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At present, the sparse representation-based classification (SRC) has become an
important approach in electroencephalograph (EEG) signal analysis, by which the data
is sparsely represented on the basis of a fixed dictionary or learned dictionary and
classified based on the reconstruction criteria. SRC methods have been used to analyze
the EEG signals of epilepsy, cognitive impairment and brain computer interface (BCI),
which made rapid progress including the improvement in computational accuracy,
efficiency and robustness. However, these methods have deficiencies in real-time
performance, generalization ability and the dependence of labeled sample in the analysis
of the EEG signals. This mini review described the advantages and disadvantages of the
SRC methods in the EEG signal analysis with the expectation that these methods can
provide the better tools for analyzing EEG signals.

Keywords: sparse representation-based classification, sparse representation, EEG signal, preclinical mild
cognitive impairment, mild cognitive impairment, Alzheimer’s disease, epilepsy, brain computer interface

INTRODUCTION

Sparse representation (SR) is used to represent data with as few atoms as possible in a given
overcomplete dictionary. By using the SR, we can concisely represent the data and easily extract the
valuable information from the data. The sparse representation-based classification (SRC) methods
have become a research hotspot for the data processing in many fields (Vialatte et al., 2009, 2012;
Liu et al., 2012; Kaleem et al., 2013; Shin et al., 2015; Yuan et al., 2015), and can greatly simplify
the processing of the multi-dimensional electroencephalograph (EEG) signals from epilepsy, mild
cognitive impairment (MCI), Alzheimer’s disease (AD) and brain computer interface (BCI).

Currently, studies on SRC methods used in the brain disorders and BCI involve mainly
the preprocessing, SR and feature extraction, and have achieved accomplishments in
computational accuracy, efficiency and robustness. Preclinical mild cognitive impairment
(Pre-MCI) is a cognitive impairment status between normal aging and MCI, and also an
earliest status of cognitive impairment which is more difficult to be diagnosed relative to MCI
and AD (Sperling et al., 2011; Zhou et al., 2016). With the improvement of computational
accuracy and efficiency, SRC methods may have potential to aid the diagnosis of Pre-MCI.
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FIGURE 1 | The frame of the contents in this review. Abbreviations: SRC, sparse representation-based classification; BCI, brain computer interface;
CSP, common spatial patterns; DDL, discriminative dictionary learning; LTCSP, local temporal common spatial patterns; SFBCSP, sparse filter bands common spatial
pattern; PCA, principal component analysis; BPR, biomimetic pattern recognition; SR, sparse representation; MCI, mild cognitive impairment; AD, Alzheimer’s
disease; EEG, electroencephalograph; BUS, bump sonification.

However, there still exist some deficiencies needed to
be solved.

This article reviewed the SRC methods in the analysis of
EEG signals of epilepsy, MCI, AD and BCI, and discussed

the possibility for the application of SRC methods in the
diagnosis of Pre-MCI patients. The frame of this article was
presented in Figure 1, and the main findings were listed
in Table 1.
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THE EEG SIGNAL ANALYSIS METHODS
BASED ON SRC

Application and Performance Evaluation
of SRC in Epilepsy Detection
Method Description and Evaluation
Currently, there are three perspectives of SRC methods used
in epileptic detection, including reconstruction rules and
residual error classifications on the whole classification stage,
overcomplete dictionary on the preprocessing stage, and wavelet-
based sparse functional linear model on the feature extraction
stage.

For the first perspective, as the reconstruction rule
classifications do not need to extract features or to design a
classifier, the applied range of the methods is therefore greatly
improved, and is superior than the traditional epilepsy detection
methods. Using the classification method based on kernel SR and
kernel collaborative representation, the classification accuracy
in analyzing the epilepsy EEG signals reached up to 98.63%
and 99.99% respectively, and the fast speed in computation
can help to monitor epilepsy in real-time (Yuan et al., 2014,
2015).

Using above methods, good performance in classifications
were demonstrated between epileptic patients with ictal
EEG normal control group, or between epileptic patients
with interictal EEG and ictal EEG However, for the
classification between epileptic patients with interictal
EEG and normal control group, whether these methods
can achieve the similar performance remains to be further
verified. Recently, using sparse principal components analysis
method with reconstruction rules, the performance of
classification between epilepsy patients with interictal EEG
and normal control group was demonstrated to be excellent
(Xie et al., 2012; Xie and Krishnan, 2013).

For the second perspective, Wang and Guo (2011)
initially proposed SR based on matching pursuit and selected
decomposition coefficients and atom parameters as features.
However, the computation complexity was relatively high.
To reduce the computation complexity, they then proposed
Harmony Search method to find the optimal atom parameters,
and selected the decomposition coefficients, FR parameters and
restructured error to constitute a feature vector (Guo et al.,
2012). By constituting the feature vector using decomposition
coefficients, atom parameters and FR parameters, the computing
time was further reduced (Wang et al., 2013).

For the third perspective, using wavelet-based sparse
functional linear model, the accuracy in classifying epilepsy
patients with interictal EEG from normal control group was up
to 100% (Xie et al., 2012; Xie and Krishnan, 2013). However,
the computation efficiency of feature extraction needs to be
improved by using the methods, such as signal decomposition
algorithms (Kaleem et al., 2013).

Problems to be Solved in the Future
A first problem is how to automatically determine the
appropriate dictionary size and feature number of overcomplete

dictionary. Secondly, the computation speed of SR needs to
be improved. The aspects of the improvement may include
dictionary learning algorithm and sparse coefficient solution
algorithm. Thirdly, the difference between epileptic patients
with interictal EEG and normal control group need to
be analyzed in depth. It is the main reason why actual
performance of different methods can be distinguished only
when the difference between two kinds of signals is very
small.

Application and Performance Evaluation of
SRC in BCI
Method Description and Evaluation
Five perspectives of the SRC methods applied in BCI system
were presented in this review. The main stream idea of the first
three perspectives is to improve the classification performance,
the feature extraction and data selection by combining SR with
common spatial patterns (CSP). For the fourth perspective,
researchers used unlabeled samples to improve the classification
performance. As for the fifth perspective, some scholars proposed
integrating SR with other traditional classification methods.

For the first perspective, some researchers used CSP
and conventional SRC methods for signal preprocessing
and classifying, respectively. SRC method based on ell-1
minimization has a classification accuracy of 91.67% (Shin
et al., 2011), and the classification accuracy in constructing
dictionary reached 96.85% when using the band power feature
of signal filtered by CSP (Shin et al., 2012, 2013). However,
it is difficult to select the appropriate number of CSP
filters, and the computation complexity still needs to be
reduced. In view of this, recently proposed discriminative
dictionary learning (DDL) improved the classification accuracy
and computational efficiency (Zhou et al., 2012). A new
classification method based on simple adaptive SR also
showed a relatively high classification accuracy (Shin et al.,
2015).

For the second perspective, sparse term is often used
to improve the performance of the CSP method. Wang
(2013) integrated discriminant and adaptive extensions to
local temporal CSP, which had better classification accuracy.
CSP algorithm was cast in a probabilistic modeling setting
to overcome overfitting problem of CSP by using of sparse
Bayesian learning (Wu et al., 2015). Sparse filter bands common
spatial pattern (SFBCSP) recently proposed by Zhang et al.
(2015). showed an improved classification accuracy. However,
the determination of the regularization parameter λ in SFBCSP
is time consuming, and SFBCSP is not suitable for the analysis of
the data set with small samples.

For the third perspective, SR and CSP are often integrated to
improve the effectiveness of feature extraction or data/channel
selection. In respect of feature extraction, the sparse component
analysis (SCA) and CSP were utilized to construct a combined
feature vector (Li et al., 2005). The sparse CSP and sparse
principal component analysis (PCA) were applied to select
relevant EEG components and extract EEG features in BCI
system, respectively (Shi et al., 2011). However, there exists a

Frontiers in Aging Neuroscience | www.frontiersin.org 6 July 2016 | Volume 8 | Article 172

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Wen et al. EEG Signal Sparse Representation-Based Classification

vast improvement space in the classification accuracy of these
methods.

The classification performance can be improved according
to the selection of different data/channels. A sparsity-aware
method was proposed in order to select and remove low-
quality trial data (Tomida et al., 2015). When applying L1
regularization term to CSP, Yong et al. (2008) showed that
the average number of electrodes was reduced to 11% with a
slight decrease of classification accuracy. To ensure the lowest
reduction degree of classification performance, the minimal
subset of EEG channels was selected for the classification.
When L1/L2 norm was combined with CSP, the performance of
channel selection algorithm was improved in the case of noise
interference and limited data (Arvaneh et al., 2011). A sparse CSP
(sCSP) method proposed by Goksu et al. (2011, 2013) showed a
low computation complexity. However, the performance may be
decreased when the different samples were used or the number
of training samples is low.

A wrapped sparse group lasso method to select mixed EEG
channel feature is suitable for high dimensional feature fusion.
Stability and computing speed in this method were high, but the
classification accuracy needs to be improved (Wang et al., 2015).
The channel selection methods with CSP likely were trapped in
a local minimum due to the non convexity of the optimization
problem in CSP, which resulted in a decline in classification
accuracy (Goksu et al., 2013).

For the fourth perspective, the less training samples will lead
to the generalization performance deterioration caused by over-
fitting, and it is easy to obtain unlabeled samples. Therefore,
some researchers studied comprehensive learning mode to
combine the labeled with unlabeled data, and showed that the
classification performance was largely improved compared to the
traditional CSP. The comprehensive learning mode includes the
comprehensive CSP and semi-supervised SRC algorithm (Wang
and Xu, 2012; Jia et al., 2014). A subject transfer framework
reduced the training sessions of the target subjects by utilizing
samples from other subjects and improved the classification
accuracy (Tu and Sun, 2012). However, the computation
complexity of this method was high, and the number of samples
must be equal, which limited its application in reality.

For the fifth perspective, biomimetic pattern recognition
(BPR) and SR were combined to accomplish the task of
classification (Ge and Wu, 2012). A new classification method
which combined BPR and SR under the semi-supervised
co-training framework was recently proposed (Ren et al.,
2014). These methods utilized SR to solve the overlapping
coverage problem of BPR, and the classification accuracy
was greatly increased compared to traditional classification
methods. Mixed alternating least squares based on nonnegative
matrix factorization were proposed to analyze event-related
potential and event related spectral perturbation features. As a
consequence, the performance of the algorithm was increased
(Sburlea et al., 2015).

Problems to be Solved in the Future
Some problems remain to be solved in the field of BCI
application. On account of channel selection in SRC, it is

necessary not only to reduce channels, but also to maintain a
high classification rate at the same time. Nevertheless, how to
balance both is a challenge. It is still a research focus to determine
the appropriate number of spatial filters in order to avoid over-
fitting and meet the requirements of sparse coefficient solution.
In addition to the principle based on the minimization of the
reconstruction error, it is necessary to select new perspectives in
the dictionary construction methods.

Application and Performance Evaluation of
SRC in Detection of MCI and AD
Method Description and Evaluation
There are a few studies about SRC methods for the detection
of MCI and AD. Most studies focused on the angle of sparse
bump modeling. The classification accuracy was 93% when
using the sparse bump modeling method in the analysis
of the EEG signal (Vialatte et al., 2005a,b). However, it
still needs validation with more datasets. A BUS method
(Vialatte and Cichocki, 2006) and a computational intelligence
procedure for online sonification were proposed by Vialatte
et al. (2009, 2012). The results showed high identification
accuracy and also confirmed the potential of these methods
to be used in real-time diagnosis. In Vialatte et al. (2011)
improved the classification specificity of clinical EEG by
means of wavelet transform and sparse bump modeling.
However, the application of sparse bump modeling method
is limited to the analysis of the events at low frequency
bands. And for the reason of using a low pass filter, gamma
band activity did not suitable for the analysis in using this
method.

Problems to be Solved in the Future
When utilizing SRC for the analysis of EEG signals from MCI
and AD patients, the classification performance of SRC can be
improved by using sparse Bayesian learning method to extract
coupling and synchronization feature. For theMCI classification,
the space sparsity of the brain areas and time sparsity of channel
samples need to be considered. Reducing the amount of data
participating in the classification by selecting channels will
promote the classification performance.

Application of SRC Methods for the
Analysis of EEG Signal of Pre-MCI Patients
Application of SRC method in the analysis of epilepsy, BCI,
MCI and AD has achieved considerable achievements, however
no relevant research literatures about Pre-MCI diagnosis using
SRC methods can be found. We thus proposed to use SRC
method for Pre-MCI diagnosis. The small difference in EEG
signals between the Pre-MCI patients and normal control
group makes the diagnosis of Pre-MCI difficult. However,
if the accuracy, sensitivity, specificity and computing speed
of SRC methods can be further improved, it is possible
that these methods can be used for the diagnosis of the
Pre-MCI. As the data dimension of Pre-MCI is high, we
need to consider the space sparsity of brain areas and time
sparsity of EEG signals of every channel, reduce the amount
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of data used in the classification by selecting channels in
order to improve classification performance and enhance
the effectiveness in the dictionary design, feature extraction
and SR.

CONCLUSION

We evaluated the SRC methods in the analysis of EEG
signals from epilepsy, BCI, MCI and AD and illustrated
the characteristics, advantages and disadvantages of various
methods. The SRC methods have become an effective tool in
aiding the diagnosis of brain disorder. Further improving the
current SRC methods by such as combining SR with CSP will
largely increase the classification accuracy and efficiency as well
as sensitivity, making it potential for the application in diagnosis
of Pre-MCI.
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