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Stroke often aggravated age-related cognitive impairments that strongly affect several
aspects of quality of life. However, few studies are, to date, focused on rehabilitation
strategies that could improve cognition. Among possible interventions, aerobic training
is well known to enhance cardiovascular and motor functions but may also induce
beneficial effects on cognitive functions. To assess the effectiveness of aerobic training
on cognition, it seems necessary to know whether training promotes the neuroplasticity
in brain areas involved in cognitive functions. In the present review, we first explore
in both human and animal how aerobic training could improve cognition after stroke
by highlighting the neuroplasticity mechanisms. Then, we address the potential effect
of combinations between aerobic training with other interventions, including resistance
exercises and pharmacological treatments. In addition, we postulate that classic
recommendations for aerobic training need to be reconsidered to target both cognition
and motor recovery because the current guidelines are only focused on cardiovascular
and motor recovery. Finally, methodological limitations of training programs and cognitive
function assessment are also developed in this review to clarify their effectiveness in
stroke patients.

Keywords: aging neuroscience, stroke rehabilitation, cerebral ischemia, angiogenesis, cognitive disorders,
exercise intensity, neurotrophic factors, rat and human model

INTRODUCTION

Sedentary older adults are prone to cardiovascular diseases, such as stroke (Bherer et al., 2013),
which occurs when blood flow is interrupted to a part of the brain. This trauma leads to severe
motor dysfunctions and it may also aggravate cognitive impairments resulting from normal aging
(Rafnsson et al., 2007, 2009; Deary et al., 2009; Waldstein and Wendell, 2010). Indeed, stroke
survivors have more than twice the risk of subsequently developing dementia compared with people
who have never had a stroke (Tatemichi et al., 1992; Patel et al., 2002). For instance, a stroke situated
on the left hemisphere might disturb language and comprehension, which reduce the ability to
communicate (Karbe et al., 1990; Pirmoradi et al., 2016). When the right hemisphere is affected, the
intuitive thinking, reasoning, solving problems as well as the perception, judgment and the visual-
spatial functions could be impaired (Tatemichi et al., 1994; Patel et al., 2002; Cumming et al., 2012;
Sun et al., 2014b; Harris et al., 2015; Tiozzo et al., 2015; Save-Pédebos et al., 2016). It makes thus
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difficult for patients to locate objects, walk up or down stairs
or get dressed. Consequently, cognitive disorders are one of
the strongest predictor of the inability to return to work, that
contribute to the socioeconomic burden of stroke (Kauranen
et al., 2013). However, stroke-induced cognitive disorders are
often underestimated relative to motor impairments because they
are confused with pre-existing symptoms of age-related mild
cognitive impairments or Alzheimer’s Disease (AD; Figure 1;
Sun et al., 2014b; Corriveau et al., 2016). Furthermore, cognitive
impairments are frequently associated with poor motor recovery
(Patel et al., 2002; Leśniak et al., 2008; Rand et al., 2010). It
suggests that stroke-induced cognitive dysfunctions and brain
plasticity might also affect the stability, flexibility and learning
of complex movements (e.g., locomotion, unimanual aiming,
bimanual coordination), in which cognitive resources are highly
involved as it was already observed in older adults (Temprado
et al., 1999, 2013; Sleimen-Malkoun et al., 2012, 2013; Cohen
et al., 2016).

It is thus of great importance to find effective interventions
to induce both motor and cognitive improvement after stroke.
In this respect, it is now widely established that aerobic training
enhances cardiorespiratory fitness, muscular endurance and
functional recovery of stroke patients resulting in a higher quality
of life (Ivey et al., 2005; Macko et al., 2005; Marsden et al.,
2013). Over the past few years, few studies have also shown
that aerobic training could improve cognitive functions and
promotes neuroplasticity in stroke patients (Quaney et al., 2009;

FIGURE 1 | Comparison of the main cognitive impairments between
stroke patient and people with Alzheimer Disease (AD). Both AD and
cerebrovascular disease increase with age. Although the cause of stroke and
AD are distinct, we can observe that the cognitive impairments can be
confused because these two brain disturbances could lead to dementia. The
hypothesis of vascular contributions to cognitive impairment and dementia
(VCID) is that cognitive impairments result from cerebrovascular damages and
thus cover the effect of AD, cerebrovascular diseases, including stroke, on
cognition (Corriveau et al., 2016). It can be added that more stroke is severe,
more the risk of dementia is high. Micro-infarct, silent stroke or small vessel
insults are often related to mild cognitive impairments (see also McDonnell
et al., 2011; Cumming et al., 2012). However, the outcomes on brain plasticity
is specific to each brain disorders (Sopova et al., 2014).

Rand et al., 2010; Wogensen et al., 2015). In support of these
observations, animal studies have revealed that such training
effects on cognitive functions might be partially mediated by
the release of neurotrophic factors that promotes angiogenesis,
neurogenesis, synaptogenesis and synthesis of neurotransmitters
that could not be directly investigated at central level in humans
(Churchill et al., 2002; Cotman et al., 2007; Lövdén et al.,
2010). However, despite firm evidence supporting the use of
aerobic exercise for stroke patients, the mechanisms underlying
neuroplasticity that is at origin of cognitive and motor recovery
in stroke patients remain unknown.

In the present review, we first examine how aerobic
training might play a beneficial role on cognition after
stroke. In particular, we highlight the influence of aerobic
training on neuroplasticity in both human and animal. We
also discuss whether additional rehabilitation strategies and/or
pharmacological treatments could accentuate neuroplasticity and
consequently, the recovery of cognitive functions. In addition, we
present the different exercise parameters that should be taken
into account in aerobic training, namely: intensity, duration,
frequency (number of session per week) and types of exercise as
well as timing of training initiation after stroke onset. Indeed,
they might differ in their effectiveness to improve cognition
and motor functions. Therefore, classic recommendations for
aerobic exercise are reconsidered to target cognition as well as
motor and cardiovascular functions. Finally, we discuss about the
methodological limitations that may hamper the understanding
of aerobic training effects on cognition both in human and
animal studies.

INFLUENCE OF AEROBIC TRAINING
ON NEUROPLASTICITY AND COGNITIVE
FUNCTIONS

Cognitive disorders (i.e., executive function and/or information
processing speed), motor dysfunctions (i.e., locomotion,
balance and strength impairments) and cardiorespiratory
fitness weakness are frequently observed in both elderly and
stroke people. However, the severity of these impairments is
exacerbated due to ischemia in older stroke patients (Gordon
et al., 2008; Billinger et al., 2012; Cumming et al., 2013; Harada
et al., 2013). Moreover, some neural mechanisms involved
in cognitive disorders appear to be close between aging and
cerebral ischemia. Specifically, a decrease of neurotrophic factor
release (Ang et al., 2003; Silhol et al., 2005; Chae and Kim, 2009)
or an abnormal level of oxidative stress and inflammation in
hippocampus have been observed in both population (Joseph
et al., 2005; Wang et al., 2007). In addition, cerebral blood flow
decreases in ischemic region (Cupini et al., 2001; Zhang et al.,
2013a) while the reduced vessel density in aging brain leads to
an overall reduced blood flow and oxygenation into the brain
(Petcu et al., 2010). Therefore, promoting angiogenesis might be
critical for these two populations.

In numerous studies, it was demonstrated that aerobic
training could induce beneficial effects on brain plasticity
and associated cognitive functions as well as motor and
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cardiorespiratory functions in aging population (Patel et al.,
2002; McAuley et al., 2004; Kramer and Erickson, 2007; Leśniak
et al., 2008; Erickson and Kramer, 2009). Thus, it can be
hypothesized that such training could lead to similar positive
effects on cognitive functions in stroke patients. In the following,
we present evidence supporting this hypothesis in both older
adults and animal studies. Then, on the basis of the few available
studies in the literature, we made an overview of the effects of
aerobic training on cognitive functions in people and animal with
cerebral ischemia.

Studies on Healthy Older Adults
It is now recognized that aerobic training stimulates the positive
plasticity of the aging brain. Such exercise-related plasticity
mediates the maintenance, or even the increase, of cognitive
performance as indicated by the improvement of executive
functions and long-term memory. Such enhancements were
observed in spite of the heterogeneity of methods, subject
characteristics, training parameters or cognitive tasks used in
the related studies (Colcombe and Kramer, 2003). Thanks to
the use of sophisticated brain imaging technologies, cerebral
modifications induced by aerobic training has been observed
at both structural (i.e., increase in white and gray matter
volumes and changes in synaptic connections) and functional
(i.e., changes in brain activation patterns) levels (Churchill et al.,
2002; Cotman and Berchtold, 2002; Colcombe and Kramer,
2003; Colcombe et al., 2004a,b, 2006; McAuley et al., 2004;
Erickson and Kramer, 2009; Greenwood and Parasuraman, 2010;
Voss et al., 2010a,b). For instance, using functional magnetic
resonance imagery (fMRI), it was shown that elderly people
aerobically trained displayed a higher activation of brain areas
involved in attentional control and inhibitory functioning,
while a reduced activation is observed in brain areas involved
in behavioral conflict (Colcombe et al., 2004a). Additionally,
12-week of both bike and treadmill aerobic training increases
the hippocampal and anterior cingulate cortex cerebral blood
flow and also an immediate and delayed verbal memory. Such
increase is closely related to neuroregeneration (Petcu et al.,
2010; Chapman et al., 2013; Duzel et al., 2016). This result
was recently reinforced by showing with the use of gadolinium-
based perfusion imaging (3 Tesla MRI) that aerobic fitness
improvement in healthy older adults is correlated with changes in
hippocampal perfusion and volume that were positively related
to changes in recognition memory and early recall for complex
spatial objects (Maass et al., 2015).

Circulating neurotrophic factor measurements such as brain-
derived neurotrophic factor (BDNF), insulin-like growth factor-1
(IGF-1) and vascular endothelial growth factor (VEGF; see
below for details) might also explain the influence of aerobic
training on neuroplasticity and cognition in Human but this
point remains controversial (Cotman et al., 2007). In the one
hand, few studies have observed an increase in serum BDNF level
in older adults after 1-year of aerobic training that was correlated
with an increase in hippocampal volume and improvement in
spatial memory performance as well as in executive function
(Erickson et al., 2012; Leckie et al., 2014). Specifically, Leckie et al.
(2014), revealed that the oldest subjects exhibited the greatest

increase in circulating BDNF levels and improvement in task
performance after training. This observation suggests that age
affects BDNF serum levels (Leckie et al., 2014). On the other
hand, numerous studies did not provide robust evidence for
enhancement of these neurotrophic factors after several weeks
of training in aging people (Voss et al., 2013; Maass et al.,
2015). For instance, serum BDNF, VEGF and IGF-1 level did
not increase after 12-month of aerobic or non-aerobic (stretching
exercises) training despite an increase of connectivity in the
temporal lobe between the bilateral parahippocampus and the
bilateral middle temporal gyrus (Voss et al., 2013). Recently,
Maass et al. (2015), confirmed these results by showing that no
difference in changes of circulating BDNF, VEGF and IGF-1
was observed after 3-month of treadmill (training group) or
progressive-muscle relaxation/stretching (control group) despite
an increase of hippocampal perfusion and volume (Maass et al.,
2015). On the basis of these results, it was suggested that the
training-related improvement of cerebral perfusion could lead to
beneficial effects on neural function without any contribution of
growth factors.

These contradictory findings might result from limitations
associated with the circulating serum growth factor
measurements and training protocols. For instance, nutritional
status and changes in energy balance inducing by exercise
interventions might affect growth factor levels (Monteleone et al.,
2004). Moreover, as it was previously mentioned (Coelho et al.,
2013), studies presented different training durations and exercise
intensity and heterogeneous samples. Authors also included a
different proportion of females and/or males in their studies.
Such imbalance in gender composition of experimental groups
could have an effect of baseline serum BDNF that might hide
possible influence of aerobic training (Komulainen et al., 2008;
Driscoll et al., 2012). It has also been suggested that the variable
time-windows of circulating growth factor measurements and
the analysis techniques used for quantifying blood growth
factor levels could also affect the results and need to be clarified
(Maass et al., 2015). Finally, data from circulating growth factor
assessment should be interpreted with caution since no direct
relationships between circulating and brain growth factor levels
has been found in human. Studies on human only demonstrated
that peripheral BDNF was associated with cognitive performance
and cerebral structure integrity (Ventriglia et al., 2013). However,
it was also established in animal model that BDNF, VEGF and
IGF-1 might have the potential to cross the blood-brain barrier
(BBB) in both directions in the central nervous system (CNS;
Pan et al., 1998; Cotman et al., 2007). As an illustration, Karege
et al. (2002), demonstrated that serum BDNF was positively
correlated with cortical BDNF in rat model. In addition,
blocking the peripheral IGF-1 or VEGF access to the brain
impeded exercise-induced plasticity in the hippocampus (Karege
et al., 2002; Cotman et al., 2007). However, other studies have
shown in neurological disorders such as stroke and depression
that changes in regional brain BDNF levels are not associated
with changes of BDNF levels in peripheral blood (Elfving et al.,
2010; Béjot et al., 2011). To date, it thus remains difficult to
clearly determine the real role of circulating growth factors on
cognitive function in older subjects.
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Studies on Healthy Animals
Animal experiments could provide information about
neuroplasticity mechanisms at cellular level in brain areas
involved in cognitive functions. To date, three main
neurotrophic factors have been identified to contribute to
increase neuroplasticity after aerobic training: (i) the VEGF,
which is a protein whose main role is to stimulate angiogenesis;
(ii) the BDNF, which is a critical protein involved in brain
plasticity. Indeed, this neurotrophin mediates numerous
proteins expressions and molecular pathways, i.e., synapsin-I
and synpatophysin, both involved in synaptic transmission and
neurotransmitter release, C-AMP response element-binding
protein (CREB) and beta calcium/calmodulinedependent kinase
II (β-CaMKII) both contributing in long-term potentiation
(LTP). BDNF thus promotes synaptic plasticity, neurogenesis
and neuronal survival within the hippocampus (Vaynman et al.,
2004; Cassilhas et al., 2012); and (iii) the IGF-1, which is a
peptide that crosses the BBB and stimulates neurogenesis and
angiogenesis. These growth factors act together to promote
training-related benefits in brain plasticity and associated
cognitive functions.

It was found in adult rats that aerobic training induced-
angiogenesis is associated with an increase in brain VEGF mRNA
and protein (Ding et al., 2006; Cotman et al., 2007). Moreover,
Swain et al. (2003), have proved that prolonged voluntary
exercise induced an increase of blood volume in the motor
cortex of 19% greater than control animals (Swain et al., 2003).
Angiogenesis needs to be promoted because some animal studies
have suggested that angiogenesis was closely linked to adult
neurogenesis and other neuroplasticity mechanisms (Pereira
et al., 2007).

It was demonstrated that 8-week of aerobic training on
treadmill induced an improvement in learning speed and spatial
learning. Authors suggested that these results could be explained
by an increase of hippocampal BDNF and IGF-1 and more
precisely by the activation of BDNF/TrkB/β-CaMKII pathway
and to a lesser extent to IGF-1/IGF-1R/Akt (also known as
protein kinase B) pathway (Cassilhas et al., 2012). Radák et al.
(2001, 2006) indicated that short- and long-term memory was
improved after 8 weeks of regular swimming exercise in middle-
aged rats (14-month-old). BDNF and nerve growth factor
(NGF) expressions were up-regulated as well as a reduction of
accumulation of reactive carbonyl derivatives that are known to
damage proteins, nucleic acids ad lipids (Radák et al., 2001, 2006).
Similarly, one study on aging rat model, induced by D-galactose
injection, has shown that 8-week of moderate aerobic training
treadmill could importantly increase both level of NGF and his
receptor, the tyrosine kinase A (TrkA) in the hippocampus.
NGF/TrkA actives the phosphoinositide 3-kinase (PI3-K)/Akt
pathway that decreases apoptosis (Wiesmann and de Vos, 2001;
Chae and Kim, 2009). Excessive reactive oxygen species (ROS)
production can also trigger apoptosis in brain areas such as
the hippocampus that contribute to neurodegenerative disorders
and cognitive function impairments in aging people. However,
moderate intensity training on treadmill (18 m/min, 30 min/day
during 15 weeks) in middle-age female rats (12-month-old)
could enhance antioxidant defense system and thus induced a

neuroprotective effect in the hippocampus (Marosi et al., 2012).
Training also facilitated the release of metabolic proteins in
the hippocampus such as mitochondrial precursor of ornithine
aminotransferase and isocitrate deshydrogenase subunit alpha.
However, these results remain difficult to interpret because
authors suggested that alteration of mitochondrial proteins may
be either reflecting mitochondrial damage or adaptation to
mitochondrial dysfunction (Kirchner et al., 2008).

Studies on Stroke Patients
Only three studies investigated the role of aerobic training on
cognition in stroke patients (Table 1). Two of them indicated
that aerobic training might reduce cognitive disorders by
improving functional outcomes as well as motor learning by the
increase of information processing speed and implicit memory
while executive functions remain affected (Quaney et al., 2009;
El-Tamawy et al., 2014). However, patients did not preserve
long-term beneficial effects 8 weeks after the end of aerobic
training (Quaney et al., 2009). Contrary to what was observed in
healthy subject, an acute and short aerobic exercise on treadmill
(20 min; 70% of the heart rate reserve) did not induce cognitive
improvement in stroke patient while a slightly improvement of
the movement of upper-extremity was observed (Ploughman
et al., 2008).

Studies on Animal with Cerebral Ischemia
Consistent with healthy older animals, neuroplasticity can be
partially promoted by aerobic training through up-regulation
of the expression of BDNF, synapsin-I and post-synpatic
density protein 95 (PSD-95), also involved in LTP within
hippocampus (dentate gyrus, CA1 and CA3 areas) and by
increase of both CREB phosphorylation and newborn cell
survival (Luo et al., 2007; Shih et al., 2013). The beneficial
effect of training was reinforced when the activation of the
high affinity BDNF receptor, the TrkB, was blocked because
the function of BDNF was reduced and the exercise-induced
spatial learning enhancement was impeded (Griesbach et al.,
2009). Thus, consistent with data collected within aging rodents,
it is supposed that BDNF-mediated pathway contributed to
explain the improvement of spatial memory performances after
cerebral ischemia. Furthermore, spatial memory performances
were positively correlated with an increase of both newborn
cell survival in bilateral dentate gyrus and restored microtubule-
associated protein 2 (MAP2) density after cerebral ischemia
(Luo et al., 2007; Shimada et al., 2013). Treadmill training
might also protect against cognitive impairments in rats with
bilateral common carotid artery occlusion (CCAO) by reducing
the lipoperoxidation in the hippocampus through an increase
of antioxidant capacity and by improving the acquisition of a
spatial task as well as the performance for both retention and
working memory (Figure 2; Cechetti et al., 2012). In addition,
few weeks of treadmill training in rat with cerebral ischemia
increases the VEGF, and its regulatory protein, caveolin-1, and
improves the cerebral blood flow in ischemic region (Zhang et al.,
2013a; Gao et al., 2014). However, no study has directly shown
that vascular changes could contribute to explaining the cognitive
disorders.
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FIGURE 2 | A summary of the established effects of aerobic training on molecular, structural and functional changes and their consequences on
cognitive functions (see details in the text). Different models are compared: aging and stroke in both (A) human and (B) animal populations. ACC, Anterior
Cingulate Cortex; BDNF, Brain-Derived Neurotrophic Factor; CBF, Cerebral Blood Flow; IGF-1, Insulin Growth Factor-1; LTP, Long-term potentiation; NGF, Nerve
Growth Factor; VEGF, Vascular Endothelial Growth Factor.

IS THE COMBINATION OF AEROBIC
TRAINING WITH OTHER TYPES OF
THERAPIES EFFECTIVE FOR IMPROVING
COGNITION RECOVERY AFTER STROKE?

Combination with Other Rehabilitation
Exercises
The question arises of whether different types of exercise could be
combined to improve the effects that they could have separately.
As reviewed by Chang et al. (2012), resistance exercise alone
could positively impact selective cognitive functions in older
adult such as information-processing speed, attention and several
aspects of memory and executive functions (Chang et al., 2012). It
was postulated that the main potential underlying mechanism for
these benefits is based on resistance training-induced IGF-1 both
in brain and blood circulation. Moreover, growing evidence have
shown that the combination of aerobic and resistance training
induced superior beneficial effect on cognition than aerobic
exercise alone in aging population (Colcombe and Kramer,
2003). In this way, the association between resistance and aerobic
training might be a potential strategy to further facilitate the

cognitive function recovery in stroke population. However, few
studies have been conducted to test this attractive hypothesis
(Rand et al., 2010; Kluding et al., 2011; Marzolini et al., 2013).
Results indicated that combination of aerobic training and lower
extremity muscle strengthening improved executive functions,
attention and voluntary motor control (Kluding et al., 2011). This
is consistent with the study carried out by Marzolini et al. (2013),
in which 6 months of both aerobic training at moderate intensity
associated with resistance exercises induced improvements in the
Montreal Cognitive Assessment (MoCA) scores in subdomain of
attention/concentration and visuospatial/executive functioning
(Marzolini et al., 2013). Another study on chronic stroke
patients combining aerobic training with stretching, balance
and task-specific exercises as well as sessions of recreation time
has shown an improvement in verbal memory and cognitive
flexibility but did not promote executive function (Rand et al.,
2010). However, since the isolated effects of resistance and
aerobic training were not compared with the combination
of both of them, it remains difficult to ensure that such
combination induces superior beneficial effects on cognition
than aerobic intervention alone after stroke. It should also
be noticed that the neuroplasticity associated with cognition
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recovery after combination of aerobic and other rehabilitation
strategies has not been investigated in both human and animal
stroke studies.

Combination of Aerobic Training
with Pharmacological Treatments
Currently, both aerobic and behavioral training have been
shown to improve cognition on stroke patient but it remains
insufficient to induce total recovery (Quaney et al., 2009;
Cherry et al., 2014). Thus, it seems crucial to find new
strategy combinations including aerobic exercise to amplify
the effects on cognition. Many pharmacological treatments are
possible candidates to improve cognitive function after stroke by
stimulating brain plasticity. For instance, the drug memantine,
used for the treatment of moderate to severe dementia of the
Alzheimer’s type, could increase synaptic plasticity and LTP and
decrease overactivation of N-methyl-D-aspartate-type glutamate
receptors (NMDA-r) in order to limit excitotoxic neuronal
death (Martin and Wang, 2010; Berthier et al., 2011). Other
substances, like citicoline, an intermediate in the generation of
phosphatidylcholine from choline, could increase the level of
acetylcholine and dopamine as well as decrease infarct volume in
animal model with cerebral ischemia (Alvarez-Sabín and Román,
2011).

To date, only the intravenous (IV) recombinant tissue
plasminogen activator (rt-PA) was approval by the USA Food
and Drug Administration for the treatment of acute ischemic
stroke in human (Marshall, 2015). The rt-PA is focused on
thrombolytic events and could reduce the infarct volume (Nys
et al., 2006) by restoring cerebral blood flow and oxygen supply to
ischemic brain tissue (Thompson and Ronaldson, 2014). When
rt-PA is administrated within the first 3 h after stroke, it could
improve clinical outcomes and activities of daily life from 3,
6 and 12 months (Kwiatkowski et al., 1999; Nys et al., 2006;
Murao et al., 2014). However, the effects of rt-PA administration
during the first 24 h on cognitive functions are limited to aphasia
that is explained by the reperfusion of language areas (only
for one-third of patient; Nys et al., 2006; Hajjar et al., 2013;
Kremer et al., 2013). Only one study used rt-PA in combination
with physical activity during leisure-time. Results showed that
combination of the 2 strategies did not accentuate the cognitive
and physical improvements compared to rt-PA alone after
3 months (Decourcelle et al., 2015).

In preclinical study, L-deprenyl is a pharmacological
treatment used to decrease ROS known to contribute to
neuronal cell death in the ischemic core following permanent
middle cerebral artery occlusion in mice (Unal et al., 2001).
This substance has already shown the clinical effectiveness on
cognitive functions in the elderly human with AD (Wilcock
et al., 2002). L-deprenyl generates an amphetamine-like effect
by acting on the release of dopamine and hampering its
reuptake that contribute to the modulation of both attention and
executive functions (Table 1; Bartolo et al., 2015). After stroke,
combination of both L-deprenyl and standard rehabilitation
including physiotherapy, cycle arm-ergometer training and
occupational therapy during 6 weeks showed an improvement

of logical memory, visual selective attention and non-verbal
reasoning (Bartolo et al., 2015). However, this study did not
compare the effect of such combination with the L-deprenyl
treatment effect or the standard rehabilitation alone. Therefore,
it remains difficult to postulate that the combination of
these two strategies reinforced the cognitive recovery. In rat
model, D-amphetamine administration combined to locomotor
training enhances locomotor recovery after cortical injury
(Feeney et al., 1982; Ramic et al., 2006). Moreover, other
study assessed the effect of D-amphetamine administration
combined with functional rehabilitation and physical therapy
alone on cognitive memory performance and motor recovery
after embolic stroke. Results showed that D-amphetamine with
functional rehabilitation was more effective to improve cognitive
performance than training alone, especially for memory, but
the latter could improve fine motor performance (Rasmussen
et al., 2006). By contrast, it was found in stroke patient that the
combination of unique training session of—lower-extremity
stability platform task, upper-extremity simulated feeding
task and declarative learning—with D-cycloserine treatment
did not accentuate the effect of motor and cognitive training
(Cherry et al., 2014). This agent is already known to improve
both motor and cognitive functions through increasing LTP in
the hippocampus by regulating NMDA-r (Yaka et al., 2007).
Cherry et al. (2014) postulated that an unique training session
is not enough to amplify pharmacological treatment and that
D-cycloserine could not act on the reduced NMDA-r function,
and thus, on the motor task learning after stroke.

Finally, the review of literature suggests that no efficient
combination between pharmacological treatments and training
has yet found to improve recovery on cognitive functions.
However, several combinations of pharmacological treatments
and aerobic training have proven effectiveness on motor
recovery after cerebral ischemia (Pin-Barre and Laurin, 2015).
For example, the combination of both S-nitrosoglutathione
and training accentuated neuroplasticity (reduce excitotoxicity,
inflammation and protect BBB integrity) and motor recovery
(Sakakima et al., 2012). Future studies should investigate
the effects of these types of associations on cognitive
recovery.

MOTOR VS. COGNITIVE FUNCTION
RECOVERY: CAN AEROBIC TRAINING
SIMILARLY FACILITATE BOTH?

Currently, the recommendations for the use of aerobic
training after stroke were only established according to the
effectiveness of endurance programs on cardiovascular and
motor functions (Pang et al., 2013; Billinger et al., 2014).
The cognitive outcomes are thus not taken into account
for prescribing physical exercise. However, several findings
arising from rodent studies indicate that the most appropriate
intensity, the optimal timing to initiate training and the exercise
mode (type of exercise) for improving motor performance
might be different to improve cognitive function and motor
recovery.
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Cognitive Performance Improvement
by Aerobic Training
Exercise Intensity
Low-intensity aerobic training seems to be more effective than
high-intensity training to promote cognitive health. Indeed,
animal studies have shown that low-intensity training induced
superior positive effects on spatial learning task in a water
maze test and on both object recognition and location tasks
than intense training (Shih et al., 2013; Shimada et al., 2013).
Such cognitive task improvements were concomitant with an
increase in plasticity-related proteins such as the increase of
hippocampal BDNF level, synapsin-I as well as the number of
dendritic spines and the number of neurons in the ipsilateral
dentate gyrus (Shen et al., 2013; Shih et al., 2013; Shimada
et al., 2013). It was mainly explained by the fact that, compared
to low-intensity exercise, the high-intensity exercise induced
higher levels of stress-hormone, which might downregulate
BDNF level in hippocampus (Schaaf et al., 1999; Soya et al.,
2007). Nevertheless, caution is required concerning the chosen
running intensity. Indeed, the speed, fixed to 20–22 m/min, was
considered as ‘‘high’’ intensity in Shih and Shimada’s studies
(Shih et al., 2013; Shimada et al., 2013) while others have
classified such range of speed as moderate intensity (Sun et al.,
2008; Ni et al., 2012). Therefore, the real influence of exercise
intensity based on physiological parameters (for example, lactate
threshold or VO2peak) on cognitive recovery remains to be further
investigated (see ‘‘Methodological Considerations’’ Section).

Timing of Training Initiation
Late exercise, beginning after the first week post-brain injury,
is more effective than early exercise (starting during the first
week) to improve cognitive functions. Indeed, spatial learning
and retention were better improved with the late training and
was associated with the upregulation of BDNF (Griesbach et al.,
2004; Clark et al., 2008). Voluntary running wheel training,
starting 1 week after transient focal cerebral ischemia in mice,
promoted neurogenesis in the adult dentate gyrus and spatial
memory rebuilding (Luo et al., 2007). Interestingly, the Schmidt
meta-analysis indicated that a start of skilled forelimb training
from days 1 to 5 post-injury was more effective to improve
cognitive function compared to late training (Bland et al., 2000;
Wurm et al., 2007; Schmidt et al., 2014). It might be suggested
that motor skilled training might start before aerobic training to
improve cognitive functions.

Forced vs. Voluntary Training
The training mode might also influence the neuroplasticity
underlying cognitive performance. Some studies have recently
demonstrated that involuntary exercise (functional electrical
stimulation), forced (treadmill) and voluntary (running wheel)
training have similar beneficial effects on cognitive function
after cerebral ischemia as indicated by improvement of both
object recognition and location tests (Lin et al., 2015).
Moreover, these three training regimens enhanced the levels
of synapsin I, synaptophysin, PSD-95, MAP-2 and Tau protein
in the hippocampus. It was confirmed by a previous study on

healthy rats where 6 weeks of forced swimming or voluntary
running resulted in similar increase of hippocampal BDNF level
and in similar effect on learning capabilities and short/long
term memories (Alomari et al., 2013). Nevertheless, other
studies indicated divergent results. On one side, Hayes et al.
(2008), demonstrated that, after 2-h of middle cerebral artery
occlusion, forced treadmill training reduced infarct volume and
increased the gene expression of heat shock proteins (Hsp),
in particular the 27 kDa Hsp and the 70 kDa Hsp mRNA
than voluntary exercise despite higher corticosterone level.
The Hsp acts in the brain as molecular chaper ones with
neuroprotective activities (Hayes et al., 2008). Other authors
indicated that 12 weeks of forced treadmill training could
protect against cognitive and biochemical impairments caused by
CCAO in rat (Cechetti et al., 2012). Similar results were found
after whole-brain irradiation where forced running training
reduced the neurocognitive deficits but also the hippocampal
neurogenesis impairments, i.e., the down-regulation of BDNF-
mediated pathway (including TrkB receptors, Akt and CREB,
for example; Ji et al., 2014). On other side, some authors
indicated that voluntary exercise is the most effective training
in up-regulating the hippocampal BDNF level (Luo et al.,
2007; Ke et al., 2011). Indeed, Ke et al. (2011), compared
the effect of voluntary, involuntary and forced training after
cerebral ischemia in rat. Results indicated that 7-day intervention
of voluntary training induced higher level of BDNF in the
hippocampus than the other modes (Ke et al., 2011). Such
divergent results might be attributable to variable experimental
designs.

Motor Performance Improvement
by Aerobic Training
Exercise Intensity
To date, post-stroke guidelines recommend moderate-intensity
continuous aerobic training to improve aerobic capacity and
motor recovery (40–80% of the maximum heart rate reserve;
3–5 sessions/week; 20–60 min/session). However, it was
demonstrated that high-intensity exercise could improve aerobic
fitness by increasing the peak oxygen uptake (VO2peak) and
6-min walk performances, that remained higher 1 year after the
end of training compared with baseline value (Globas et al.,
2012). In addition, it has been found that the high-intensity
interval training (HIT) could promote superior beneficial
cardiovascular and muscular adaptations among persons with
different cardiorespiratory disorders (Rognmo et al., 2004;
Wisløff et al., 2007). HIT is defined as repeated series of
brief and intense exercise separated by active or passive rest
periods. This type of intense training is also well known to
be a time-efficient strategy to promote metabolic adaptations
because the total session duration is strongly reduced compared
to traditional moderate-intensity continuous aerobic training
(Sun et al., 2014b). Such finding is important given that ‘‘lack of
time’’ remains the most cited barrier to regular aerobic exercise
participation.

It was observed that HIT is well accepted for ambulatory
chronic stroke and could induce encouraging improvements of
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quality of life as observed by improvements of VO2peak and work
economy (Gjellesvik et al., 2012; Boyne et al., 2013; Mattlage et al.,
2013). Recently, only one study has compared HIT (series of 30 s
at maximum tolerated treadmill speed separated by 30–60 s rest
periods) and traditional moderate-intensity continuous aerobic
training (Boyne et al., 2016). Authors indicated that no clear
difference between HIT and moderate-intensity continuous
aerobic training was observed because of a small sample size.
Nevertheless, this type of training seems to be feasible and safe
because no adverse events occurred.

Timing of Training Initiation
It was postulated in human studies that starting rehabilitation
program in the acute-subacute phase after stroke could
prevent complications relating to prolonged inactivity (i.e.,
deconditioning period) and presented a low relative risk for
adverse effects (Musicco et al., 2003). Numerous studies in
rodents with cerebral ischemia have also observed that an early
starting aerobic exercise (from days 1 to 5) was more effective
to improve the running performance and to reduce the infarct
volume compared to late training (Bland et al., 2000; Luo et al.,
2007; Schmidt et al., 2014). For example, Park et al. (2010),
indicated that early treadmill training could better improve the
motor performance, using the Rotarod test, than late treadmill
training after hemorrhagic stroke (Park et al., 2010). Such early
training did not increase the infarct volume or brain edema
in accordance to other studies (Matsuda et al., 2011; Zhang
et al., 2013b). Likewise, an early treadmill exercise increased the
cellular expression levels of some neurotrophic factors, promoted
cell growth and reduced the expression of apoptosis markers
(Mizutani et al., 2010; Matsuda et al., 2011). Moreover, an early
endurance exercise improved blood flow in the ischemic region
and promoted angiogenesis (Zhang et al., 2013b). We may also
add that sensorimotor deficits and cortical infarct volume were
aggravated on a longer-term when training started too soon i.e.,
before 24 h post-ischemia (Kozlowski et al., 1996; Risedal et al.,
1999; Bland et al., 2000; DeBow et al., 2004; Schmidt et al.,
2014).

Forced vs. Voluntary Training
Numerous studies highlighted that forced treadmill training is
more effective than all the other types of exercise, included
voluntary exercise, to improve running function, aerobic fitness
and to reduce infarct volume (Takamatsu et al., 2010, 2016;
Schmidt et al., 2014). However, some authors indicated that
voluntary exercise is more effective to improve motor recovery
using the De Ryck’s behavioral test (Ke et al., 2011). These
controversial results might be explained by the use of different
motor behavioral tests between studies as well as by a
different training protocol (variable speed and timing of training
initiation).

Concomitant Improvement of Cognitive and Motor
Functions Induced by Aerobic Exercise
Interestingly, Sun et al. (2014), might find a compromise in rats
by proving that training with gradually increased intensity on
treadmill (from 5 to 26 m/min) could better improve motor

function and produce higher hippocampal BDNF with lower
stress compared to both stably low and high intensity training
(Sun et al., 2014a). These results were in accordance with
Zhang et al. (2012), study in which both motor performance
(forelimb placing, stepping coordination) and spatial memory
in rats with middle cerebral artery occlusion-reperfusion were
improved after progressive intensity aerobic training (Zhang
et al., 2012).

On the basis of these findings, it appears that training might
alternate between high- and low-intensity sessions or might
progressively reach high-intensity to accentuate improvement of
either cognitive or motor performance. It also suggested that
treadmill training might be appropriate for improving these two
functions. However, it is more difficult to find a compromise
for the timing of training initiation. Indeed, an early training
seems to be more appropriate to promote motor recovery while
cognitive performances were improved when aerobic training
started later. Therefore, the influence of aerobic training on
cognitive deficits might be considered to complete the actual
exercise recommendations.

METHODOLOGICAL CONSIDERATIONS

Although it is currently admitted that aerobic training
positively affects neuro-cognitive impairments, available
studies reveal a great heterogeneity in the methods used
and for some, weaknesses, which make results difficult to
compare (Cumming et al., 2012). These methodological
limitations, which are either specific or common to human
and animal models, need to be considered before interpreting
results.

Methodological Considerations
Concerning Exercise Parameters
in both Animal and Human Studies
Available studies strongly differ in the parameters related to
exercise during aerobic training: duration, intensity, frequency,
mode and timing of rehabilitation initiation. In particular,
exercise intensity, which is a critical parameter of aerobic
training effectiveness, deserves to be questioned (Pin-Barre and
Laurin, 2015). For both human and animal models, intensity is
frequently based on empirical speed/power (Ploughman et al.,
2008; Kluding et al., 2011; Påhlman et al., 2012; Shih et al., 2013;
Shimada et al., 2013). In some human studies, the intensity was
determined from subjective parameters such as level of exertion
perceived by the patient (Ploughman et al., 2008; Kluding
et al., 2011; Påhlman et al., 2012). In these conditions, exercise
intensity (moderate, intense and severe) could not be precisely
determined because no physiological markers were recorded (Xu
and Rhodes, 1999). Therefore, a given absolute intensity was
considered as moderate for some authors but as severe for others.
When training intensity was based on physiological markers,
percentages of maximal heart rate or the maximal oxygen uptake
(VO2peak) were the most frequently used parameters (Ploughman
et al., 2008; Quaney et al., 2009; Kluding et al., 2011; El-Tamawy
et al., 2014). However, these methods are insufficiently reliable
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to distinguish between high and moderate training intensities.
Indeed, patients barely reach their maximal aerobic capabilities
during an incremental test. Recently, submaximal parameters
such as ventilatory or lactic threshold have been recognized
to be more suitable than VO2peak to induce a higher inter-
individual reproducibility in physiological response to exercise
(Faude et al., 2009; Marzolini et al., 2013; Bosch et al., 2015).
It is noticeable however that there is no consensus on the
methods used to measure these physiological parameters from
an incremental exercise test (Bentley et al., 2007). Indeed,
depending on the type of incremental test, the performance
and the related physiological parameters could be altered. The
chosen ergometer (ergocycle or treadmill), stage duration as well
as the magnitude of intensity increment between each stage are
known to affect the performance (for review see, Bentley et al.,
2007). Moreover, the progressive increase of exercise intensity
on treadmill could be induced either by an elevation of speed
(m/s) and/or inclination (percentage). The speed increment
is not systematically reported in literature but some authors
indicated that the grade increment was increased of 2% every
2 min with a constant (high) walking speed (Voss et al., 2013).
Increase in the slope of the treadmill needs to be considered to
improve the validity and the relevance of the chosen incremental
test on treadmill for aging subjects. Indeed, the increment
of treadmill inclination seems to be more appropriate for
aging people and/or for the individuals for whom running is
impossible or difficult. For instance, a lower running/walking
speed on treadmill could reduce the perceived exertion of the
exercise for some individuals and thus might reach highest
intensities (Ehlen et al., 2011). Moreover, it was reported on
obese persons that faster walking speeds might increase the risk
of musculoskeletal injuries because of higher reaction forces and
loading rates (Ehlen et al., 2011) in lower extremities tendons,
joints and ligaments (Puga et al., 2012). Finally, most authors
frequently used a stationary cycle ergometer for aging people
(Maass et al., 2015) because measurements of physiological
parameters during the test are more stable using this device
compared to treadmill. The risk of falls is also lower on
cycle ergometer. For the rodent model, some studies have
proposed different treadmill protocol in order to reach the
highest VO2peak by modifying the treadmill inclination. It has
been found in both rats and mice that the highest VO2peak was
reached at 25◦ because a distinct leveling-off of VO2 was mainly
observed at this inclination (Wisløff et al., 2001; Kemi et al.,
2002).

In addition, among different studies, intensities are
rarely individualized, especially in rodents, while training
individualization is one of the most important recommendations
of stroke rehabilitation (Pang et al., 2013; Schmidt et al.,
2014). This limitation might attenuate the ‘‘real’’ effectiveness
of aerobic training. Finally, it is commonly considered in
exercise physiology studies that energy expenditure needs to
be equivalent between exercise types in order to compare the
different effects of a specific training parameter (such as intensity
or duration). In this way, all the experimental groups have the
same energy expenditure and thus only the influence of a tested
exercise parameter is assessed (Rognmo et al., 2004; Wisløff

et al., 2007). However, it has never been applied in animal as well
as in human stroke studies.

Specific Methodological Considerations
in Human
Inter-individual differences in cerebral ischemia location and/or
aerobic fitness level may affect, positively or negatively, cognitive
impairments. However, they remain difficult to counteract (Tang
et al., 2013; Sun et al., 2014b). For example, it was found that
patients with infarction located within cortical regions, middle
cerebral artery territory and/or on left hemisphere were more
prone to cognitive impairments (Sun et al., 2014b).

Otherwise, using a cognitive test that did not detect the
specific cognitive impairments of a patient might hide some
potential effect of a training intervention (McDonnell et al., 2011;
Cumming et al., 2012). For instance, cognitive measurements are
frequently limited to clinical tests, as functional independence
measures (FIM), that are not enough sensitive. Likewise,
mini-mental state examination (MMSE) may underestimate
stroke-related cognitive deficits because it presents a lack of
sensitivity for identifying disorders of visual perception and of
high-order executive functions (Nys et al., 2006; Pendlebury
et al., 2010; Cumming et al., 2012). This might be problematic
given that these latter cognitive functions are frequently affected
by stroke (Sun et al., 2014b; Tiozzo et al., 2015). In this respect,
the MoCA can assess numerous cognitive impairments such as
executive function, attention and delayed recall disorders that
appear to be more suitable for stroke patient (Pendlebury et al.,
2010). Some studies have also used specific neuropsychological
tests such as Trail-making part A and B, Symbol digit test, Stroop
test, Digit backward test, which allow to better detect cognitive
deficits induced by stroke (Ploughman et al., 2008; Quaney et al.,
2009; Rand et al., 2010; Kluding et al., 2011).

To ensure that cognitive performance improvements are
related to aerobic training effectiveness, an increase of aerobic
fitness needs to be observed at the end of the intervention.
However, change in cardiorespiratory fitness after aerobic
training is not systematically reported in the different studies.
Thus, caution is often required when it is claimed that cognitive
improvements are associated with aerobic training rather than
other interventions or environmental factors.

The issue of cognitive-motor interactions in stroke patients
also deserves to be considered. Indeed, cognitive and motor
processes are classically considered as functionally independent
and then, explored separately in the literature. However, the
control and learning of complex goal-directed movements
require a close cooperation between sensorimotor control
processes and higher cognitive functions. This is even more
marked in older adults, for which cognitive and motor processes
become less differentiated by virtue of functional reorganization
of brain activation patterns. Thus, change in cognitive-motor
interplay expresses an important facet of age-related intrinsic
plasticity of brain and cognition. Strategic variations might
be thus analyzed to assess behavioral adaptability in cognitive
(Lemaire and Hinault, 2014) and sensorimotor tasks (Poletti
et al., 2015, 2016).
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Specific Methodological Considerations
in Animal Models
Animal experiments can provide information about underlying
mechanisms of neuroplasticity that could not be investigated in
human. However, several drawbacks are often observed in some
studies. For instance, it is impossible to investigate the large
range of cognitive functions identified in human, such as verbal
learning and memory for example (Voss et al., 2013). Cognitive
dysfunctions after cerebral ischemia are limited to spatial and
working memory, recognition and motor learning skills (Morris
water maze, passive avoidance test, object recognition or location
test; Luo et al., 2007; Griesbach et al., 2009; Cechetti et al., 2012;
Shih et al., 2013; Shimada et al., 2013).

In addition, exercise-induced neuroplasticity are mainly
explored within hippocampus (CA1 and CA3 areas and dentate
gyrus), which is related to memory and learning (Vaynman et al.,
2003). However, other areas such as basal ganglia, prefrontal
cortex, thalamus and cerebellum are also involved in learning
and memory processes, executive functions and motor control
(Graybiel, 1995; Doya, 2000; Johnson and Ojemann, 2000).
Except the hippocampus, other regions, remote away from
the lesion zone, are connected to the affected structures and
thus might also be disturbed after stroke (i.e., diaschisis effect
and synaptic inhibition). For example, inflammatory responses
could be observed within thalamus or substantia nigra after
cortical brain injury that might partially contribute to explain
the cognitive deficits (Block et al., 2005). It could be relevant
to investigate the effect of aerobic training on the cognitive
functions of these cerebral areas (Carmichael et al., 2004).

CONCLUSION

This present article provides an overview of the positive
effect of aerobic training on cognitive functions. It seems that
training could increase the release of the same neurotrophic

factors (BDNF and VEGF) in both elderly and stroke
people that mediate beneficial neuroplasticity in brain areas
involved in cognitive functions. We also identify some
methodological limitations in both human and animal studies
such as the standardization procedure of aerobic exercise
intensity and the chosen cognitive tests, depending on the
target population, that remain one of the most important
concerns. Moreover, our review article suggests that the
combination of aerobic training with other exercises/therapies
or treatments represent a promising strategy with strong clinical
perspectives. Importantly, this review highlights the lack of a
firm guideline for exercise recommendations targeting recovery
of cognition in stroke patient. Therefore, no standard aerobic
protocol has yet been established as a commonly accepted
reference regarding intensity, timing of training initiation and
exercise type. It also appears that investigating changes in
cognitive-motor interplay are critical to develop appropriate
rehabilitation to improve both cognition and motor control after
stroke.
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