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Healthy aging is typically accompanied by a decrease in the motor capacity. Although
the disrupted neural representations and performance of movement have been
observed in older age in previous studies, the relationship between the functional
integration of sensory-motor (SM) system and aging could be further investigated. In
this study, we examine the impact of healthy aging on the resting-state functional
connectivity (rsFC) of the SM system, and investigate as to how aging is affecting
the rsFC in SM network. The SM network was identified and evaluated in 52 healthy
older adults and 51 younger adults using two common data analytic approaches:
independent component analysis and seed-based functional connectivity (seed at
bilateral M1 and S1). We then evaluated whether the altered rsFC of the SM network
could delineate trajectories of the age of older adults using a machine learning
methodology. Compared with the younger adults, the older demonstrated reduced
functional integration with increasing age in the mid-posterior insula of SM network and
increased rsFC among the sensorimotor cortex. Moreover, the reduction in the rsFC of
mid-posterior insula is associated with the age of older adults. Critically, the analysis
based on two-aspect connectivity-based prediction frameworks revealed that the age
of older adults could be reliably predicted by this reduced rsFC. These findings further
indicated that healthy aging has a marked influence on the SM system that would be
associated with a reorganization of SM system with aging. Our findings provide further
insight into changes in sensorimotor function in the aging brain.

Keywords: aging, resting state fMRI, functional connectivity, sensory-motor system, machine learning

INTRODUCTION

Healthy aging is typically accompanied by functional and structural changes in the brain. Decrease
in motor performance and movement coordination is one of the most consistent findings in older
adults (Seidler et al., 2010; Allen et al., 2011; Hoffstaedter et al., 2014), and is an important aspect of
physiological aging. The general slowing of movements accompanied with aging has been observed
in previous studies (Birren and Fisher, 1995). The primary sensory-motor (SM) system plays a
critical role for somesthesia and movement generation. Accumulating evidence suggests that age
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related resting-state functional connectivity (rsFC) decreases in
the SM network (Tomasi and Volkow, 2012). Furthermore,
several prior studies have found both motor performance and
age to be associated with connectivity strength in older adults,
suggesting that it may serve as a biomarker of brain health
and functional performance (Langan et al., 2010; Seidler et al.,
2015).

Age-related functional and structural declines in the SM
system and their possible impact on sensorimotor performance
are quite well documented (Seidler et al., 2010). During an
isometric handgrip task, previous study demonstrated that
activity in the contralateral primary motor cortex, cingulate
sulcus and a premotor cortex co-varied positively with increasing
force output in younger adults, but was less prominent in older
adults (Ward et al., 2008). These findings possibly indicate
a reduced ability to modulate activity in appropriate motor
networks in older adults (Seidler et al., 2010). In recent studies,
with increasing age, the reduced rsFC between the mid-posterior
insula and subthalamic nucleus (Mathys et al., 2014), as well
as SMA and central insula (Hoffstaedter et al., 2014) that
plays an important role in sensorimotor integration processing
(Deen et al., 2011; Chang et al., 2013; Uddin, 2015), have
been thought to be associated with the age of older adults.
Furthermore, Seidler et al. (2015) found that greater rsFC
of SM system was linked to better motor performance in
healthy older adults. It was thus concluded that changes in
the resting-state of the SM system might contribute to the
sensorimotor performance observed in older adults (Seidler et al.,
2015).

Several previous structural and functional studies using
magnetic resonance imaging (MRI) scans have also shown
developmental trajectories in brain maturation and aging
(Dosenbach et al., 2010; Rodrigue and Kennedy, 2011; Cao
et al., 2014, 2016; Khundrakpam et al., 2015). Khundrakpam
et al. (2015) found that the top predictors of brain maturity
were found in highly localized sensorimotor (precentral and
postcentral gyrus, insula) and association areas (including middle
and superior frontal gyrus) in normally growing children and
adolescents. Similarly, Dosenbach et al. (2010) reported that rsFC
of SM network contributed in estimating chronological age in
the typically developing volunteers. However, fewer studies have
examined the predictive model of chronological age in healthy
older adults (Qiu et al., 2015). Aging of the brain’s structure
over the course of the adult lifespan has been characterized
by decreased gray matter volume (GMV) in prefrontal cortex
and primary sensory cortices (Rodrigue and Kennedy, 2011).
Changes in the resting-state of the SM system might contribute
to estimate the age of older adults (Qiu et al., 2015). Based
on the existing literature, it is important to ascertain the
intrinsic rsFC patterns of the SM system in older adults. Thus,
we hypothesized that participants with advanced age would
demonstrate abnormal SM system connectivity; moreover, we
further speculated that the age of older individuals would be
predicted by decreased intrinsic functional connectivity of the SM
system.

In the present study, to validate our hypothesis, a
cohort of healthy aging subjects was recruited in resting

state fMRI test. First, we analyzed resting state fMRI data
to evaluate the impact of healthy aging on the primary
sensorimotor system from global (independent component
analysis, ICA) and local (seed-based functional connection
analysis) aspects. In addition, we used machine learning
approaches from two-aspect connectome-based prediction
frameworks contain multivariate pattern analysis (MVPA) and
univariate pattern analysis (UVPA) tools to examine brain-
based predictors of individual differences in the age of older
adults.

MATERIALS AND METHODS

Subjects
Two groups of test subjects were recruited for this study,
including 68 healthy right-handed older adults [age (mean± SD):
63.5 ± 6.5 years (51–78 years); the years of education:
9.9 ± 3.2 years (6–14 years); n = 37 females] and fifty-seven
healthy right-handed younger adults [age: 20.5 ± 2.2 years
(18–26 years); the years of education: 13.9 ± 1.2 years (13–
16 years); n = 28 females]. None of the participants had a
history of substance abuse, neurological or psychiatric disorders.
All older subjects were assessed using neuropsychological and
health test batteries including the health scale named Chinese
36-item short-form health survey (SF-36), which consisted of
36 items and tapped eight health concepts (Li et al., 2003),
and the neuropsychological test named Montreal Cognitive
Assessment (MoCA), which was specifically developed to screen
for mild cognitive impairment (Nasreddine et al., 2005). Subjects
with poor performance on the SF-36 and low MoCA score
(<25) were excluded from this study. All the participants gave
informed consent and the research protocol was approved by the
Ethics Committee of the University of Electronic Science and
Technology of China. All subjects were financially compensated
for their time.

Imaging Data Acquisition
Images were acquired on a 3T MRI scanner (GE DISCOVERY
MR750) at the MRI Research Center of University of
Electronic Science and Technology of China. During
scanning, foam padding and ear plugs were used to reduce
head motion and scanning noise, respectively. Resting
state functional MRI data were acquired using gradient-
echo echo planar imaging sequences (repetition time
[TR] = 2000 ms, echo time [TE] = 30 ms, flip angle [FA] = 90◦,
matrix = 64 × 64, field of view [FOV] = 24 cm × 24 cm, slice
thickness/gap = 4 mm/0.4 mm), with an eight channel-phased
array head coil. A 510-second resting state scan (yielding 255
volumes) was collected from each of the subjects. Subsequently,
high-resolution T1-weighted images were acquired using a
3- dimensional fast spoiled gradient echo (T1-3D FSPGR)
sequence (TR = 6.008 msec, FA = 9◦, matrix = 256 × 256,
FOV = 25.6 cm × 25.6 cm, slice thickness = 1 mm, no gap, 152
slices). During resting-state fMRI, all subjects were instructed to
have their eyes-closed and to move as little as possible without
falling asleep.
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fMRI Preprocessing
Data preprocessing was performed using SPM81 (Statistical
Parametric Mapping). The first five volumes were discarded for
the magnetization equilibrium from all fMRI scans. A series of
preprocessing steps was performed for each subject: (1) slice
timing correction; (2) head motion correction; (3) normalization:
in detail, the mean images resulted from the motion correction
step were segmented into gray matter, white matter, and
cerebrospinal fluid using the “unified segmentation” (Ashburner
and Friston, 2005). Then, we could get the resulting parameters of
a discrete cosine transformation, which defines the deformation
field to move subject data into Montreal Neurological Institute
(MNI) space. The deformation was subsequently applied to
transform each echo planar imaging volume into the MNI single-
subject space. The resulted images were resampled at 3 mm
isotropic voxel size; (4) images were smoothed by an 8-mm
full width at half maximum Gaussian; (5) temporal filtering
was performed in band-pass 0.01–0.08 Hz (Fox et al., 2005);
(6) nuisance signals were regressed out, including white matter,
cerebrospinal fluid and global signal, and six motion parameters.
Subjects who had a maximum translation in any of the cardinal
directions larger than 1 mm or a maximum rotation larger than
1◦ were excluded from subsequent analysis. In addition, we
also assessed framewise displacement translation (FDtranslation)
and framewise displacement rotation (FDrotation) in both groups
using the following formula:

FDtranslation/rotation =

1
M − 1

∑M

i = 2

√
|1 dxi |2 + |1 dyi |2 + |1 dzi |2

where M is the length of the time courses (M= 250 in this study),
xi, yi, and zi are translations/rotations at the ith time point in the
x, y, and z directions, respectively, 1 DXi = Xi − Xi − 1, and
similar for Dyi and Dzi.

GMV Calculation
Controlling functional connectivity maps by adding the GMV
as a covariate in the rsFC analysis (Damoiseaux et al.,
2008) could increase the reliability of resting state fMRI
studies and indicate whether changes in rsFC maps are
associated with brain atrophy. To obtain the GMV, T1-
weighted images were processed using SPM8 toolbox with spatial
normalization to MNI-space using a diffeomorphic anatomical
registration through exponentiated lie algebra (DARTEL), and
segmentation into gray matter, white matter and cerebrospinal
fluid. The segmented gray matter images were modulated
using nonlinear deformation. Individual GMV of the whole
brain was calculated by setting a threshold at a probability of
80%.

Sensory-Motor Connectivity Analysis
The SM system is a common resting state network reported in
previous studies. In general, there are two common approaches

1http://www.fil.ion.ucl.ac.uk/spm/

to identify this system: a data-driven method and a hypothesis-
driven method. The ICA is selected for the former; the typical
choice for the latter is the seed-based rsFC analysis with seed at
the motor and somatosensory cortex. These two methods were
adopted in this study to evaluate the rsFC of the sensorimotor
system in younger and older adult subjects.

First, the data-driven method, ICA, was performed in
two groups. Group spatial ICA (Calhoun et al., 2001b) was
conducted using GIFT software2 (Version 2.0). We used
minimum description length (MDL) (Li et al., 2007) to
validate the number of ICA components. For computational
feasibility, principal component analysis was used to reduce
data dimensionality. The infomax algorithm was repeated
30 times in ICASSO3 and the resulting components were
clustered to estimate the reliability of the decomposition.
Finally, spatial maps and time courses were reconstructed
for each subject using the group ICA (GICA) back-
reconstruction method based on principal component analysis
compression and projection (Calhoun et al., 2001a). The
sensorimotor network component were visually inspected and
selected.

The resting state networks comprising the primary motor
somatosensory cortices were estimated using a seed-based
analysis. Based on our previous research work (Luo et al.,
2012), four nearly spherical regions (radius 6 mm) were
selected from the bilateral primary motor cortex (right M1,
MNI coordinates [47–15 57]; left M1, MNI coordinates
[–44–15 58]) for the motor network, and the bilateral
primary somatosensory cortex (right S1, MNI coordinates
[53–26 59]; left S1, MNI coordinates [–49–26 60]) in the
somatosensory network. The mean BOLD time series were
extracted from these seeds. Subsequently, rsFC analysis was
performed between the seed and every voxels in the brain.
The resulting correlation coefficients were transformed to
approximate a Gaussian distribution using Fisher’s r-to-z
transformation.

Statistical Analysis
Statistical analysis of the rsFC was performed in SPM8 for
both seed-based rsFC and ICA. First, the whole brain GMV,
years of education and gender were regressed as the potential
confounding covariates in the general linear model for each
group to correct for the effects of atrophy, education and gender
on subsequent rsFC analysis. Then, the within-group Z-values
maps were analyzed with a random effect one-sample t-test.
Statistical maps of significant connections with each seed were
created for each group. A threshold of P < 0.05 (false discovery
rate corrected, cluster size >23 adjacent voxels (621 mm3) was set
to identify the significant level. Second, a two-sample t-test was
performed with an explicit mask from the union set of the one-
sample t-test results of the two groups. The significance threshold
of group differences was set to P < 0.05 (false discovery rate
corrected) and cluster size >23 adjacent voxels (621 mm3) in the
mask.

2http://mialab.mrn.org/software/gift/
3http://research.ics.tkk.fi./ica/icasso
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Connectome-Based Prediction
Framework
To investigate the underlying relationship between altered
functional properties in the SM system and age in older
adults, we used machine learning algorithms in this study. The
leave-one-out-cross-validation (LOOCV) strategy was used to
estimate prediction accuracies (Lachenbruch and Mickey, 1968).
Prediction process consisted of two steps: training and testing.
In the training step, each older adult were designated the test
sample in turns while the remaining samples were used to train
the predictor model. The altered rsFCs (false discovery rate
corrected P < 0.05, cluster size >23), which resulted from ICA
and seed-based analysis in the training step, were used as features.
Then, in the testing step, we predicted the ages of remaining
older adult using the same feature. To predict the age of older
adults from the local and global change in the SM system, we
conducted two-aspect connectome-based prediction frameworks
using MVPA on all altered rsFCs and UVPA on single altered
rsFCs, respectively. Specific, the MVPA is based on support vector
machine (SVM), and UVPA is a machine learning approach
combines LOOCV with linear regression.

Multivariate Variable Pattern Prediction Analysis
In this study, a support vector regression (SVR) procedure (Smola
and Scholkopf, 2004) was used to derive a brain aging of older
adults from multivariate pattern. SVR is a supervised learning
technique based on the concept of SVM in order to make real-
valued predictions. We used the ε–SVR algorithm implemented
in LIBSVM (Chang and Lin, 2011) to calculate the regression
model used for estimating the brain aging of older adults. To
achieve generalized performance, SVR attempts to minimize the
training error within the ε tolerance and the complexity of the
regressor (Smola and Scholkopf, 2004). A linear kernel SVR was
used in this study. The epsilon parameter was set to its default
value, ε = 0.001. During LOOCV, each older adult was designated
the test sample in turns while the remaining samples were used to
train the SVR predictor; the trained regression model is used to
predict the testing example.

In detail, to improve the performance of the predictor, we first
selected the features and then evaluated the age predictions using
two nested stratified LOOCV loops (Ambroise and McLachlan,
2002; Huttunen et al., 2012). The features were selected in the
inner LOOCV loop and the age predictions were evaluated in
the outer LOOCV loop thus avoiding the problem of training
on testing data. For each inner LOOCV loop, the correlation
coefficient of each feature with the chronological age was
computed on the data that is the training set of the outer
LOOCV loop. The features were then separately ranked by
the absolute value of the correlation coefficients in descending
order. The model goodness criterion, which was the number
of the ranked features that used in the outer LOOCV loop,
was the correlation coefficient (r) between the chronological and
estimated age. The ranked features, which could get the highest
r between the chronological and estimated age, were retained,
while the rest were eliminated. Since features ranking was based
on a different subset of data for each of inner LOOCV, the
selected features was slightly different among results of each inner

LOOCV. The consensus features were selected to form part of the
predictor.

Univariate Pattern Prediction Analysis
We also conducted connectome-based prediction frameworks
from univariate pattern based on single feature that was the
altered rsFC in the older compared with younger adults in the
training step. Here, a machine learning approach with LOOCV
was used together with linear regression (Cohen et al., 2010).
The age variable for older adults was referred to as “label”.
LOOCV was performed with this label. The dependent variable
(age of older adults) and the independent variable (averaged
value) were inputted into a linear regression algorithm. A linear
regression model was established using altered rsFC chosen
from the training step. Predicted values were obtained for the
remaining older adult. This procedure was repeated to obtain a
final result. The technical details are provided in Supplemental
Information (see Results).

Model Prediction Evaluation
The two-aspect (MVPA and UVPA) models’ accuracy in
predicting older adults’ age according to altered rsFCs were
evaluated using two statistical measures. First, Pearson
correlation coefficient [r(predicted, observed)] was computed
between chronological and estimated age. A nonparametric
testing approach was used to test the null hypothesis of no
significant correlation. The chronological ages were randomly
permuted 1000 times, and the entire prediction process was
carried out with each one of the randomized prediction labels.
The statistical significance (p-values) of the permutation test
represent the probability of observing the reported accuracy by
chance [(number of permutation r(predicted, observed) < observed
r(predicted, observed)) + 1)/(number of permutations + 1)]. Only
an extent threshold p < 0.05 is reported. Second, the mean
absolute error (MAE) which measures the average magnitude of
errors between chronological age and model predicted age was
calculated. Low MAE value means better prediction than high
MAE value.

Validation: Reproducibility
There is currently no consensus over whether the whole brain
signal should be removed in the preprocessing of the resting-state
fMRI data. The global signal is confounded with physiological
noise, which has been reported by several studies (Birn et al.,
2006), and should be removed (Fox et al., 2009). On the other
hand, other studies have suggested that global signal regression
(GSR) could introduce negative rsFC (Murphy et al., 2009;
Weissenbacher et al., 2009), and is associated with the neuronal
signal (Schölvinck et al., 2010). To ensure that the results were
not outcome of GSR, we constructed the resting state networks
of the primary motor somatosensory cortices using a seed-
based rsFC analysis without GSR. Then, we also recomputed
the prediction analysis, which included two-aspect connectome-
based frameworks from MVPA and UVPA tools, based on the
altered rsFCs resulted from GSR.

We further added the GMV as a control feature, combined
with all altered rsFC features, decreased rsFC features of insula,
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TABLE 1 | Significantly decreased functional connections among the SM network in older adults compared with younger adults.

MNI coordinates

Regions BA x y z Peak T-score Cluster voxels

Younger > older

Left postcentral BA 4 −24 −34 72 4.71 97

Left superior parietal BA 7 −26 −47 69 3.93

Right postcentral BA 4 22 −35 71 6.09 184

Right superior parietal BA 5 18 −49 68 5.03

Right precentral BA 6 20 −26 71 4.68

Left insula BA 48 −35 −19 15 4.12 24

Left rolandic operculum BA 48 −41 −21 15 3.76

Right insula BA 48 37 −16 13 4.47 37

BA, Brodmann area.

as well as increased rsFC features, respectively, in the UVPA
and MVPA tools to compare the prediction contribution of the
increased and decreased features in the altered SM system of older
adults.

RESULTS

Participant Fundamental Information
Sixteen older adults were excluded because of low MoCA score
(five subjects), poor performance on the SF-36 (three subjects),
and excessive head motion (eight subjects). Six younger adults
were also excluded because of excessive head motion. Thus, 52
older subjects [age (mean ± SD): 63.2 ± 5.8 years (51–76 years),
n = 30 females] and 51 younger subjects [age: 18–26 years
(21.5± 1.9 years), n= 26 females] were included in further rsFC
analysis. In addition, we compared the FDtranslation and FDrotation
values between the remained subjects of two groups to evaluate
the homogeneity of head motion between two groups. There were
no significant differences between the two groups concerning FD
values (two-sample two-tailed t-tests, T = 1.02, P = 0.31 for
FDtranslation, and T = 1.20, P = 0.23 for FDrotation). There also
were no significant differences between the two groups in gender
(Chi square test, P = 0.49). Younger adults had more years of
education compared with older adults (two-sample two-tailed
t-tests, T = 9.35, P < 0.001). Compared with younger adults,
significantly decreased whole GMV was found in older adults
(two-tailed t-test, T = 4.32, P < 0.001).

Analysis of Sensorimotor Network from
ICA Analysis
Using GICA, 36 components were estimated by MDL criterion
(Li et al., 2007), which include default mode network, auditory
network, sensorimotor network, visual network, cerebellum
network, and frontal-parietal network, for both groups. Because
this study focused on SM system, the independent component
(IC 15) including the supplementary motor area, sensorimotor
cortex, and secondary somatosensory cortex, was selected as
SM network, which is consistent with previous results (Smith
et al., 2009). Compared with the younger adults, the older

FIGURE 1 | The findings of functional connection of SM network from
ICA. Independent component (IC) of SM network in older adults (A: the first
row) and younger adults (B: the second row), and the between-group
difference (C: the last row) are demonstrated. Cool color indicates decreased
functional connections when older adults compare to younger adults. For
display purposes, all of the maps are shown with t score between ±3.5
and ±10.

group showed the significantly decreased functional connections
among the main regions in the SM network, including SMA,
pre/postcentral, superior parietal lobule, mid-posterior insula,
and rolandic operculum (Table 1; Figure 1).

Seed Based Functional Connectivity
Analysis
The within-group rsFC maps were generated for each group. In
the younger adults, the bilateral M1 was positively correlated with
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FIGURE 2 | Resting-state functional connection findings with global signal regression (GSR). Patterns of significant positive correlation with four seeds: left
M1 (A: x = –44, y = –15, z = 58), right M1 (B: x = 47, y = –15, z = 57), left S1 (C: x = –49, y = –26, z = 60), and right S1 (D: x = 53, y = –26, z = 59), in older
adults (the first row) and younger adults (the second row), and the between-group difference (the last row) are demonstrated. Cool color indicates decreased
functional connections and hot color indicates increased functional connections, when older adults are compared to younger adults. For display purposes, all of the
maps are shown with t score between ±3.5 and ±10.

the pre- and postcentral gyrus, middle occipital gyrus, superior
temporal gyrus, SMA, putamen, and insula (Figures 2A,B). In
the older adults, the bilateral M1 was positively correlated with
similar brain regions such as in younger adults (Figures 2A,B).
Relative to the younger adults, the older adults showed
significantly increased rsFC seeded at bilateral M1 to pre- and
postcentral gyrus and superior parietal lobule, while decreased
rsFC was detected in the bilateral insula and rolandic regions
(Table 2; Figures 2A,B). In the younger adults, the signals from
pre- and postcentral gyrus, superior frontal gyrus, SMA, and
insula were positively correlated with the signals from bilateral
S1 (Figures 2C,D). In the older adults, the bilateral S1 were
positively correlated with similar brain regions to those of
the younger adults (Figures 2C,D). Compared to the younger
adults, significantly increased connections were observed among
the primary sensorimotor cortex and superior parietal lobule,

while decreased connections were detected in the bilateral
insula and rolandic regions (Table 2; Figures 2C,D). These
results were largely preserved after accounting for the effects of
global signal removal (Figure 3; Supplementary Table S1). Other
details are provided in Supplemental Information (see Intrinsic
Functional Connectivity Without Global Signal Regression
Analysis).

To compare the contribution of the significantly increased
and decreased rsFC in the altered SM system of older
adults, MVPA was used in this study, since the contribution
would be positively related with the performance of classifier
(the detailed processing see Section “Comparison between
Increased rsFC and Decreased rsFC through Multivariate
Classification” in Supplemental Information). SVM classifiers
were adopted here to classify older adults from younger
adults using increased functional connections and decreased
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TABLE 2 | Significant differences for resting-state functional connections with bilateral M1 and S1 in older adults compared with younger adults.

MNI coordinates

Regions BA x y z Peak T-score Cluster voxels

Left M1

Younger < older

Right postcentral BA 3 23 −38 64 4.38 86

Right precentral BA 6 20 −22 65 3.91

Left superior parietal BA 2 −21 −47 64 4.28 42

Younger > older

Right insula BA 48 40 −13 10 5.32 229

Right rolandic operculum BA 48 44 −16 17 5.03

Right superior temporal BA 48 48 −19 4 4.83

Left insula BA 48 −39 −11 9 4.95 139

Left rolandic operculum BA 48 −43 −17 18 4.38

Left superior temporal BA 48 −49 −5 0 3.93

Right M1

Younger < older

Left superior parietal BA 5 −21 −49 67 3.67 33

Younger > older

Right insula BA 48 39 −12 10 6.28 319

Right rolandic operculum BA 48 44 −16 17 5.47

Right superior temporal BA 48 46 −16 3 3.97

Left insula BA 48 −39 −13 10 5.67 302

Left rolandic operculum BA 48 −42 −17 17 5.22

Left superior temporal BA 48 −45 −24 7 4.23

Left S1

Younger < older

Right precentral BA 6 22 −27 65 3.86 66

Right postcentral BA 2 24 −42 63 3.65

Right supplementary motor
area

BA 6 −2 −10 57 4.03 23

Left supplementary motor area BA 6 2 −10 55 3.94

Left superior parietal BA 5 −18 −52 67 3.99 39

Younger > older

Right insula BA 48 40 −13 9 5.22 175

Right rolandic operculum BA 48 44 −14 17 5.08

Right superior temporal BA 48 46 −16 4 4.31

Left insula BA 48 −39 −10 9 4.99 164

Left rolandic operculum BA 48 −43 −19 16 4.92

Right S1

Younger < older

Right precentral BA 6 19 −26 65 3.72 36

Younger > older

Right insula BA 48 42 −13 8 5.57 249

Right rolandic operculum BA 48 41 −18 19 4.51

Right superior temporal BA 48 49 −22 6 3.81

Left insula BA 48 −36 −11 10 4.83 253

Left rolandic operculum BA 48 −44 −18 17 4.61

Left superior temporal BA 48 −47 −19 6 3.61

BA, Brodmann area

functional connections as features, respectively. Results show
that linear SVM classifier with decreased rsFC score feature
performs better than linear SVM classifier with increased
rsFC score feature in terms of accuracy, sensitivity, specificity,

and AUC value (Table 3; Figure 4). Other details are
provided in Supplemental Information (see Comparison between
Increased rsFC and Decreased rsFC through Multivariate
Classification).

Frontiers in Aging Neuroscience | www.frontiersin.org 7 January 2017 | Volume 8 | Article 306

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


fnagi-08-00306 December 28, 2016 Time: 15:57 # 8

He et al. Predicts Aging through Sensorimotor System

FIGURE 3 | Resting-state functional connection findings without GSR.
Patterns of between-group difference of four RSNs using four seeds: left M1
(x = –44, y = –15, z = 58) (the first row), right M1 (x = 47, y = –15, z = 57)
(the second row), left S1 (x = –49, y = –26, z = 60) (the third row) and right
S1 (x = 53, y = –26, z = 59) (the last row). Cool color indicates decreased
functional connections and hot color indicates increased functional
connections, when older adults are compared to younger adults [P < 0.0001
(uncorrected) and cluster size >23 adjacent voxels (621 mm3)].

Prediction of Older Adult’s Chronological
Age
We further examined the intrinsic functional connectivity of
the sensorimotor system in relation to age in the older adults.
According to the differences between groups in the training
step, regions with significantly altered rsFC were chosen for
the following machine learning prediction analysis: bilateral
mid-posterior insula, superior parietal lobule, SMA, and
pre/postcentral resulted from seed-based rsFC comparison,
superior parietal lobule, mid-posterior insula, SMA and
postcentral resulting from ICA comparison.

The result of MVPA [r(predicted, observed) = 0.463, p < 0.001,
MAE = 3.993, Figure 5] represents that the age of older adults
could be predicted through the features which come from fifty
altered rsFC features. Five consensus features (left insula and left
M1, left insula and right M1, left insula and right S1, right insula
and left M1, right insula and left S1), which were used in the
outer LOOCV loop, were observed. Furthermore, the univariate
pattern connectome-based prediction analysis also revealed that,
in older adults, age could be reliably predicted by the decreased

FIGURE 4 | ROC curves of the two SVM classifiers, blue for decreased
rsFC feature, red for increased rsFC feature.

rsFC value in the right mid-posterior insula resulting from ICA
analysis [r(predicted, observed) = 0.237, p = 0.026, MAE = 4.698,
Figure 5), as well as through decreased rsFC values between
sensorimotor cortex and bilateral mid-posterior insula (Table 4;
Figure 5).

In addition, these results were also largely preserved
after accounting for the effects of global signal removal
(Supplementary Table S2; Supplementary Figure S1). More
details are provided in Supplemental Information (see Detailed
UVPA Prediction Steps and Results). The UVPA results
resulted from features, which are not significant through
permutation test, are provided in Supplemental Information
(see Materials; Supplementary Tables S3.1–S3.3). Finally, the
prediction analyses, which are based on different sets of features,
show that the prediction results with insular features performs
better than other sets of features. Other details are provided in
Supplemental Information (see The Prediction Results Based on
Different Sets of Feature; Supplementary Tables S4.1,S4.2).

DISCUSSION

Our results demonstrated that normal aging is associated with
declining functional integration in the primary SM system using
resting-state fMRI, and the individual age of older adults can

TABLE 3 | Classification performance for SVM classifier based on increased rsFC score and decreased rsFC score, respectively.

SVM classifier Accuracy Sensitivity Specificity AUC P

Decreased sFC feature 83.50% 84.62% 82.35% 91.21% P < 0.001

Increased rsFC feature 71.84% 71.15% 72.55% 81.15% P < 0.001
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FIGURE 5 | Evaluation of two-aspect connectome-based prediction framework. (A) Denotes the prediction results based on MVPA. The chronological age is
shown in x-axis, and estimated age in y-axis. R denotes correlation coefficient between chronological and estimated age. (B) Represents Mean Absolute Errors
(MAEs) between the estimated and chronological age based on MVPA and UVPA, respectively. The features of MVPA and UVPA are shown in x-axis, respectively,
and the value of MAE in y-axis. ‘Ins.R and M1.L’ represents the univariate feature that is the rsFC between right mid-posterior insula and left M1. ‘Ins.R.ICA’ denotes
the univariate feature resulted from ICA analysis. The red lines denote the mean ± SD values (4.471 ± 0.25) of MAE.

TABLE 4 | Resting-state functional connectivity (rsFC) predicts the age of
older adults.

Prediction analysis

Prediction
framework

rsFC r(predicted, observed) P MAE

UVPA Ins.L and S1.L 0.311 0.041 4.704

UVPA Ins.L and S1.R 0.326 0.015 4.591

UVPA Ins.L and M1.L 0.401 0.006 4.317

UVPA Ins.L and M1.R 0.381 0.036 4.336

UVPA Ins.R and S1.L 0.400 0.013 4.218

UVPA Ins.R and S1.R 0.304 0.022 4.716

UVPA Ins.R and M1.L 0.383 0.030 4.408

UVPA Ins.R and M1.R 0.297 0.046 4.726

UVPA, univariate pattern analysis; rsFC, resting-state functional connectivity; Ins,
insula; MAE, mean absolute error

be reliably predicted by the intrinsic functional connectivity
of mid-posterior insula through both MVPA and UVPA. The
primary SM system was identified and evaluated in terms of
two common approaches: ICA and seed-based rsFC analysis.
The findings resulting from these two methods revealed robust
age effects, indicating that decreases in primary SM system
integration correspond with increasing age. In contrast to the
declining function of the primary SM system, increased rsFC
among primary sensorimotor regions were also found through
seed-based rsFC analysis, which revealed that older adults might
need a higher degree of anticipatory preparation for the declining
sensorimotor function (Mathys et al., 2014; Song et al., 2014).
These changes in rsFC might reflect a remodeling of function
of the SM system with aging. These findings suggest that the
functional connectivity of mid-posterior insula is modified with
aging. These findings might provide further insight into changes
in primary sensorimotor function underlying rest activity with
aging.

The altered functional property of mid-posterior insula in
primary SM system observed here is strikingly similar to previous
findings. With increasing age, the reduced rsFC between SMA
and central insula (Hoffstaedter et al., 2014), cerebellar seed
and insula (Seidler et al., 2015), as well as posterior insula
and SMA and other sensorimotor regions (Roski et al., 2013)
may be associated with general impairments in somatosensory
processing in older adults. In the present study, the significantly
decreased rsFC of the mid-posterior insula was observed in
both ICA and seed-based rsFC analysis in older adults relative
to younger adults. The human insula cortex forms a distinct
lobe and involves three major functionally distinct sub-regions
(Chang et al., 2013). As one of the three sub-regions, the
mid-posterior insula region is associated with sensorimotor
processing (Stephani et al., 2011). The mid-posterior insula,
a more high-level region in sensorimotor processing than
the primary sensorimotor cortex, plays an important role
in sensorimotor integration processing (Kurth et al., 2010;
Nieuwenhuys, 2012; Chang et al., 2013). The mid-posterior insula
has also been ascribed an integrative role, linking information
from diverse sensorimotor functional regions and playing an
important role in sensorimotor processing (Nieuwenhuys, 2012;
Chang et al., 2013). Altogether, the key nodes of the SM
network, the bilateral mid-posterior insula, showed strongly
reduced rsFC in older adults. These findings might reflect
that older adults loosened the integration of sensorimotor
processing and indicate a reduced ability to modulate activity
in the appropriate region of the sensorimotor system. In
addition, functional differentiation of the insula cortex was
already indicated by recent excellent studies (Nieuwenhuys,
2012; Chang et al., 2013). It is thought to play a role in
functional integration between different functional systems
by integrating information from diverse functional systems
(Nieuwenhuys, 2012). It was reported to be involved in not
only processing of the reciprocal influence of emotion and
interoception, but also integrating between cognitive tasks
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and emotion as well as sensation (Critchley, 2005). The
decreased rsFC of the insula observed in the current study
may influence the interregional integration among attention,
emotion or other functional system in the older adults. This
speculation was also validated in children. For example, the
mid-posterior insula could mediate empathy when children
observed a signal indicating others were receiving a pain
stimulus by associating it with fronto-parietal attention network
(Decety et al., 2008). These findings might be important
for the future studies in cognitive disorders and healthy
aging.

Furthermore, several previous studies which were either
cortical thickness (Rodrigue and Kennedy, 2011; Khundrakpam
et al., 2015) or activation fMRI studies (Dosenbach et al.,
2010; Qiu et al., 2015) have reported that the SM system
contributes to estimate the age of young adults and aging
subjects. In this study, we found that the age of older
adults could be predicted by decreased rsFC value between
the mid-posterior insula and primary sensorimotor cortex, as
well as decreased rsFC value of mid-posterior insula resulted
from ICA analysis. The functional property of bilateral mid-
posterior insula is the exclusive consensus features in the stage
of selecting features in MVPA. These analyses revealed that
weakening connections of mid-posterior insula contributed more
to predicting the age of older adults than other features in
SM system. Our findings provide new evidence that functional
connectivity of mid-posterior insula in SM system is associated
with the individual age of older adults. Interestingly, machine
learning approaches revealed that the rsFC of mid-posterior
insula in the SM system could also predict the age in older
adults.

The primary somatosensory cortex is considered to be the
main area of the SM system (Allen et al., 2011). Some previous
studies based on ICA have demonstrated that the decreased
integration of the SM network may be associated with perceptual
impairments in patients with neurological disease (Luo et al.,
2011; Li et al., 2015). Our findings from ICA also reflect the
declining functional integration in sensorimotor areas in aging.
Moreover, the decreased rsFC between the somatosensory cortex
and mid-posterior insula was observed through seed-based rsFC
analysis. Several recent studies have reported increasing rsFC
in SM system with age (Langan et al., 2010; Song et al., 2014;
Zhang et al., 2015). Hoffstaedter et al. (2014) reported that each
S1/M1 showed age-related decrease of resting state rsFC with
primary sensorimotor regions, while right S1/M1 featured age-
dependent increase of rsFC with SMA, superior parietal lobule.
In several studies, increasing sensorimotor connectivity with age
has been suggested to be compensatory (Mathys et al., 2014;
Song et al., 2014). We have also documented that increased
rsFC was found in some primary SM regions through the
seed-based rsFC analysis. Although these results were different
with the findings from ICA, both methods could evaluate the
impact of healthy aging on the SM system from different
aspects (global and local aspect). The observed results from ICA
reveal that the declining functional integration (global aspect)
was observed in SM system in aging. The findings from seed-
based analysis might indicate that the increased rsFC (local

aspect) in aging responds to the declining sensorimotor function.
Some researchers also found the relationship between increased
interhemispheric motor rsFC and reductions in interhemispheric
inhibition with age (Fling and Seidler, 2012), suggesting that the
increased rsFC may derive from age-related declines in inhibitory
neurotransmitters. In addition, the linear SVM classifier with
decreased rsFC score feature performs better than linear SVM
classifier with increased rsFC score feature. The contribution
of significantly changed SM system with decrease functional
connectivity is stronger than that with increased functional
connectivity.

Noteworthy, rsFC was related with behavior performance
outside the MRI scanner (Seidler et al., 2015). Resting state
connectivity could be regarded as offering a potential prediction
indicator for task performance. Actually, some studies have
reported that rsFC provided pre-task brain activation level, which
was partly consistent with subsequent task results (Langan et al.,
2010; Wang et al., 2010). Specifically, stronger resting state
rsFC in hippocampal network might predict better memory task
performance (Wang et al., 2010). Our findings of altered rsFC in
primary SM system of older adults may be associated with the
common decline of motor performance in aging.

LIMITATIONS

While we believe our findings provide a further insight into
changes in SM system in the healthy aging brain, there are a
number of important caveats in interpreting these results. First,
physiological noise should be considered in the rsFC analysis. In
the present study we cannot eliminate cardiac and respiratory
fluctuations completely through temporal filtering (band-pass
0.01–0.08 Hz). Second, we only delineated trajectories of the
aging based on altered rsFC within primary SM system. We could
not conclude that the top predictors were highly localized in
primary SM system in healthy aging elder adults. The important
regions or networks will also be examined in aging through
the machine learning framework in future. Third, the current
approach investigates the age in a cross-sectional rather than
longitudinal fashion. However, we are following this cohort of
older adults and will acquire data each year. The progressive
effect of aging in the remodeling of rsFC in the SM system will
be considered in future studies through a longitudinal analysis.
Finally, testing for motor-related function was not included in the
current study. Though no significant relationships were observed
after we measured the association between the behavior features
(the scores of SF-36 and MoCA) and age of older adults and
altered rsFCs. Our findings may involve a confusion, in which
the declined motor performance in older adults would affect the
associations observed here. However, the physical functioning
(PF) scores, which were extracted from the SF-36 test, may reflect
a health scale about motor-related function to some degree. Thus,
the partial correlations between the age of older adults and change
rsFCs value were calculated, accounting for the effects of gender,
years of education, whole brain GMV, and PF. Likewise, the
relationship between the rsFCs of insula and the age of older
adults were also found (Supplementary Table S5). More details
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are provided in Supplemental Information (see Correlations
between Functional Properties and the Age of Older Adults
Controlling for the Physical Functioning Related with Motor).
The PF value was not the comprehensive behavior performance
outside the MRI scanner. This defect would be investigated in the
future study.

CONCLUSION

We analyzed the rsFC changes in the SM system in older
adults compared to younger adults, which demonstrated
significant remodeling of resting state primary sensorimotor
system. The altered rsFC may be suggestive of the loosened
integration of sensorimotor processing and might also imply
the compensation in the primary sensorimotor network in older
adults. Furthermore, we demonstrated that the MVPA and UVPA
extract sufficient information from these decreased rsFC to make
reliable predictions about individuals’ chronological age across
healthy aging. This study may help to investigate the potential
reorganization of the SM system in the brain of older adults.
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