing any exogenous
reprogramming gene expression, and DA neurons derived from
human piPSCs significantly improving behavioral defects in a
PD rodent model (see Table 3). In conclusion, as for the field
of stem cell research and therapy relating to PD, more efforts
and attention should be devoted to the multifariously established
iPSCs apart from the existing virus- and protein-based iPSCs,
which can tremendously boost the further development of CRT
for PD treatment if implemented.

Current Status and Future Prospects
In general, establishment of ideal iPSCs converges on the
applicable somatic cell sources, appropriate combination of
reprogramming factors, efficient delivery methods and proper
culture conditions. Depending on the purpose and application of
iPSCs, choices concerning the somatic cell type, reprogramming
factors, delivery method, and culturing conditions vary to
substantial degrees (Brouwer et al., 2016), among which the
reprogramming factors and delivery vectors have been elaborated
in detail. On the basis of the protocols above, trans-differentiation
from various somatic cells to iPSCs has been successfully
established and the iPSCs derived DA neurons have been
demonstrated to rescue motor deficits in PD animal models as
well. In spite of the accomplishments above, there still exist
limitations for generation of clinically feasible iPSCs.

Genetic and Epigenetic Alternations
The insertional or induced mutagenesis is an obvious restriction
while employing integrating viral vector to establish iPSCs.
Despite the non-integrating or non-viral delivery vectors can
sharply reduce the risk of mutagenesis, several studies have
identified de novo mutations during the reprogramming and
culture process of iPSCs (Gore et al., 2011; Ji et al., 2012), thus
resulting in genetic variation among generated iPSCs. Besides,
the PD-iPSCs may also embody gene mutations such as point
mutations, chromosomal structure variations, gene duplications,
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TABLE 3 | Summary of the application of iPSCs in PD animal models.

iPSCs Grafted cells PD models Post-transplantation manifestations References

Virus-based iPSCs DA neurons Rat Survival of grafted cells; expression of TH; relief of

functional deficits

Wernig et al., 2008

PD-iPSCs DA neurons Rodent Reduction of motor asymmetry; functional

restoration

Hargus et al., 2010

Human iPSCs NSCs Primate Smooth differentiation into DA neurons respectively;

DA Synthesis and release

Kikuchi et al., 2011

NPCs Rat Rescue functional deficits; Han et al., 2015

Cynomolgus monkey iPSCs DA neurons Cynomolgus monkey Survival of grafted neurons; extended neurite

outgrowth; gradual onset of functional motor

improvement

Hallett et al., 2015

Human piPSC DA neurons Rat Survival of grafted DA neurons; rescue motor deficit

significantly

Rhee et al., 2011

Murine piPSC DA neurons Rat survival of grafted DA neurons; relief of functional

deficits

Kwon et al., 2014

and deletions in the genes of SNCA, Parkin, LRRK2, GBA and
so on (Mayshar et al., 2010; Gore et al., 2011; Laurent et al.,
2011; Soldner et al., 2011; Reinhardt et al., 2013; Yu et al., 2015).
Moreover, epigenetic modifications may also contribute to iPSC
variation due to retained epigenetic memories of the initial cell
type (Liang and Zhang, 2013).

Low Reprogramming Efficiency
The low reprogramming efficiency also remains a recurrent
issue. Among the non-viral vector mediated iPSCs, RNA
and protein based iPSCs appear to be promising alternatives,
but its low reprogramming efficiencies compromise that
possibility. On the contrary, the integrating viral vector mediated
iPSCs demonstrate much higher yield in spite of potentially
insertional mutagenesis. Hence, lentiviral vector, accompanied
with favorable reprogramming efficiency, is still among the
most successful reprogramming method (Schlaeger et al., 2015).
Anyhow, future protocols should include comparisons between
method reprogramming efficiencies, with the goal of optimizing
protocols for maximum iPS cell yield.

Apart from the concerns above, the somatic cell type, delivery
vectors and culture condition can exert considerable effect on the
production of clinically feasible iPSCs. In addition, the induced-
differentiation of iPSCs in vitro administration route and graft
purity may count as well. Therefore, further optimization of
establishment and induced-differentiation protocols remain a
key gating item in translating iPSCs to the clinic for PD treatment
in future study.

ADVANTAGES AND DISADVANTAGES OF
STEM CELL SUBTYPES AVAILABLE IN PD
THERAPY

Various types of stem cells, including ESCs, NSCs, MSCs, and
iPSCs, have been applied in basic and experimental studies
relevant to PD, many of which have been translated to

PD model transplantation, yielding miscellaneous and uneven

outcomes. The preparation, induced differentiation, tentative

application, current challenges and future prospects of the

stem cells above have been elaborated, respectively. Then a

comparison concerning advantages and disadvantages of the

stem cell subtypes in PD therapy will be presented (see Table 4).
ESCs, derived from the inner cell mass of a blastocyst, can
totipotently differentiate into the three germ layers including
nigral DA neurons (Lee et al., 2000). In addition, ESCs-
derived DA neurons have demonstrated, after transplantation
into PD animal models, extended neurite outgrowth, expression
of specific synaptic markers and remmision of functional
deficits. However, there still exist several serious concerns
about the employment of these cells for PD treatment such
as risk of tumor formation, ethical issues and immunological
rejection, thus requiring more investigation to warrant further
application in PD treatment. As for NSCs, one potential
advantage over ESCs is that they are less prone to form
tumors and incur immunological rejections after transplantation,
apart from their restricted neural lineage differentiation.
However, NSCs display several demerits such as limited
differentiation capacity and sources, lingering ethical concerns,
partial alleviation of Parkinsonian symptoms, sequela of GID
(graft-induced dyskinesia) and emerging signs of senescence
after repeated passagings (Ostenfeld et al., 2000). In contrast,
several studies have shown that MSCs, absence of the demerits
mentioned above, probably hold a much greater therapeutic
potential for neurological diseases. Additionally, MSCs are
more readily accessible, isolated and expanded more easily
without immunorejection potential due to its lack of MHC-
III (Morandi et al., 2008). Nevertheless, more investigations
are imperative considering its biodistribution related toxicity,
pale reprogramming efficiency and modest clinical improvement
concluded from existing MSCs transplantation practices. In the
case of iPSCs, the multifarious viral and non-viral delivery
systems have enabled establishment of substantial integration-
free iPSCs, thus immensely reducing the risk of tumor formation
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TABLE 4 | Advantages and disadvantages of stem cell subtypes in PD therapy.

Stem cell types Source tissue Advantages Disadvantages

Embryonic stem cells

(ESCs)

Blastocyst 1. Totipotent differentiation 1. Tumorigenic hazards

2. Preserve pluripotency after in vitro

expansion

2. Unaccessible source tissue/ethical concerns

3. Immunorejection

3. Forming all three germ layers 4. Biodistribution related toxicity

4. Generating midbrain DA neurons

5. Demonstrate to survive transplantation

and rescue functional deficits

Neural stem cells

(NSCs)

embryo/fetus/specific brain

niches

1. Reduced risk of tumor formation and

immunorejection in comparison with ESCs

1. Limited lineage differentiation in vivo

2. Modest functional recovery in PD model

3. Restricted source tissue/ethical concerns

4. Risk of GIDs

5. Biodistribution related toxicity

2. Specific neural lineage differentiation

into neurons, astrocytes, oligodendrocytes

and DA neurons

Mesenchymal Stem

cells(MSCs)

Bone marrow, adipose tissue,

umbilical cord, dermis,

peripheral blood

1. Easily accessible source tissue 1. Modest functional recovery in humans

2. Biodistribution related toxicity2. Rescue functional deficits in mice

3. Rare adverse effects in humans

following transplantation

4. Considerable pluripotency

Induced pluripotent

stem cells(iPSCs)

Somatic cells/differentiated

cells

1. Remarkable pluripotent differentiation 1. Tumorigenic hazards

2. Histocompatibility, suited for autologous

transplantation

2. Susceptibility to donor’s genetic mutation associated with

autologous transplantation

3. Survive transplantation and rescue

functional deficits

3. Low iPSCs yield

4. Biodistribution related toxicity

4. Easily accessible source tissue

5. Minimal immunorejection and ethical

issues

and insertional mutations. Moreover, iPSCs, especially PD-
iPSCs, obtained directly from patients’ somatic cells, are capable
of dramatically reducing the risk of transmissible infections
and minimizing relevant immunological rejections and ethical
issues. However, the autologous transplantation of the patient
specific iPSCs has the potential risk of being susceptible to
the originally existed pathology of the patients. Besides, the
contamination of a small portion of undifferentiated iPSCs
or other unwanted cell lines has been proven to increase
the risk of teratoma formation, decrease the reprogramming
efficiency and compromise the ultimate function recovery when
transplanted into PD animal models. In order to solve this
issue, several stringent and effective sorting methods such as
fluorescence-activated cell sorting (FACS; Wernig et al., 2008) or
MACS (Rodrigues et al., 2014) have been developed to enable
enrichment of differentiated neural cell lines and elimination
of the undifferentiated iPSCs or other unwanted cell lines
simultaneously. Thus, the integration of the FACS or MACS
depletion step with the neural commitment protocol paves
the way toward the establishment of a novel bioprocess for
production of purified populations of hiPSC-derived neural cells
for different applications, which can immensely boost the further
development of high fidelity (Hi-Fi) iPSCs in CRT for PD
treatment.

INTERPLAY BETWEEN CRT PRACTICE
AND SYSTEMIC IMMUNITY

As stated above, the stem cells available hold great promise
for CRT of PD treatment in spite of mixed blessings, but the
concomitant consequence on immunity is another grave concern.
The allogeneic grafts usually evoke intense immunological
rejection inevitably, taking a heavy toll on the grafts and
recipients or even resulting in transplantation failure if not
intervened properly. A good case in point is the initial
transplantation of hfVM and its derivatives (eg. ESCs) into
patients suffering from neurodegenerative diseases (Tomaskovic-
Crook and Crook, 2011). But the unpleasant situation gradually
improves with the emergence of cell engineering and newly
developed immunosuppressants, especially the derivation and
application of autologous MSCs and PD-iPSCs which, by and
large, solve the conundrum of graft induced immunorejection. In
fact, the grafted stem cells and recipients unite as a heterogenous
entity upon transplantation, exerting reciprocal impacts, merits
and demerits, on each other (see Figure 5).

Neuroglial cells such as astrocytes and microglia have been
increasingly recognized as possessing crucially physiological and
pathological functions within brain, especially in relation to
neurodegenerative diseases such as PD, Alzheimer’s Disease
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FIGURE 5 | Flow illustration of the interplay between grafted stem cells and recipient immunity. The grafted stem cells and recipient immunity can form a

functional entity upon transplantation, exerting reciprocal impacts, merits, and demerits, on each other.

and Amyotrophic Lateral Sclerosis (Minghetti, 2005; Gao and
Hong, 2008; Glass et al., 2010), which have been, therefore,
hypothesized as neuroinflammatory disorders. Nevertheless,
neuroinflammation have been accepted as a double-edged
sword executing both beneficial and detrimental effects on
neurons and glial cells (Hanisch and Kettenmann, 2007;
Tang and Le, 2014). The grafted cells, especially allogeneic
origins, have been shown to secret a plethora of cytokines
that can directly modulate phenotype switch of immune cells
both in local tissue and in the systemic circulation (Kassis
et al., 2008; Coulson-Thomas et al., 2016), thus resulting
immunopathological damages to the grafts and recipients as
well (see Figure 5). Indeed, the immunity activation incurred
by allogeneic grafts is not always pernicious. For example,
it has recently demonstrated that innate immunity activation
can facilitate the expression of epigenetic modifiers and
eventually enhance nuclear reprogramming efficiency (Lee et al.,
2012). Stimulation of toll-like receptor 3 (TLR3) signaling
pathway appear to enable recipient cell to adopt an open
chromatin configuration which can increase cell plasticity to
external pathogens, thus contributing to efficient induction of
pluripotency by viral or mmRNA approaches (Lee et al., 2012).
Hence, it can be speculated that this innate immunity triggered
global epigenetic modification may enhance transdifferentiation,
disdifferentiation or even malignant transformation, a process
has been termed “transflammation” (Lee et al., 2012).

Apart from that, the grafted cells, especially MSCs and NSCs,
have been shown to be able to exert a regulatory effect on
adaptive and innate immune cells. The earliest report describing
immunomodulatory property was by Le Blanc in relation to
MSCs, who found that transplantation of allogeneic MSCs could
suppress immune cells and prevent the graft-vs.-host attack
(Le Blanc, 2003). To date, MSCs have been proven to exert

immunomodulation effects primarily in a cytokine dependent
manner through secretion of transforming growth factor-beta
(TGF-β; James et al., 2005), interferon gamma (IFN-γ; Aggarwal
and Pittenger, 2005), tumor necrosis factor-alpha (TNF-α; James
et al., 2005), IL-10 (Niu et al., 2014) and et al. Furthermore, the
microglial M1 and M2 phenotype switch have been shown to be
implicated in the immunomodulation process as well (Coulson-
Thomas et al., 2016; see Figure 6). An anti-inflammatory
environment marked by low level of IFN-γcan promote
microglial TLR4 expression and IFN-γsecretion in MSCs, thus
creating a pro-inflammatorymicroenvironment. To the contrary,
a pro-inflammatory microenvironment (high level of IFN-γ)
can switch microglial M1 plorization to M2 type via secretion
of anti-inflammatory cytokines such as IL-10, TGF-β and
et al., thus fostering an anti-inflammatory microenvironment
and inhibiting neutrophil, T-cell and microglia recruitment
(Coulson-Thomas et al., 2016; see Figure 6). Therefore, theMSCs
immunomodulation effects are dominated by the delicate balance
of IFN-γ and executed by microglial phenotype switch. Besides,
NSCs transplantation into Alzheimer’s Disease model mice
has demonstrated significant cognitive deficits improvement
via attenuation of glial activation and pro-inflammatory
TLR4 signaling pathway, indicating that neuroinflammation
contributes to cognitive impairment and neuroinflammation
targeted therapy can be developed to prevent or delay
Alzheimer’s Disease progression (Zhang et al., 2015). Moreover,
intracerebral transplantation of primed hNSCs has efficiently
induced a transition of microglia toward anti-inflammatory
M2 phenotype, which presumably contributes to stem cell
mediated neuroprotection after severe brain injury in mice
(Gao et al., 2016). As shown above, the immunomodulatory
effects demonstrated by MSCs and NSCs can be utilized for the
treatment of autoimmune and degenerative diseases.
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FIGURE 6 | Schematic diagram demonstrating the immunomodulatory and therapeutic effects that grafted stem cells exerted on the recipient upon

transplantation. The immunomodulatory effects, regulated by MSCs and NSCs, are dominated by the delicate balance of IFN-γ and executed by the microglial

phenotype switch between M1 and M2. An anti-inflammatory microenvironment can promote microglial TLR4 expression and IFN-γ secretion in MSCs, thus switching

to a pro-inflammatory state. Similarly, a pro-inflammatory microenvironment can switch to an opposite one via microglial TLR3 expression upregulation and

anti-inflammatory cytokines secretion. Moreover, MSCs can promote angiogenesis and neurogenesis through secretion of VEGF, EGF, and neurotrophic factors. In the

context of iPSCs transplantation, the innate immunity activation (TLR3 signaling pathway activation) can enhance nuclear reprogramming efficiency via facilitation of

epigenetic modifiers.

Among the numerous therapeutics available, the stem
cell replacement therapy (CRT) holds a gleam of promise
for PD restorative treatment. What is frustrated is that the
concomitant graft induced immunopathological injuries or
even immunorejection have cast a shadow on this promising
therapeutic regimen. Nevertheless, the immunomodulatory
effects revealed by the stem cells, especially MSCs and NSCs,
are of substantial potential to become bran-new therapeutic
targets for PD treatment, more than just providing differentiated
DA neurons in CRT practice. Therefore, to circumvent
the allogeneic graft induced immunal damages, there are
three countermeasures that we can adopt to deal with it: (i)
guaranteeing favorable and eligible transplantation zygosity;
(ii) developing more effective and accessible suppressants;
(iii) making full exploitation of the immunomodulatory
stem cells, especially MSCs and NSCs. To sum up, future
efforts should be concentrated to foster the strength and
circumvent the weakness so as to mold stem CRT into a
secure, reliable and generalized therapeutic strategy for PD
treatment.

CONCLUSIONS

Currently, treatment and medications available for PD
conformably intend to rescue motor deficits by providing
dopamine substitutes or DA receptor agonists and in advanced
PD patients, DA synergistic agents, control-released L-dopa
and even DBS. In spite of significant rescue and alleviation
of functional deficits, the pharmaco-therapeutic effects are
gradually undermined, implicated by various types of motor
response oscillations such as on-off, wearing off phenomena,
as well as LID. In this stretched context, stem cell based CRT
has emerged as a restorative therapy for PD. The existing CRT
practices have demonstrated survival, regeneration, replacement
and re-innervation of DA neurons in vulnerable lesions, thus
holding enormous promise to be a restorative therapy in PD.
Besides, the stem cell research and CRT has led to several novel
insights in relation to PD pathogenesis. Of most importance, the
evidence that Lewy bodies can propagate from host cells to graft
cells has prompted research to investigate the hypothesis that
PD is a prion like disease. In addition, neuroinflammation is a
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common feature shared by various neurodegenerative diseases
such as PD, Alzheimer’s Disease and Amyotrophic Lateral
Sclerosis, so the immunomodulatory features demonstrated by
the stem cells can be used to corroborate the neuroinflammation
hypothesis of PD pathogenesis. Hence, stem cell research will
boost not only CRT in PD, but also etiological elucidation as
well.

Despite the fact that CRT is a promising avenue for the
treatment of PD and other neurodegenerative disorders, there
still exist numerous hurdles, such as tumorigenesis, immune
response, low stem cell yield and bio-distribution related
toxicity, to be straightened out so as to enable development
of novel approaches that could be translated into effective
and universally accepted clinical application. Apart from that,
the disease stages and severity may also have an impact on
the effect of CRT. In conclusion, the CRT practice is still
in its infancy, so it is imperative for us to establish more
competent stem cell lines in future studies so as to propel the
stem cell research and therapy, in relation to PD, from bench
to bed.
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