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Physiological aging is paralleled by a decline of fine motor skills accompanied by

structural and functional alterations of the underlying brain network. Here, we aim to

investigate age-related changes in the spectral distribution of neuronal oscillations during

fine skilledmotor function.We employ the concept of spectral entropy in order to describe

the flatness and peaked-ness of a frequency spectrum to quantify changes in the spectral

distribution of the oscillatory motor response in the aged brain. Electroencephalogram

was recorded in elderly (n = 32) and young (n = 34) participants who performed either

a cued finger movement or a pinch or a whole hand grip task with their dominant

right hand. Whereas young participant showed distinct, well-defined movement-related

power decreases in the alpha and upper beta band, elderly participants exhibited a flat

broadband, frequency-unspecific power desynchronization. This broadband response

was reflected by an increase of spectral entropy over sensorimotor and frontal areas in the

aged brain. Neuronal activation patterns differed between motor tasks in the young brain,

while the aged brain showed a similar activation pattern in all tasks. Moreover, we found

a wider recruitment of the cortical motor network in the aged brain. The present study

adds to the understanding of age-related changes of neural coding during skilled motor

behavior, revealing a less predictable signal with great variability across frequencies in a

wide cortical motor network in the aged brain. The increase in entropy in the aged brain

could be a reflection of random noise-like activity or could represent a compensatory

mechanism that serves a functional role.

Keywords: aging, motor control, entropy, oscillations, EEG

INTRODUCTION

Physiological aging is paralleled by a decline of motor performance, most pronounced in
demanding fine motor skills. At the higher age (Smith et al., 1999), elderly show a decrease of
movement coordination (Stelmach et al., 1988; Wishart et al., 2000) with increasing variability of
motor output (Cooke et al., 1989; Darling et al., 1989), along with a general movement slowing
(Buckles, 1993). These behavioral changes are accompanied by alterations of the underlying brain
network. During movements a more widespread neuronal network is recruited in the aged brain
(Sailer et al., 2000; Ward and Frackowiak, 2003; Wu and Hallett, 2005; Naccarato et al., 2006; Rowe
et al., 2006; Vallesi et al., 2010; Deiber et al., 2013). Additionally, elderly show higher magnitudes
of movement-related desynchronization of oscillatory activity in frequency bands associated
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with motor control (Sailer et al., 2000). Apart from the larger
movement-related power decrease, few studies so far have
observed differences in the frequency patterns with age. When
reviewing lifespan changes in the alpha peak, Klimesch reported
a drop of peak frequency with age (Klimesch, 1999). Moreover,
previous studies found shifts of the most reactive peak frequency
during rest (Gaál et al., 2010) and attention (Deiber et al., 2013).
Hong and Rebec hypothesize that in order to compensate for
a non-uniform decrease of nerve conduction in the aged brain,
individual neurons increase their firing rate with a non-uniform
pattern, leading to an irregular firing pattern which subsequently
might lead to an unspecific broadband large-scale oscillatory
response (Hong and Rebec, 2012). Such a broadening of the
neuronal response has, to our knowledge, not been analytically
addressed before and is rather difficult to detect when analyzing
the data using movement specific narrow frequency bands as
previously suggested in healthy young, such as the alpha or
upper beta band (Pfurtscheller, 1989; Crone et al., 1998). In the
healthy young, spectral changes in the mu (∼8–13 Hz) and beta
band (∼14–30 Hz) are associated with voluntary movements
(Pfurtscheller and Lopes da Silva, 1999). Their definite functional
role still remains under debate, however, mu and beta rhythms
are thought to represent separate functional processes with
different time courses and distributions over the scalp. While
the mu rhythm dominantly localizes to the post-central hand
area, the beta rhythm localizes to pre-central areas (for a review
please refer to (Cheyne, 2013; Brittain and Brown, 2014). Here,
we investigate movement-related power changes over a broad
frequency band from 8 to 25 Hz and aim to determine whether
the implementation of motor tasks in the aged brain is in similar
frequency bands compared to the young brain. One measure to
characterize differences in the distribution of the spectral content
is the spectral entropy H. Spectral entropy is an uncertainty
measure borrowed from information theory. We solely employ
the mathematical concept of entropy by treating the frequency
spectrum as a probability density in order to describe the flatness
and peaked-ness of a frequency spectrum (Inouye et al., 1991).
An oscillatory activity with a flat frequency distribution and
large variability results in a high spectral entropy, whereas a
peaked signal such as a confined alpha or upper beta movement-
related desynchronization would result in a lower spectral
entropy. It was our primary objective to mathematically quantify
changes of the spectral content of oscillatory movement-related
patterns in the aged brain by employing the spectral entropy.
Electrophysiological data were recorded from elderly over the
age of 60 and young participants while performing different
skilled fine motor tasks. So far, most studies investigating
the aged motor system have focused on one specific motor
task. Here, we assessed different motor tasks, which allows
us to make inferences on more generalized age-dependent
motor network changes. The magnitude and spatial extent of
movement-related power decrease was analyzed. Importantly, we
characterized the distribution of the spectral content by spectral
entropy. We hypothesized that the aged brain shows larger
variability of oscillatory activation patterns with a broadening
of the movement-related frequency band and higher spectral
entropy.

MATERIALS AND METHODS

Participants
Sixty-six healthy volunteers participated in different EEG
experiments, consisting of an elderly group with 32 participants
over the age of 60 (mean age 72.2 y/o ± 5.2 SD, range 61–
81 y/o, 19 females) as well as a young control group with 34
participants (mean age 25.5 y/o ± 3.3 SD, range 19–34, y/o, 14
females). A subgroup of 15 elderly and 16 young participants
performed two different motor tasks. All participants were right-
handed as confirmed by the Edinburgh handedness inventory
(Oldfield, 1971), did not have a history of neurologic disorder and
gave written informed consent. All elderly subjects were seen by a
neurologist and did not show any cognitive impairment. Elderly
subjects participating in the Finger Sequence Task, requiring
learning of a digit sequence, all presented with a mini-mental
state examination ≥28. The study conforms to “The Code
of Ethics” of the World Medical Association (Declaration of
Helsinki) and was approved by the local ethics committee of the
Medical Association of Hamburg.

Motor Tasks
Participants performed a motor task during EEG recording. All
motor tasks required a movement in response to an external
visual cue. In every participant, a 2–5 min pre- and post-
experimental baseline was recorded at unconstrained rest with
eyes open.

Finger Sequence Task
Seventeen elderly (range 61–81 y/o) and 18 young (range 19–
33 y/o) participants trained a sequence of 10 consecutive button
presses [2 4 3 2 5 4 5 2 5 3, with (2) = index finger, (3) =

middle, (4) = ring, (5) = little]. The sequence was trained until
performance reached a stable level and participants were able
to play the sequence at least ten times in a row without any
mistakes at a pace of 1 Hz (Gerloff et al., 1997). Hence, the
sequence was considered overlearned, ensuring constant baseline
performance during the EEG session. Training was conducted
either on the day prior or on the day of the experiment. During
the following EEG experiment participants sat in front of a
computer screen with the right arm positioned on a keyboard.
Visual cues without any relation to the learned sequence (“#,”
“&,” “+,” “$”) were presented on a computer screen. The symbols
paced the execution of the memorized, well-trained sequence at a
frequency of 1 Hz and participants were asked to enter the finger
sequence at the pace of the visual cues. The sequence was played
with the right hand, using the index-, middle-, ring,- and little
finger. Each participant performed 40 repetitions of the 10-digit
sequence.

Pinch Grip and Whole Hand Grip Task
Fifteen elderly (range 67–79 y/o) and 16 young (range 20–34 y/o)
participants performed repetitive pinch as well as whole hand
grips lifting a weight positioned on a table in front of them.
Participants were seated in front of a monitor with their arms
placed on a custom-made platform. The right hand was placed
on a socket installed on the platform with the elbow 90◦Flexed.
The 200 g weight was lifted 10–20 cm of the table using the right
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thumb and index finger and reset immediately after. Instructions
were visually presented on a screen, consisting of the word “pinch
grip” or “whole hand grip,” followed by a “GO!” cue 2–3 s later.
Condition “pinch” and condition “whole” were presented in a
random, counterbalanced order. The next trial was initiated 8–
10 s later. Each participant performed 80 pinch and 80 whole
hand grips.

Recording Systems and Preprocessing
Data were sampled at 1000 Hz using a 63-channel EEG system
positioned according to the 10–10 System of the American
Electroencephalographic Society (using actiCAP R©, Brain
Products GmbH, Germany, Gilching; Electro-Cap International,
Inc., Eaton, OH, USA) and referenced to the Cz electrode.
The impedance of the EEG electrodes was kept below 25 k�.
Data were filtered from 0.2 to 256 Hz with a bandpass-filter of
third order. Datasets were segmented into one second epochs
for further analysis. Specifically, finger sequence data were
segmented ± 500 ms around the visual cue and lifting task
data were segmented from 300 to 1300 ms after the “GO”
cue. Eye-movement artifacts were removed employing an
independent component analysis (Makeig et al., 1996). Epochs
containing electrode artifacts, muscle artifacts, head movements,
or incompletely rejected blink artifacts were removed manually
by visual inspection. In participants with great muscle artifacts
a blind source separation-canonical correlation analysis was
applied in order to correct these artifacts (De Clercq et al.,
2006) as implemented in the eeglab-plugin meegpipe (https://
github.com/meegpipe/meegpipe/). Subsequently, data were
re-referenced to a common average reference. Artifact rejection
resulted in an overall number of µ = 117/260, SD = 63/44 trials
(elderly/young; Finger Sequence Task), µ = 64/63, SD = 5/6
trials (elderly/young; Pinch Grip Task), and µ = 74/73, SD= 4/8
trials (elderly/young; Whole Hand Grip Task).

Pre- and post-experimental baselines were pooled and
subsequently divided into 2000 ms segments and preprocessed
jointly as described above. The Fieldtrip toolbox (Oostenveld
et al., 2011) as well as custom written software using MATLAB
Version 8.2.0 (R2013b,Mathworks Inc.Massachusetts) were used
for EEG data analysis.

EEG Data Analysis
Frequency Analysis
Power spectra were calculated from 8 to 25 Hz in steps of 1
Hz applying a fast Fourier transformation using one Hanning
taper for each electrode and trial. In order to account for inter-
subject variability and decreasing power in higher frequencies,
spectral power was expressed as the relative power (Powrel)
defined by the percentage of power change during movement
(Powmove) compared to baseline (Powbaseline; Gerloff et al.,
1998; Pfurtscheller et al., 2003). Powbaseline, was obtained from
the preprocessed baseline data and averaged across segments
afterwards. Subsequently, Powrel was computed by:

Powrel = 100 ×
Powmove − Powbaseline

Powbaseline
(1)

Afterwards trials were averaged for each participant.

Spectral Entropy
Spectral entropy is an uncertainty measure borrowed from
information theory. Here, we apply the entropy as amathematical
concept to describe the flatness of the frequency spectrum, which
is treated as a probability density after appropriate normalization.
A uniform flat signal with a high variability and a broad spectral
content results in a high spectral entropy (H∼1), whereas a more
predictable signal with a narrow, peaked power spectrum in a
limited number of frequency bins yields a low spectral entropy
(H∼0). The spectral entropy is calculated by:

H =
−1

ln (N)

∑
pi ln(pi) (2)

with

pi =
|Powrel (i) |∑
i Powrel (i) |

(3)

and with Powrel(i) being the relative power of frequency bin i and
N being equal to the number of frequency bins (Inouye et al.,
1991). In order to quantify the distribution of spectral power,
we estimated the spectral entropy H in the broad frequency
band between 8 and 25 Hz as well as in the frequency band
showing greatest differences between the aged and young brain
(13–19 Hz). The spatial extent of differences H was evaluated by
calculating H for each electrode separately.

Source Analysis
Sensor data in the frequency band from 13 to 19 Hz were
projected to source level in each sensor of each participant.
The forward solution is constructed with a segmented template
MRI brain (Holmes et al., 1998) using the boundary element
method and a template grid of 8 mm spacing (Oostenveld
et al., 2011). Individual electrode positions were determined
using the Zebris localization system (CMS20, Zebris Medical
GmbH, Isny, Germany) and realigned to the template MRI brain.
A common filter for the frequency range from 13 to 19 Hz
of movement period and baseline period was calculated based
on the average real part of the cross-spectrum in that range
using dynamic imaging of coherent sources (DICS; Gross et al.,
2001) with source orientation chosen to maximize power using
the Fieldtrip Toolbox. The DICS beamformer uses a frequency
domain implementation of a spatial filter. Subsequently, the
contrast was computed expressing a relative change of power as
described in Equation (1).

Statistics
Firstly, it was the objective to analyze topographic age-group
differences of the mean broadband power changes (8–25 Hz) for
each motor task separately. Topographic age-group differences
were statistically tested using an unpaired student’s t-test
(relative power, normally distributed) or a Wilcoxon rank sum
test (entropy, non-normally distributed) corrected for multiple
comparisons (63 channels) controlling the false discovery rate
(FDR; Benjamini et al., 2001). Secondly, we tested age-group
differences of single frequency bins over left sensorimotor
cortex for each motor task separately, in order to demonstrate
differences of the power distribution. Power distribution age-
group differences were statistically tested using an unpaired
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student’s t-test corrected for multiple comparisons (18 frequency
bins) controlling the FDR (Benjamini et al., 2001).

In addition, we estimated topographic age-group differences
combining all participants of all three motor tasks in linear mixed
effects models using R (CDT, 2008) and lme4 (Bates et al., 2015).
The linear mixed effects models were calculated for entropy and
relative power respectively. In order to correct for a potential
influence of task, we entered task as a fixed effect. Participants
were entered as a random intercept in order to correct for
repeated testing. This model was calculated for each channel
separately. We then extracted the p-value from our main effect
of interest “group” and obtained 63 p-values (one per channel),
which were then FDR corrected. Moreover, for post-hoc testing
of task differences in young and elderly participants separately,
we modeled the interaction of group and task to perform
post-hoc testing using a pairwise comparison of least-square
means.

RESULTS

Power Amplitude Differences between
Elderly and Young Participants
The topology of movement-related broadband power changes
(8–25 Hz) revealed a more widespread spatial distribution of
desynchronization in the elderly compared to young participants
in all three tasks (Figure 1A). This difference of power was
significant in electrodes covering sensorimotor cortex as well as

in more frontal electrodes (electrodes as marked in Figure 1A,
FDR corr., p < 0.05). Further probing the distribution in single
frequency bins in electrodes covering the left sensorimotor cortex
(mean of electrodes: FC3, C3, CP3), elderly participants showed
a greater movement-related power decrease in all frequency
bins (Figure 1B). This difference was significant from 13 to
20 Hz for Task 1, from 15 to 17 Hz in Task 2, and from
13 to 22 Hz in Task 3. Please refer to Supplementary Tables
1, 2 for t-test results and Supplementary Figure 1 for data
distribution.

In order to identify responsible sources of oscillatory activity
in the significant frequency band, we applied a beamforming
technique. Figure 2 displays the difference of movement-related
power in the power band from 13 to 19 Hz between the aged
and young brain, revealing that the aged brain recruits a more
extended motor network of contralateral but also ipsilateral
primary sensorimotor and secondary premotor areas including
dorsal and ventral premotor cortex as well as the supplementary
motor area (Figure 2).

Differences in Spectral Entropy of
Oscillations in Elderly and Young
Participants
The shape of the distribution of the power spectrum in all three
motor tasks differed with age (Figure 1B). Whereas, in young
participants, a clear and peakedmodulation of movement-related
power decrease in the alpha and upper beta band was evident

FIGURE 1 | Power amplitude differences between elderly and young participants. (A) Topology of movement-related broadband power (8–25 Hz) for elderly

and young participants for each task separately, averaged over participants. Stars mark the significant electrodes (unpaired t-test, FDR corr., p < 0.05). (B) Power in

each frequency bin for elderly (red) and young (blue) averaged over electrodes covering the contralateral sensorimotor cortex (as framed by the rectangle in A). Black

dots mark a significant difference between both groups in the corresponding frequency bin (unpaired t-test, FDR corr., p < 0.05). The x-axis shows the frequency in

Hz, the y-axis displays the relative power (%) to baseline for elderly (red) and young participants (blue) separately.
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(Figure 1B, blue bars), the aged brain displayed a more uniform
flat curve of power decrease (Figure 1B, red bars). In order to
mathematically quantify this disparity of spectral distribution,
we calculated the spectral entropy H for elderly and young
participants in each channel.

FIGURE 2 | Source localized power. The difference of movement-related

source power (relative powerelderly – relative poweryoung;13–19 Hz) between

elderly and young of the Finger Sequence Task and Pinch Grip Task is

rendered on the cortical surface, displayed from a top and left-side view,

masked by power.

The group difference correcting for tasks and repeated testing
of the same participants was assessed in linear mixed effect model
for each channel separately. Figure 3A displays the estimated
mean of the mixed model for each channel over the broadband
spectrum from 8 to 25 Hz. Asterisks mark significant models
with p < 0.05 (FDR corr.; for model results, please refer to
Supplementary Tables 3, 4). The aged brain showed a higher
spectral entropy H in electrodes covering frontal as well as
sensorimotor areas. We further probed the spectral entropy
in a more restricted frequency band (13–19 Hz, Figure 3B)
in which relative power showed greatest differences between
groups. Hence, we confirmed a flatter more uniform frequency
spectrum with a broader spectral content in the aged population
compared to younger people during different fine skilled motor
tasks.

When assessing entropy differences in each task separately
(mean value of relative power, Figure 4), we find a similar pattern
in each task, with greater spectral entropy in the aged compared
to the young brain in electrodes covering frontal as well as
contra- and ipsilateral sensorimotor areas. Figure 4 revealed that
differences betweenmotor tasks were mainly driven by the young
participants. Elderly participants showed a similar activation

FIGURE 3 | Mixed model results (A) estimated mean power and entropy of the mixed effects model for each channel (8–25 Hz). Stars mark the significant group

effect of the mixed model (FDR corr., p < 0.05). (B) Estimated mean power and entropy of the mixed model for each channel (13–19 Hz). Stars mark the significant

group effect of the mixed model (FDR corr., p < 0.05).
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FIGURE 4 | Topology of movement-related power (left) and spectral entropy (right) between 13 and 19 Hz respectively for elderly and young participants for

each individual task separately. Stars mark the significant electrodes between groups (unpaired t-test, FDR corr., p < 0.05).

pattern in all three tasks, whereas in young participants the
neuronal activation pattern differs depending on motor tasks’
complexity.

Post-hoc testing of task differences in the mixed effects model
for the elderly and young group pointed toward differences in
entropy between the Finger Sequence Task and the Pinch Grip
and Whole Hand Grip Task in the young but not in the elderly
participants (Figure 5).

DISCUSSION

This study characterizes differences in the spectral content of
motor control in healthy aging. By using the concept of entropy,
we quantified differences in the spectral distribution between
the aged and young brain and found a higher spectral entropy
with a flat, uniform distribution of power in the aged brain
in various fine skilled motor tasks. Whereas, the young brain
showed lower entropy and a distinct peaked movement-related
power decrease in the alpha and upper beta band, the aged brain
exhibited a larger movement-related decrease of power most
pronounced in the low beta frequency band along with a wider
recruitment of the cortical motor network involving premotor
areas.

Reduced Frequency Specificity of the Aged
Brain
Movement execution leads to distinct event-related
desynchronization in the alpha and upper beta band over
contra- and ipsilateral sensorimotor areas (Pfurtscheller, 1989;
Crone et al., 1998). In task-related studies, these frequency bands
have been often used for analysis of movement specific oscillatory
changes. These motor-task-related frequency bands, however,
have been determined based on data in the young brain. In
contrast, these bands might not correspond to movement-related
changes in the aged brain, as supported by previous studies,
indicating changes in oscillatory activity patterns across the
lifespan. Apart from a larger magnitude of the movement-related
desynchronization within sensorimotor areas (Sailer et al., 2000;
Mattay et al., 2002), age-related changes comprise shifts in
resting state peak alpha frequency (Klimesch, 1999; Cottone
et al., 2013), a decrease of alpha reactivity (Gaál et al., 2010),
as well as changes of the dominant oscillator with age (Deiber
et al., 2013). Hence, a priori knowledge on frequency specific
bands as determined in the young brain might be arbitrary in the
aged brain and might hinder the detection of distinct age-related
oscillatory changes. For this reason, we characterized oscillatory
changes by using the concept of spectral entropy allowing us to
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FIGURE 5 | Post-hoc analysis of task differences in elderly and young.

Topographies display the estimated mean entropy of the mixed model for each

channel (13–19 Hz). Dots mark the significant difference of entropy within a

group comparing Task 1, 2, and 3. Only young participants show a significant

difference between the Finger Sequence Task and the Pinch Grip as well as

Whole Hand Grip task (FDR corr., p < 0.05).

circumvent the analysis of restricted frequency bands predefined
from the young brain. Thereby, we observed differences in the
spectral distribution of movement-related desynchronization
over a broad frequency band (8–25 Hz) and found a widespread
increase of spectral entropy during movement in the elderly
compared to young, indicating that the movement-related
broadband changes in the elderly are more variable and less
predictable. This phenomenon was observed in three different
fine motor skill tasks. The present finding underlines the notion
that the increase of spectral entropy is a rather task unspecific
phenomenon occurring during fine skilled motor control in the
aged brain. Even though spectral entropy topographies showed
differences in-between the Finger Sequence compared to the
Pinch Grip and Whole Hand Grip task, these differences were
solely derived from the young group. The aged brain on the
other hand showed a uniform increase of entropy in all three
tasks that did not statistically differ between tasks. One has to
keep in mind, however, that in order to explicitly test, whether
this difference of entropy over tasks was solely derived from
the young group, one would have to conduct a crossover study,
which includes execution of all three tasks in each participant.

Computational models of neuromodulation postulate that the
aged brain exhibits deficient neuromodulatory mechanisms and
consequently less distinctive neural pattern representations (Li
and Sikström, 2002). Therefore, the increased spectral entropy
could be a result of reduced coordination of enhanced synaptic
activity of neuronal assemblies leading to greater variability of
the neuronal responses. Correspondingly, increasing variability
resulting in less consistent motor actions has been observed
during healthy aging (Cooke et al., 1989; Darling et al., 1989;
Contreras-Vidal et al., 1998; Sosnoff and Newell, 2011). On
the one hand, the signal could be a result of inaccurate
interregional neuronal communication leading to a breakdown
of the frequency specificity, where the aged brain is not capable
of keeping a certain frequency. Hence, the increased variability
could be in line with the dedifferentiation of the aging brain
(Deiber et al., 2013). On the other hand, the broadening of the
frequency band could ensure to preserve the balance between
energy consumption and entropy of the neural signal. Tsubo
et al. have postulated that with higher uncertainty of the neural
responses, the brain reduces the amount of energy necessary
(Tsubo et al., 2012).Moreover, high variability of a signal has been
suggested to result in an increase of performance and might be
beneficial (Garrett et al., 2013). Hence, the increase of entropy
could be a compensating mechanism to account for a decline
of motor performance. In line Hanslmayr et al. speculated that
higher neuronal desynchronization presents a greater richness
of information, measured by the entropy and consider it as one
mechanism serving memory encoding (Hanslmayr et al., 2012).
We cannot, however, definitely infer whether a higher entropy is a
reflection of random noise-like activity or if the irregular pattern
is a compensatory mechanism that serves a functional role.
Hence, higher entropy could mean that either more information
is sent, or that more noise-like random activity is produced
and sent. Further research will have to address this important
issue, especially to determine its functional implication on
behavior.

Enhanced Spatial Recruitment in the Aged
Brain
Several functional imaging and EEG studies have reported a
more extended recruitment of brain areas during movement
in the aged brain (Sailer et al., 2000; Mattay et al., 2002; Wu
and Hallett, 2005; Naccarato et al., 2006; Rowe et al., 2006;
Vallesi et al., 2010; Deiber et al., 2013). In line, we found
activations in an extended motor network including bilateral
primary motor and sensory areas as well as ipsilateral premotor
areas, namely, dorsal and ventral premotor cortex, pre- and
supplementary motor areas (Figure 2), most pronounced in
the lower beta frequency band. The over-recruitment of brain
areas might lead to more potential network configurations
with higher noise interferences and hence greater variability
of states giving rise to the unspecific frequency distribution
of movement-related power changes determined here. The
cause of this over-recruitment could be either compensation
with greater recruitment of secondary motor areas, because of
the subjective increase of task-related complexity, in order to
achieve the same motor output (Zimerman et al., 2014), or
an increase of the attentional load (Reuter-Lorenz and Cappell,
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2008), or due to inefficient activations with reduced selectivity of
neuronal networks and less distinct activation patterns (Li and
Lindenberger, 1999; Riecker et al., 2006). However, this question
cannot be definitely answered by this study, mostly because it
lacks a functional outcome parameter (for a review see Grady,
2012).

Possible Mechanisms of Dynamical
Changes during Healthy Aging
The high variability of the spectral content along with the over-
recruitment of secondary motor areas might be, on the one hand,
a result of a decrease in selective local inhibition with greater
background activity. On the other hand, a reduced selectivity
of the network could be the consequence of a more general
inhibition deficiency due to age-related structural and functional
changes of the frontal cortex (Tisserand and Jolles, 2003;
Rajah and D’Esposito, 2005). Moreover, a reduction of specific
regulatory thalamic input could result in less distinct cortical
activations. In Parkinson patients research has demonstrated
the modulating influence of the basal ganglia-thalamocortical
network on cortical oscillation patterns and motor control (de
Hemptinne et al., 2013, 2015). These influences can be either
of structural nature or can be evoked by intrinsic changes of
synaptic properties. Furthermore, disrupted network dynamics
might be a result of more subtle changes (McCarthy et al.,
2012; Kopell et al., 2014; Voytek and Knight, 2015), such as
neurochemical shifts and changes in synaptic binding potentials
and receptor density. Future studies will have to further
determine the underlying cause of oscillatory alterations in the
aged brain.

In summary, the aged brain exhibits a broadband, frequency-
unspecific power desynchronization during movement as
reflected by an increase of spectral entropy, revealing a less
predictable signal with great variability across frequencies in a
wide cortical motor network.
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