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The clinical distinction between Alzheimer’s disease (AD) and behavioral variant

frontotemporal dementia (bvFTD) remains challenging and largely dependent on the

experience of the clinician. This study investigates whether objective machine learning

algorithms using supportive neuroimaging and neuropsychological clinical features

can aid the distinction between both diseases. Retrospective neuroimaging and

neuropsychological data of 166 participants (54 AD; 55 bvFTD; 57 healthy controls) was

analyzed via a Naïve Bayes classification model. A subgroup of patients (n = 22) had

pathologically-confirmed diagnoses. Results show that a combination of gray matter

atrophy and neuropsychological features allowed a correct classification of 61.47% of

cases at clinical presentation. More importantly, there was a clear dissociation between

imaging and neuropsychological features, with the latter having the greater diagnostic

accuracy (respectively 51.38 vs. 62.39%). These findings indicate that, at presentation,

machine learning classification of bvFTD and AD is mostly based on cognitive and not

imaging features. This clearly highlights the urgent need to develop better biomarkers

for both diseases, but also emphasizes the value of machine learning in determining the

predictive diagnostic features in neurodegeneration.
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INTRODUCTION

Clinical diagnosis of neurodegenerative diseases at clinical presentation remains challenging, in
particular for phenotypologically similar diseases such Alzheimer’s disease (AD) and behavioral
variant frontotemporal dementia (bvFTD). Diagnostic criteria have been established and revised
(Dubois et al., 2007; Rascovsky et al., 2011) for both diseases, with amnesia seen as a classic
symptom of AD, whereas behavioral changes and executive impairments are reported as core
criteria for bvFTD. However, recent evidence has highlighted that AD patients can present with
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dysexecutive and behavioral changes (Possin et al., 2013).
Similarly, an important proportion of bvFTD patients, including
pathologically confirmed patients, have been reported to show
similar levels of amnesia as found in AD (Hornberger et al., 2010;
Hornberger and Piguet, 2012; Bertoux et al., 2014).

These findings increase the challenge for clinicians in
distinguishing between these two diseases at first presentation.
One potential aid to the clinical diagnosis would be the use of
machine/statistical learning algorithms to objectively interpret
supportive diagnostic criteria (e.g., neuroimaging, cognition, etc.)
to aid diagnosis based on the core diagnostic features. Such
classifiers have been recently shown to accurately distinguish AD
patients from healthy controls (Zhang et al., 2011; Zhou et al.,
2014). However, classification against healthy individuals has
limited utility as the distinction of neurodegenerative and healthy
individuals is quite straightforward. More interesting would
be to employ machine learning algorithms for the diagnostic
distinction of different neurodegenerative diseases.

The current study addresses this issue by employing a Naïve
Bayes classifier model to distinguish between a large clinical
sample of individuals with clinically-diagnosed AD or bvFTD, as
well as automatically separating these two disease classes from
healthy age-matched controls at clinical presentation. Critically, a
subset of patients had confirmed pathological diagnoses. Finally,
to avoid circularity, we did not employ in the algorithm any core
diagnostic features for the distinction of patients (such as the
Cambridge Behavioural Inventory), as these features were used in
the initial clinical diagnosis and provided the diagnostic reference
against which the performance of the algorithm is compared
(except for the pathologically-confirmed cases where pathology
provided the final diagnosis); instead the algorithm utilizes
diagnostic supportive features (i.e., atrophy neuroimaging and
neuropsychology) only. Thus, our findings illustrate for the
first time how supportive information can aid clinical diagnosis
of these diagnostically challenging similar neurodegenerative
conditions.

METHODS

Participants
A total of 166 participants were selected (54 AD; 55 bvFTD;
57 healthy controls) from the FRONTIER (Frontotemporal
Dementia Research Group) patient database, Sydney, Australia.
All bvFTD patients met current consensus criteria (Rascovsky
et al., 2011) with insidious onset, decline in social behavior
and personal conduct, emotional blunting, and loss of insight.
Patients with a known genetic mutation associated with bvFTD
were not included in the study. All AD patients met revised
NINCDS-ADRDA diagnostic criteria for probable AD (Dubois
et al., 2007). Pathological confirmation of diagnosis was available
for 22 patients (9 AD; 13 bvFTD).

Healthy controls were selected from a healthy volunteer panel
or were spouses/carers of patients. The South Eastern Sydney and
Illawarra Area Health Service and the University of New South
Wales human ethics committees approved the study. Written
informed consent was obtained from the participant or the
primary caregiver in accordance with the Declaration of Helsinki.

Neuropsychological Assessment
All participants underwent cognitive screening using the
Addenbrooke’s Cognitive Examination (ACE-R; Mioshi et al.,
2006). The ACE-R results in a score out of 100, and
includes subsections in attention, memory, language and visuo-
perception.

The frontotemporal dementia rating scale (FRS; Mioshi et al.,
2010) was used to determine patients’ disease severity. The
Cambridge Behavioural Inventory (CBI; Wedderburn et al.,
2008) was used as a behavioral disturbance measure.

Patients also underwent a comprehensive cognitive
assessment including the Hayling test (Burgess and Shallice,
1996) that assess inhibition/response suppression, the backward
digit span evaluating working-memory, lexical letter fluency
tasks assessing verbal initiation, the Trail Making test (Reitan,
1955) evaluating flexibility, the recall of the Rey Complex Figure
(Rey, 1941) as well as the Doors and People test (Baddeley
et al., 1995), two visual memory tests, the Rey Auditory Verbal
Learning Test (RAVLT–Rey, 1964) to assess verbal memory and
a facial emotion recognition test based on Ekman faces (Ekman
and Friesen, 1975). The cognitive assessments therefore covered
extensive cognitive domains: executive (Digit Span; Hayling; FAS
letter fluency; Trails); memory (Rey Figure Recall; RAVLT recall
and recognition; Doors and People) and emotion recognition
(Ekman faces test). Total or subscores of each test were employed
in the Bayesian classification analysis.

MRI Acquisition and Analysis
All patients and controls underwent the same imaging protocol
to obtain whole-brain T1-weighted images using a 3T Philips
MRI scanner with standard quadrature head coil (8 channels).
The 3D T1-weighted sequences were acquired as follows: coronal
orientation, 161 mm2 in-plane resolution, slice thickness 1 mm,
TR/TE= 5.8/2.6 ms. MRI analysis was conducted using a Voxel-
based morphometry (VBM) pipeline on three dimensional T1-
weighted scans, using the FSL-VBM toolbox in the FMRIB
software library package (http://www.fmrib.ox.ac.uk/fsl/). The
first step involved extracting the brain from all scans using the
BET algorithm in the FSL toolbox, using a fractional intensity
threshold of 0.22. Each scan was visually checked after brain
extraction, both to ensure that no brain matter was excluded, and
no non-brain matter was included (e.g., skull, optic nerve, dura
mater; Smith et al., 2004).

A gray matter template, specific to this study, was then built
by canvassing 20 scans from each group (total n = 60). An
equal number of scans across groups was used to ensure equal
representation, and thus avoid potential bias toward any single
group’s topography during registration. Template scans were
then registered to the Montreal Neurological Institute Standard
space (MNI 152) using non-linear b-spline representation of the
registration warp field, resulting in study-specific gray matter
template at 2 × 2 × 2 mm3 resolution in standard space
(Rueckert et al., 1999; Andersson et al., 2007). Simultaneously,
brain-extracted scans were also processed with the FMRIB’s
Automatic Segmentation Tool (FAST v4.0) to achieve tissue
segmentation into cerebrospinal fluid (CSF), gray matter and
white matter. Specifically, this was done via a hidden Markov
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random field model and an associated expectation-maximization
algorithm (Zhang et al., 2001).

The FAST algorithm also corrected for spatial intensity
variations, such as bias field or radio-frequency inhomogeneities
in the scans, resulting in partial volume maps of the scans. The
following step saw gray matter partial volume maps then non-
linearly registered to the study-specific template via non-linear
b-spline representation of the registration warp. Thesemaps were
then modulated by dividing by the Jacobian of the warp field,
to correct for any contraction/enlargement caused by the non-
linear component of the transformation (Good et al., 2002). After
normalization and modulation, smoothing the gray matter maps
occurred using an isotropic Gaussian kernel (standard deviation
= 3mm; full width half maximum= 8mm).

Based on the known spread of pathology in bvFTD and AD
(Seeley et al., 2008), we a priori selected a subset of normalized,
smoothed brain regions for the Bayesian classification analysis.
The brain region boundaries were established via the cortical and
subcortical Harvard-Oxford probabilistic atlases. The selected
regions were the: (1) amygdala; (2) hippocampus; (3) medial
temporal lobe; (4) temporal pole; (5) dorsolateral prefrontal
cortex (DLPFC); (6) ventromedial prefrontal cortex (VMPFC);
(7) striatum, and; (8) insula. For the selected regions, gray matter
intensities were extracted and multiplied by the mean of the
values in the smoothed registered graymatter to give total volume
for each region and participant. The volumes were then corrected
for total intracranial volume, as well as age and gender.

There is of course the opportunity to segment the brain images
into smaller sub-regions, for example, into their left and right
hemisphere sub-regions, but given the limited data set available
with which to learn a pattern recognition model, we risk over-
learning during the training phase. Therefore, we conservatively
limit the pool to only eight MRI volumetric features.

Data Preparation
Participants were divided into three classes based on their disease
classification (two disease classes, and one control class) as shown
in Table 1.

For each participant, a vector of up to 25 numerical features
was available, including the 8 MRI volumetric features and 17

TABLE 1 | Three classes of data, which include two disease classes,

Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia

(bvFTD), and a control group.

AD

(n = 54)

bvFTD

(n = 55)

Controls

(n = 57)

p-values

Age (years) 63.7 (8.1) 61.2 (9.4) 67.3 (6.8) 0.001

Gender (M/F) 31/23 37/18 25/32 0.043

Education

(years)

12.3 (3.7) 12.3 (3.3) 13.1 (2.8) 0.138

Disease

duration (years)

3.3 (2.1) 4.7 (3.3) – 0.041

Age, years of education, and disease duration are tested for group differences using

Kruskal-Wallis tests. Gender is tested for group differences using Chi-squared test. Only

education is shown not to be different between groups at 5% level of significance.

neuropsychological features. This data was arranged in two data
matrices, denoted as Xscan and Xcog , respectively. The matrix
concatenation of all data was also denoted as Xall =

(

Xscan,Xcog

)

.
Each row represents one subject and each column represents one
feature variable.

As a number of neuropsychological cognitive scores were
unavailable for several subjects, it is expected that this led to an
underestimation of the discriminating capacity of these cognitive
assessments in differentiating AD and bvFTD. A summary of the
extent of this missing data is provided in Supplementary Table 1.

In order to compare the performance of a multivariate
classifier model in discriminating the two disease classes of AD
and bvFTD (then in discriminating between the three classes
of AD, bvFTD and controls in a second step) using different
combinations of the available features as the input, the following
analyses were performed.

Naïve Bayes Classification
The Naïve Bayes classification method is adopted in this study
primarily for its ability to handle missing features, which
occurs for some of the neuropsychological assessments (Liu
et al., 2005; Shi and Liu, 2011). A Naïve Bayes classifier is a
simple probabilistic classifier based on the application of Bayes’
theorem (described mathematically below) with the assumption
of probabilistic independence between every pair of features; in
practice this is rarely true, as certain features can be correlated,
but Naïve Bayes classifiers demonstrate remarkably robust
performance on features which are not strictly independent
(Zhang, 2004). Given a discrete class label Y and n features, x1
through xn, Bayes’ theorem states the following relationship:

P (Y|x1, . . . , xn) =
P (Y)P (x1, . . . , xn| Y)

P (x1, . . . , xn)
(1)

where P (Y|x1, . . . , xn) is the posterior probability of class Y
being correct given the observed features in the vector X =

(x1, . . . , xn). Using the naïve independence assumption that
features are independent of each other,

P (xi| Y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi| Y) (2)

the relationship is simplified to:

P (Y|x1, . . . , xn) =
P (Y)

∏n
i=1 P (xi| Y)

P (x1, . . . , xn)
(3)

P (Y|x1, . . . , xn) ∝ P (Y)
∏n

i=1
P (xi| Y) (4)

Ŷ = argmax
Y

P (Y)
∏n

i=1
P (xi| Y) (5)

That is, the estimated class label which is output as a decision
from the classifier model, denoted as Ŷ, is that which maximizes

the expression P (Y)
n
∏

i=1
P (xi| Y).

The Naïve Bayes classifier used two steps to classify data, using
the MATLAB Statistics and Machine Learning Toolbox 2014b
(Mathworks, Natick, MA, USA):
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• Training step: Using training data, the method estimates
the parameters of the probability distributions of xi for
each Y, assuming that the xi are conditionally independent;
that is, for each disease class Y, and each feature variable
xi, the probability density P (xi| Y) is approximated with
the available training data. In lay terms, P (xi| Y) is the
probability of observing a value for the variable xi given a
particular disease class. The feature xi can be either discrete
or continuous, and either would suggest a different model for
the probability density function, P (xi| Y). Since distributions
are assumed independent, during training, missing instances
for a particular feature are not included in the frequency count
(for discrete variables) or distribution estimate (for continuous
variables, using a Gaussian smoothing kernel function).

• Prediction step: For any unseen testing data, the method
uses the previously estimated distributions to compute the

value P (Y)
n
∏

i=1
P (xi| Y), which is proportional to the posterior

probability, P (Y|x1, . . . , xn) (as shown above), for each
possible class Y; either Y ∈ {AD, bvFTD} in the first
analysis or Y ∈

{

AD, bvFTD, control
}

in the second. The

classifier then chooses the winning class, Ŷ, as the disease

class which maximizes P (Y)
n
∏

i=1
P (xi| Y). During testing, for

observations that have some but not all missing features, the
algorithm estimates the class label using only non-missing
features.

10-Fold Cross-validation
Rather than dividing the data evenly into training and testing
sets, 10-fold cross-validation was used to obtain a better estimate
of how the model will behave on a general data set by
averaging out variations which were introduced by selecting one
training/testing split from the data. The 109 AD and bvFTD
subjects (or 166 subjects when also including controls) were
randomly divided into 10 similar sized groups such that the
proportion of subjects from each disease class was approximately
equal within each group. For each of the 10 cross-validation runs,
nine groups were used for training and the remaining group
withheld for testing; this was repeated 10 times, such that each
of the 10 groups were used as testing data for one of the 10
repeats. For any of the 10 repeats, given the training data from
the other nine groups, the procedure for training the classifier
is outlined above; however, it may be possible that the removal
of some exceptionally noisy or highly correlated features before
training may have improved the performance during the testing
phase, therefore the following feature selection procedure was
performed as a pre-processing step during the training phase
of the classifier and not using any of the testing data for that
repeat/fold.

Feature Selection
As mentioned above, each training set contained data from
nine subject groups. Starting with an empty candidate feature
subset, features were sequentially added to the candidate
subset until the addition of further features did not further
improve the classification accuracy; this accuracy was determined

using a second 10-fold cross-validation procedure within this
training set in order to evaluate the potential feature subset
under consideration. Figure 1 illustrates the entire process of
classification and feature selection.

Performance Metrics
Classification performance was evaluated using both
classification accuracy and Cohen’s kappa statistic (Cohen,
1968). Approximate confidence intervals for accuracy were also
listed; they were derived using the accuracy as calculated from
the confusion matrix (pooling classification results from all 10
cross-validation repeats) and the number of subjects for which
a classification result is obtained, so independence between
classification results was not strictly observed (due to test data
also being used as training data for other folds) as required
when estimating confidence intervals. Confidence intervals were
computed with the approximation that all results were drawn
from a fixed classifier model (rather than cross-validation, which
is actually used).

Evaluating Three Different Feature Sets
In order to compare the usefulness of the MRI scans
volumes and the neuropsychological assessment (cognitive and
neuropsychiatric) features three different starting feature sets
(before feature selection begins), Xscan, Xcog , and Xall were
evaluated using the procedure shown in Figure 1.

RESULTS

Classifying AD and bvFTD
Table 2 shows the classification results in discriminating AD
and bvFTD (without considering the control group). Using
the MRI volume features as input, the machine learning
algorithm classified 51.4% (50% when considering only 22
confirmed cases) of bvFTD and AD patients correctly at
presentation. In contrast, the neuropsychological scores achieved
higher discrimination accuracy, correctly identifying 62.4%
of bvFTD and AD cases. Not surprisingly, due to the low
classification accuracy when using MRI volumes, the combined
feature set (MRI volumes and neuropsychological) was only
slightly decreased to 61.5% of correct discrimination between
bvFTD and AD.

Figure 2 shows a histogram of the 10 sets of features selected
for each of the 10 outer cross-validation runs, for a given
starting feature set (derived from either the MRI volumes,
neuropsychological assessment, or both combined). The higher
the frequency with which the feature is selected, the more
consistently it contributes to the classification task. There was
a large variability across features contributing to successful
discrimination. Using only MRI scan volume features (shown
as white bars in Figure 2), six of the eight MRI regions were
selected at least once, except for the striatum (which is never
selected when discriminating between AD and bvFTD, and so
not shown in Figure 2) and the hippocampus. The most selected
regions were the temporal pole, insula, and temporal lobe. For
the neuropsychological features (shown as gray bars in Figure 2),
7 of the 17 were selected at least once, with ACE-R memory

Frontiers in Aging Neuroscience | www.frontiersin.org 4 June 2016 | Volume 8 | Article 119

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Wang et al. Machine Learning, AD, bvFTD

FIGURE 1 | Block diagram of training and testing of Naïve Bayes classification model. One outer loop performs the testing, using 10 different groups with

approximately 16 or 17 subjects in each group when n = 166 for three-way classification of AD, bvFTD, and control. The nine groups used for training in each run are

subject to further feature selection to remove redundant or noisy features; each candidate feature subset is evaluated using an inner 10-fold cross-validation

procedure.

subtest, Hayling AB errors, Doors and People test, and facial
emotion recognition of fear scores being selected more than
twice, and with the ACE-R memory subscore and Hayling AB
errors being selected more than twice as often as the next
most frequently selected neuropsychological feature (Doors and
People test scores).

Classifying AD, bvFTD, and Controls
Table 3 shows the classification results in discriminating
AD, bvFTD and control classes. MRI features achieved an
accuracy of 54.2% (18.2%, when considering the 22 confirmed
cases only). As in the previous classification, the three-class
classification performed better using neuropsychological
features, with an accuracy of 68.1%. The combination of both
MRI and neuropsychological features achieves an accuracy

of 67.5% (although confidence intervals overlap almost
entirely).

The corresponding feature selection results are shown
in Figure 3. The most selected features when using only
MRI features were the DLPFC, temporal lobe, VMPFC and
temporal pole. When using neuropsychological features, the
most commonly selected features were ACE-R memory and
ACE-R fluency subscores as well as facial emotion recognition of
fear. Combining all (neuropsychological and imaging) features
in the analysis, these same three neuropsychological features
remained among the most selected, however, DLPFC and
temporal lobe (which were the two most frequently selected
features when using only MRI scan features) are each only
selected for one of the 10 cross-validation runs. This last result
indicates that the neuropsychological features already contained
this same scan information. Interestingly, when combining both
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TABLE 2 | Results for classification of AD vs. bvFTD (n = 109).

Starting feature subset before feature selection

MRI volumes (8 features) Neuropsychological/Neuropsychiatric

(17 features)

All (25 features)

Performance

metric

Confusion

matrix

(22 confirmed cases)

36 35

18 20

(

8 10

1 3

)

34 21

20 34

(

3 4

6 9

)

32 20

22 35

(

4 6

5 7

)

Confusion matrix mean ±

SD

3.6± 1.17 3.5± 1.27

1.8± 1.03 2.0± 0.94

3.4± 1.08 2.1± 1.10

2.0± 1.49 3.4± 1.07

3.2± 0.92 2.0± 1.15

2.2± 1.14 3.5± 1.18

Cohen’s kappa

(Cohen’s kappa for 22

confirmed cases)

0.03

(0.10)

0.25

(0.03)

0.23

(−0.02)

Accuracy, 95% CI 51.38%, 62.39%, 61.47%,

CI = [42.00%, 60.76%] CI = [53.30%, 71.48%] CI = [52.33%, 70.61%]

(Accuracy, 95% CI for 22 (50.00%, (54.55%, (50.00%,

confirmed cases) CI = [29.11%, 70.89%]) CI = [33.74%, 75.36%]) CI = [29.11%, 70.89%])

Each column of a confusion matrix represents the true class label, while each row represents the estimated class label. Within confusion matrices, the first columns/rows represent AD,

while the second columns/rows represent bvFTD. The mean and standard deviation (SD) of each confusion matrix entry across the 10 cross-validation runs are also presented. Cohen’s

kappa coefficient and accuracy are calculated for the confusion matrix. The corresponding confirmed diagnoses are shown in parentheses. Approximate 95% confidence intervals (CI)

are provided for classification accuracies.

FIGURE 2 | Accumulated feature selection results of 10-fold cross

validation in discriminating AD and bvFTD using three different feature

sets: MRI volumes (*Scan), neuropsychological (Cognitive), and both

combined. Y-axis shows the name of selected features and X-axis shows the

accumulated count of a corresponding feature being selected over the

10-folds. Three sets of features are displayed in different colors.

scan and neuropsychological features, the striatum is selected
twice as often (rising from being selected twice to being selected
four times).

DISCUSSION

To our knowledge, this is the first study investigating the use of
machine learning algorithms to differentiate AD and specifically
bvFTD. Results showed that neuropsychological scores and
particularly tests of emotion recognition, memory screening
and executive assessment achieved the best classification results.
Cortical volumes of a subset of frontal, temporal, and insular
regions were the most distinctive anatomical features to
distinguish the groups.

Previous neurodegenerative machine learning studies have
virtually been all focused on AD and its prodromal stages
(Walhovd et al., 2010; Cuingnet et al., 2011; Hinrichs et al., 2011;
Zhang et al., 2011; Zhou et al., 2014), whereas only one study
examined discriminating AD from more general frontotemporal
lobar degeneration (FTLD; Klöppel et al., 2008) as a clinical
spectrum. In addition, virtually all these studies have focused
mostly on neuroimaging features, and none have attempted to
distinguish between the specific diseases of AD and bvFTD,
whereas the current study used additional neuropsychological
features as well as a pathologically confirmed bvFTD patient
subgroup.

On a cognitive level, the most salient neuropsychological
features to accurately classify AD and bvFTD were assessment
of emotion recognition (Ekman faces), inhibition (Hayling),
visual episodic memory (Doors and People), and verbal
memory screening (ACE-R memory). These findings nicely
corroborate previous results showing that, at presentation,
emotion recognition deficits and disinhibition are hallmarks of
bvFTD while being relatively absent in AD (Hornberger et al.,
2011; Bertoux et al., 2015). In contrast, AD patients’ prevalent
episodic memory problems were most distinctive for this patient
group, although some bvFTD can show impaired episodic
memory performance (Hornberger et al., 2010; Bertoux et al.,
2014). More specifically, a subgroup of bvFTD patients can show
severe episodic memory problems, which limits the utility of
episodic memory problems in the diagnostic distinction of both
diseases. Future machine learning approaches on such amnestic
bvFTD compared to AD patients would be of importance to
confirm this notion. Finally, similar neuropsychological factors
were found to discriminate groups when controls were also
added in the analysis, further corroborating the robustness of the
findings.
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TABLE 3 | Results for classification of AD, bvFTD, and control (n = 166).

Starting feature subset before feature selection

MRI volumes (8 features) Neuropsychological/Neuropsychiatric

(17 features)

All (25 features)

Performance

metric

Confusion matrix

(confirmed cases)

22 26 8

14 19 0

18 10 49









2 9 0

1 2 0

6 2 0









29 15 0

22 31 4

3 9 53









3 4 0

5 6 0

1 3 0









29 17 0

19 28 2

6 10 55









5 5 0

2 5 0

2 3 0









Confusion matrix

mean ± SD

2.2± 1.23 2.6± 1.26 0.8± 0.63

1.4± 1.26 1.9± 1.29 0.0± 0.00

1.8± 1.14 1.0± 0.82 4.9± 0.88

2.9± 1.37 1.5± 1.08 0.0± 0.00

2.2± 1.75 3.1± 1.20 0.4± 0.70

0.3± 0.95 0.9± 0.88 5.3± 0.82

2.9± 0.99 1.7± 1.16 0.0± 0.00

1.9± 1.29 2.8± 0.92 0.2± 0.63

0.6± 0.97 1.0± 1.05 5.5± 0.71

Cohen’s kappa

(Cohen’s kappa for

confirmed cases)

0.31

(−0.14)

0.52

(−0.03)

0.51

(0.13)

Accuracy, 95% CI 54.22%, 68.07%, 67.47%,

CI = [46.64%, 61.80%] CI = [60.98%, 75.16%] CI = [60.34%, 74.60%]

(Accuracy, 95% CI for 22 (18.18%, (40.91%, (45.45%,

confirmed cases) CI = [2.06%, 34.30%]) CI = [20.36%, 61.46%]) CI = [24.64%, 66.26%])

Each column of a confusion matrix contains the actual disease diagnosis, while the rows contain the disease class estimated by the classifier. The first, second, and third columns/rows

represent AD, bvFTD, and control, respectively. Corresponding results for confirmed diagnoses are shown in parentheses. Approximate 95% confidence intervals (CI) are provided for

classification accuracies.

FIGURE 3 | Accumulated feature selection results of 10-fold cross

validation in discriminating AD, bvFTD, and control classes using three

different feature sets: MRI volumes (*Scan), neuropsychological

(Cognitive), and both combined. Y-axis shows the name of selected

features and X-axis shows the accumulated count of a corresponding feature

being selected over the 10-folds. Three sets of features are displayed in

different colors.

On an anatomical level, the temporal pole and insula were
the most distinctive features to distinguish between AD and
bvFTD. The insula has been previously shown to be among the
earliest of the regions atrophic in bvFTD (Perry et al., 2006)
and is selectively impaired compared to AD. The identification
of the temporal lobe as a significant feature to distinguish both
diseases is an intriguing result, as both AD and bvFTD show
significant changes in this region. Nevertheless, the atrophy
of the temporal pole, which accounts for a large part of
the temporal lobe, might explain this finding, as it is indeed
strongly associated with bvFTD pathology (Whitwell et al.,
2009). The atrophy findings are therefore strongly dominated

by the bvFTD atrophy pattern spanning temporal pole and
insular regions, whereas interestingly prefrontal cortex regions
(DLPFC, VMPFC) as well as medial temporal lobe regions
contributed little to the classification accuracy. This is further
confirmed by the analysis including the controls, which only
then showed volumes of the VMPFC and DLPFC as well as
of the temporal lobe and pole strongly contributing to the
classification.

Interestingly, neuropsychological features outperformed
cortical volume features for the classification accuracy between
bvFTD and AD (62.4 vs. 51.4%, for cortical volume or
neurophysiological features, respectively). More intriguing is the
fact that the combination of atrophy and neuropsychological
features did not increase the classification accuracy. This
indicates a redundancy in the variables with neuroimaging and
cognitive features seemingly representing the same dysfunction.
Finally, similar classification results were observed when the
analysis was restricted to the pathologically confirmed cases for
which the neuropsychological measures showed a classification
rate of 54.6% and atrophy features an even a lower accuracy rate
of 50.0%. It is likely that the difference in sample size between the
overall group (n = 109) and the pathological confirmed cases (n
= 22) may explain the difference of classification accuracy for the
combining features between the analyses (62.4% for n= 109, and
54.6% for n = 22). Still, it is important to note that classification
results were relatively similar in the pathological subgroup as it
still represents the gold standard of definite diagnosis in both
diseases.

It is interesting to note that the previous study by Klöppel
et al. (2008) achieved much higher sensitivity and specificity
(94.7 and 83.3%, respectively) using MRI atrophy contrasts of
AD and FTLD, showing that parietal and frontal changes were
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particularly informative in the distinction of AD and FTLD,
respectively. However, the inclusion of language-variant FTLD
together with behavioral-variant, as well as the exclusion of
bvFTD patients with memory impairment could explain the
difference with our results, as it has been shown that AD and
bvFTD can overlap to a large degree for scan-based measures
(Hornberger and Piguet, 2012; Hornberger et al., 2012; De Souza
et al., 2013), whereas other FTLD clinical subtypes (sv-FTD; nfv-
PPA) show more distinct scan features (Gorno-Tempini et al.,
2011). Also, a key differences between Klöppel et al.’s study and
ours is that we used more specific regions (e.g., VMPFC) as
neuroimaging features instead of the entire cortical lobes (e.g.,
frontal lobe), which may have lowered the general discriminative
power.

Another novelty in our study was the employment of a
three-way classification (AD, bvFTD, and controls) in a post-
hoc analysis, which allowed contrasting the patient groups with
controls at the same time. While it is not possible to directly
compare these results with other reports in the literature,
an approximate comparison can be made against several
reported attempts to distinguish AD from controls. Previous
studies showed good sensitivity/specificity (>80% sensitivity
and >90% specificity) of imaging measures to distinguish AD
from controls (Hamelin et al., 2015). In our results (Table 3),
using the neuroimaging features resulted in 8 normal controls
being erroneously classified as AD patients, and 28 diseased
patients (18 AD and 10 bvFTD) wrongly classified as normal.
In contrast, using neuropsychological scores instead in the
model resulted in much fewer errors when classifying between
controls and patients. Interestingly, these results are similar
to Hinrichs et al. (2011) which reported that both cognitive
and neuroimaging features contributed to the prediction of
MCI patients progressing to full-blown AD—with neuroimaging
features contributing slightly more to the classification. As
mentioned already above, it is currently not clear how much
cognitive and neuroimaging atrophy features map onto each
other, however, it becomes apparent that even if there is
some redundancy, a complementary diagnostic and classification
approach can potentially corroborate diagnosis based on only one
feature. There is clearly great scope to explore this further in
the future, in particular in the distinction of neurodegenerative
conditions from each other.

Despite these promising results there are limitations to
our findings. In particular, only a subset of patients had a
pathologically confirmed diagnosis. Ideally, we would have
pathological confirmation in all patients. Still, the pathological
confirmed participants showed similar results to the clinical
cohort. A further limitation might have been the selection of
specific neuroimaging and cognitive features in the analysis.
As outlined in the methods, the a priori reasoning was to
include features that have been shown to be most sensitive
and specific to the respective pathologies. However, this might
mean that other features which potentially could have allowed
better classification were not considered in the current analysis.
There may also be a small positive bias in the results due to
the registration of brain images prior to the machine-learning

exercise performed herein (that is, images are normalized using
available data outside of the cross-validation loop); however,
failing to perform such registration would likely lead to a larger
negative bias in results due to the effects of age and gender
covariates which also correlate with tissue volumes. Missing data
among the neuropsychological assessment features will also have
resulted in a lesser reported accuracy than what is achievable if
these data were complete; hence, neuropsychological assessment
could outperform MRI scans in this diagnostic task by a greater
margin than what is presented herein. Finally, despite the sample
size being excellent for clinical studies, the current sample size
poses a challenge for modeling techniques, such as the one
used here. In particular, the sample size relative to number of
features can lead to worse performance than true performance
in wild due to overfitting during feature selection and training;
i.e., large variation in features selected between cross-validation
runs. It would be therefore important to replicate our results in
independent and larger samples in the future. Still, we believe that
the current findings are of importance and highlight how, in the
near future, clinicians could use novel computational techniques
at a single patient level to aid their clinical diagnoses.

Taken together, this study used a machine learning classifier to
distinguish AD and bvFTD. Despite showing promising findings,
the separability of the three groups, and in particular between the
two patient groups, was lower than expected. Cortical volume
in temporo-insular regions allowed a classification accuracy
of 51.4% between AD and bvFTD, while neuropsychological
scores of emotion recognition, cognitive inhibition and memory
reached approximately 62.4% accuracy. These results suggest that
machine-learning classifier for AD and bvFTD should rely more
on cognitive performance than cortical volumes and can provide
clinicians with objective supportive information under diagnostic
uncertainty.
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