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Existing neurocomputational and empirical data link deficient neuromodulation of

the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in

processing noise and declines in various cognitive functions. Specifically, the theory of

aging neuronal gain control postulates that aging-related suboptimal neuromodulation

may attenuate neuronal gain control, which yields computational consequences on

reducing the signal-to-noise-ratio of synaptic signal transmission and hampering

information processing within and between cortical networks. Intervention methods

such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct

current stimulation (tDCS), have been considered as means to buffer cognitive functions

or delay cognitive decline in old age. However, to date the reported effect sizes of

immediate training gains and maintenance effects of a variety of cognitive trainings

are small to moderate at best; moreover, training-related transfer effects to non-trained

but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are

inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce

aging-related cognitive impairments by inducing temporary changes in cortical excitability

seem somewhat promising, evidence of effects on short- and long-term plasticity is

still equivocal. In this article, we will review and critically discuss existing findings of

cognitive training- and stimulation-related behavioral and neural plasticity effects in

the context of cognitive aging, focusing specifically on working memory and episodic

memory functions, which are subserved by the fronto-parietal and hippocampal-striatal

networks, respectively. Furthermore, in line with the theory of aging neuronal gain

control we will highlight that developing age-specific brain stimulation protocols and

the concurrent applications of tDCS during cognitive training may potentially facilitate

short- and long-term cognitive and brain plasticity in old age.
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INTRODUCTION

Normal aging is accompanied by alterations in multiple
cognitive functions with negative consequences on various daily
activities. Facing the historically unprecedented global challenge
of demographic change, with larger populations of individuals
older than 65 years than the populations of youths younger
than 20 years (Harper, 2014), a crucial agenda of geronto-
psychology and geronto-neuroscience is to develop interventions
that could activate the reduced but still available cognitive
and brain resources in old age to buffer and delay cognitive
declines. Indeed, early investigations of cognitive plasticity in
the elderly provided evidence for the concept of developmental
reserve capacity, which illustrates the malleability of older
adults’ cognitive performance been enhanced by environmental
supports (Baltes et al., 1986; Baltes, 1987). Results from
neurocomputational studies and empirical research provide
compelling support for a close link between neuromodulation
and cognitive functions. For instance, neurocomputational
studies have contributed to the current understandings of
cholinergic (Sarter et al., 2014), serotoninergic (Dayan and
Huys, 2009) and dopaminergic (Servan-Schreiber et al., 1990;
Li et al., 2001; Montague et al., 2004) systems in regulating
neuronal information transmissions and their computational
consequences on cognition and behavior. Of particular relevance
in the context of aging, the efficacy of the cholinergic (Ellis et al.,
2009; Mitsis et al., 2009; Richter et al., 2014), serotoninergic
(Wong et al., 1984; Yamamoto et al., 2002; Nord et al.,
2014), and dopaminergic (see Bäckman et al., 2010; Li and
Rieckmann, 2014 for reviews) modulations decline substantially
during the course of normal aging. The computational theory
of aging neuronal gain control (Li et al., 2001) explicates a
sequence of computational mechanisms that associate aging-
related deficient dopaminergic neuromodulation with a variety
of cognitive aging deficits. Specifically, in the simulated “old
networks” deficient dopamine (DA) modulation is modeled
by reducing the gain control (modeled with a lower slope)
of the information transfer function that relates pre-synaptic
signal input and post-synaptic response activities (Figure 1A).
Consequently, the signal-to-noise ratio (SNR) of information
processing is decreased in the simulated “old” network with a
lower gain control, resulting in increased random processing
fluctuations (Figure 1B), and consequently attenuated rate (drift
rate, v) of evidence accumulation (Figure 1C). Generalizing from
these mechanisms, other simulation studies showed that the thus
simulated “old network” exhibited less distinctive representations
of activation patterns and less selective recruitment of specific
processing modules that accounted for aging-related declines
in working memory (Li and Sikström, 2002). Furthermore,
associative memory deficit (Li et al., 2005) as well as a range
of other cognitive impairments commonly observed in old age
could also be accounted for by the aging neuronal gain control
theory (see Li and Rieckmann, 2014, for a recent review).

Notwithstanding declines in neurocognitive resources,
considerable “latent reserve capacity” at the cognitive and brain
levels are still preserved in old age (cf. Baltes et al., 1986), which,
given appropriate environmental supports or interventions,

could potentially be activated to promote successful aging (Rowe
and Kahn, 1987). In particular, the concept of “developmental
reserve capacity” was introduced to denote the extent that
an individual’s maximum cognitive performance level could
be enhanced through structured environmental supports i.e.,
interventions (Baltes, 1987). In this context, “baseline reserve
capacity” reflects the amount of available neurocognitive
resources at a given moment for certain cognitive operations,
whereas “developmental reserve capacity” more specifically
highlights the extent of older adults’ potential to benefit from
interventions in raising the levels of their cognitive functions.
Couched in the terms of a more recent conceptual framework
of adult cognitive plasticity (Lövdén et al., 2010), activating
“developmental reserve capacity” in this context denotes the
potential of raising the level of organismic supplies of functional
resources in older adults through interventions.

In this article, we review existing findings of cognitive
training and non-invasive brain stimulation interventions i.e.,
transcranial direct current stimulation (tDCS) and discuss their
promises and constraints in activating the reduced but still
available neurocognitive resources to buffer or ameliorate older
adults’ cognitive functions. Furthermore, we also consider and
review first promising evidence from concurrent applications of
tDCS during cognitive training as means to further promote
short- and long-term training effects on cognitive and brain
plasticity in old age. We will discuss the potential underlying
mechanisms of these positive effects within the theoretical
framework of neuronal gain control, namely how cognitive
training and/or brain stimulation intervention may enhance
dopaminergic neurotransmission and consequentlymodulate the
SNR of information processing with performance enhancing
effects in older adults. We will focus specifically on working
memory and episodic memory functions, which are supported
by the fronto-parietal and hippocampal-striatal circuitries,
respectively.

AGING-RELATED DECLINES IN
FRONTO-PARIETAL AND
HIPPOCAMPAL-STRIATAL MEMORY
FUNCTIONS

Aging-Related Declines in Working
Memory
Cognitive control functions are described as the ability to
flexibly adapt behavior by facilitating relevant over competing
irrelevant information processing in order to achieve specific
goals. Hence, the ability to manipulate and maintain goal-
relevant information over a short period of time i.e., working
memory, is essential (e.g., Engle, 2002; Cowan et al., 2005; Miller
and Wallis, 2009; Fukuda et al., 2010). For instance, the content
and information provided by task instructions must be actively
represented and kept in mind to bias attentional allocation
and response selection toward task-related goals, particularly
when an inappropriate response is dominant and needs to be
suppressed. Neurocognitive models of working memory suggest
a dynamic interplay between prefrontal and parietal brain
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FIGURE 1 | Simulating computational effects of aging neuronal gain control: (A) Aging-related deficiency of dopamine (DA) modulation attenuates the gain

parameter of the sigmoidal transfer function relating pre-synaptic input and post-synaptic output and thus reduces the slope of the neuronal response function. (B)

Attenuated gain control increases random processing fluctuations, which functionally reduce the signal-to-noise ratio (SNR) of information processing. (C) For

instance, in a simple decision process between criterion a or 0, increased SNR of information processing limits the rate (drift rate, v) of evidence accumulation for

either decision and precision of information processing with broader reaction time (RT) distribution, indicated by the curves, in the old compared to the young network.

Further negative impacts on a wide range of cognitive functions have been discussed (Li et al., 2001; see Li and Rieckmann, 2014 for commonly observed

neurocognitive aging deficits accounted for by the simulated effects of aging neuronal gain control).

areas (D’Esposito, 2007; Linden, 2007; Darki and Klingberg,
2015). Posterior brain regions seem to play important roles in
forming and maintaining representations, whereas prefrontal
regions contribute to the selection of relevant information and
the stabilization of representations during maintenance (Postle,
2006). Moreover, the fronto-striatal circuitry also implicates
working memory (e.g., Cools et al., 2008; McNab and Klingberg,
2008; Darki and Klingberg, 2015). Critically, frontal and basal
ganglia activity precede the filtering of irrelevant information
during working memory encoding and predict storage-related
parietal activity as well as inter-individual differences in working
memory capacity (McNab and Klingberg, 2008).

On the neurochemical level, it has been shown that different
neurotransmitters, such as serotonin (Luciana et al., 1998; Cano-
Colino et al., 2014), norepinephrine (Zhang et al., 2013), and
acetylcholine (Hasselmo and Stern, 2006) are involved in working
memory processes (see Ellis and Nathan, 2001 for review). We
focus on the role of DA here as its roles for working memory
processes is best established (e.g., Sawaguchi and Goldman-
Rakic, 1991; Goldman-Rakic, 1996; Arnsten, 1998; Braver and
Cohen, 2000; Durstewitz et al., 2000a,b; Frank et al., 2001; Cools
et al., 2008; D’Ardenne et al., 2012). Evidence from animal and
human studies show that maintenance processes are supported
by prefrontal DA signaling (e.g., Williams and Goldman-
Rakic, 1995; Goldman-Rakic, 1996; Abi-Dargham et al., 2002).
Accordingly, the dual-state theory of prefrontal DA function
proposes the existence of two discrete, dynamic, and functionally
different states. A D1-receptor dominated state that favors
robust maintenance of information in working memory despite
distractions and a D2-receptor dominated state contributing

to the flexible integration of new information (Durstewitz and
Seamans, 2008). Besides the role of prefrontal DA signaling in
working memory processes, neurocomputational models (Braver
and Cohen, 2000; Frank et al., 2001) and empirical work
(D’Ardenne et al., 2012) suggest that DA signaling in the
basal ganglia acts as a gating mechanism, which regulates the
encoding of new information in the prefrontal cortex (PFC) and
consequently the updating of context information in working
memory. Selective lesions of prefrontal DA neurons in animals
were associated with increased striatal DA release (Roberts et al.,
1994), while enhancing DA activity in the PFC inhibited striatal
DA release (Kolachana et al., 1995; Karreman and Moghaddam,
1996). Furthermore, an overexpression of D2 receptors in the
striatum led to alterations in prefrontal D1 receptor activity
and consequently functional impairments in working memory
and behavioral flexibility tasks (Kellendonk et al., 2006). Taken
together, being closely intertwined via the cortico-striato-cortical
pathway the interactions between prefrontal and striatal DA
systems are crucial for working memory processes and adaptive,
goal-directed behavior.

There is a wealth of evidence that normal aging is
accompanied by significant declines in working memory (e.g.,
Bopp and Verhaeghen, 2005; Borella et al., 2008; Li et al., 2008;
see Lever et al., 2006; Sander et al., 2012 for reviews). At the
brain functional level, aging-related changes in working memory
are associated with altered task-related activations in prefrontal
and posterior brain regions in older compared to younger
adults (e.g., Grady et al., 1998; Cabeza et al., 2004; see Rajah
and D’Esposito, 2005 for review; Rypma and D’Esposito, 2000;
Schneider-Garces et al., 2010). Similarly, compared to younger
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adults, older adults did not show significant striatal activation
during a working memory task before training intervention
(Dahlin et al., 2008a). At the neurochemical level, there is ample
evidence that the density of pre-synaptic (DA transporter) and
post-synaptic (D1 and D2 receptors) DA markers in striatal
and extra-striatal regions decline markedly from early to late
adulthood (see Bäckman et al., 2010 for review). Lesion and
pharmacological animal studies provide direct evidence that
DA depletion (Brozoski et al., 1979; Collins et al., 1998) but
also excessive DA receptor stimulation (Murphy et al., 1996;
Zahrt et al., 1997) in the PFC had negative consequences for
working memory functions. For instance, depletion of DA in
the dorsolateral prefrontal cortex (DLPFC) in rhesus monkeys
resulted in impaired working memory performance, which could
be pharmacologically reversed by the DA precursor levodopa
and the DA agonist apomorphine (Brozoski et al., 1979). In
humans, reduced frontal and striatal DAmarkers were associated
with an under-recruitment of the fronto-parietal network during
working memory (Landau et al., 2009; Bäckman et al., 2011a)
as well as reduced fronto-striatal (Klostermann et al., 2012) and
fronto-parietal (Rieckmann et al., 2011) functional connectivity.
Interindividual differences in caudate D1 receptor density were
related to interindividual differences in functional connectivity
of the right DLPFC to the right parietal cortex and of the
medial PFC to the right intraparietal sulcus and postcentral
gyrus during working memory performance (Rieckmann et al.,
2011). In a similar vein, Klostermann et al. (2012) could show
that suboptimal levels of DA synthesis capacity in the caudate
were correlated with reduced functional connectivity between
the right inferior frontal gyrus and the caudate, which in turn
was associated with decreased working memory performance.
Thus, aging-related differences in functional activations and
connectivity in the cortico-striato-cortical pathway seem to be
linked to suboptimal DA signaling and may underlie aging-
related changes in working memory performance.

Aging-Related Declines in Episodic
Memory and Spatial Learning
The memory of experienced events i.e., episodic memory,
encompasses multiple facets of information. For instance,
the memory about a conversation includes the content of
the conversation, the persons involved as well as the time
and spatial location in which the conversation took place.
Associative memory mechanisms are required to bind the
different aspects of an experience into an integrated episode in
long-termmemory. The fronto-hippocampal circuitry implicates
the strategic organization and elaboration of memory materials
as well as the binding of different aspects of memory features
during encoding, memory consolidation, and memory retrieval
(Simons and Spiers, 2003), for instance pattern association
which describes the function to link certain input and certain
memory patterns to enable memory retrieval also with varying
input patterns. Relative to semantic memory (i.e., memory
for specific facts or knowledge), older adults are particularly
impaired in episodic strategic organization and elaboration that
are subserved by the frontal executive control processes as

well as associative mechanisms that implicate the hippocampal
regions (Chalfonte and Johnson, 1996; Old and Naveh-Benjamin,
2008; Shing et al., 2008). For instance, older adults’ episodic
memory deficit was particularly apparent in conditions requiring
the memorization of associations between memory items
(Naveh-Benjamin, 2000) relative to memory of single items.
The aging neuronal gain control theory accounted for older
adults’ associative binding deficit through the less distinctive
representations of the associations between items, which was
the computational consequence of attenuated gain control
in the memory network (Li et al., 2005). Moreover, ample
evidence from functional magnetic resonance imaging (fMRI)
and positron emissions tomography (PET) studies relates deficits
in episodic memory encoding and retrieval in old age with
alterations in functional episodic memory networks, especially
with patterns of functional under-recruitment and non-selective
additional bilateral recruitment of prefrontal regions, which
is not observed in younger adults (see Reuter-Lorenz, 2002;
Nyberg et al., 2012 for review). For instance, during episodic
memory encoding older adults showed additional activation in
right frontal regions while at the same time task-relevant left
frontal regions were under-recruited, probably due to insufficient
(i.e., non-selective) allocation of brain resources (e.g., Logan
et al., 2002; Leshikar et al., 2010). Similarly, during episodic
memory retrieval, older adults showed reduced selectivity of
prefrontal activation during context (Cabeza et al., 2000) and
recognition memory tasks (Madden et al., 1999) and reduced
specificity of prefrontal and hippocampal activations during
retrieval of item vs. relational memory information (Giovanello
and Schacter, 2012). Simulation results from the aging neuronal
gain control theory indicate that such aging-related increases
of non-specific recruitments of presumably distinct processing
pathways may, in part, be related to deficient DA modulation
of the underlying task relevant networks (Li and Sikström,
2002).

One other specific aspect of episodic memory i.e., the
spatial configuration of a memory episode, relies particularly
on the hippocampal-striatal circuitry (see Moser et al., 2008
for review). Animal research showed that, whereas complex
representations of spatial layouts and locations relative to
environmental geometric features (e.g., spatial boundaries and
shapes of the environment) are supported by the hippocampus
(e.g., O’Keefe and Dostrovsky, 1971; O’Keefe and Burgess, 1996;
Hartley et al., 2000), the computationally less demanding cue-
based spatial learning (e.g., using fixed cue–location associations)
is mainly subserved by the dorsal striatum (e.g., Packard
et al., 1989; Packard and McGaugh, 1992; McDonald and
White, 1994; Miyoshi et al., 2012). Applying desktop virtual
reality-based fMRI spatial navigation tasks in humans, a
similar dissociation was shown in healthy young adults with
stronger hippocampal involvement during spatial exploration
of new routes and during learning and remembering of object
locations relative to a visible boundary; whereas, stronger
striatal activation was shown during route following and
during learning and remembering of object locations relative
to an intra-environmental cue (e.g., Hartley et al., 2003; Iaria
et al., 2003; Wolbers and Büchel, 2005; Doeller et al., 2008).
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Younger adults further showed a prioritization of relying on
hippocampal-dependent spatial over striatal-dependent cue-
based navigation strategies (e.g., Bohbot et al., 2012; Wiener
et al., 2013). Other aspects of spatial navigation such as
path integration that strongly rely on self-motion without the
need of visual input also involve hippocampal-based spatial
processing. Path integration, however, implicates additional
human motion complex activity together with working memory-
related location updating and monitoring processes of the
medial PFC (e.g., Wolbers et al., 2007; De Nigris et al.,
2013) and performance differences in path integration across
human adulthood are, so far, not entirely understood (e.g.,
Harris et al., 2012, but Skolimowska et al., 2011). The
complexity of the brain network underlying spatial navigation
notwithstanding, we will in the following primarily focus
on spatial memory subserved by the hippocampal-striatal
circuitry.

Of specific interest, the relative prioritization of hippocampal-
and striatal-dependent processes of spatial learning is influenced
by aging. With increasing age, spatial learning, and memory
decline, with an overall bias toward relying on cue-based
strategies and recruitments of striatal regions (e.g., Moffat
and Resnick, 2002; Driscoll et al., 2005; Bohbot et al., 2012;
Etchamendy et al., 2012; Harris et al., 2012; Rodgers et al., 2012;
Konishi and Bohbot, 2013; Wiener et al., 2013; Schuck et al.,
2015). Specifically, whereas younger adults’ behavioral data and
hippocampal activity was consistent with a computational model
predicting object locations relative to the geometry of the virtual
environment’s boundary, older adults’ navigation behavior was
best predicted by a model interfering object locations relative
to an intra-maze location cue and was associated with larger
caudate than hippocampal activation. Behaviorally, aging-related
deficits in spatial learning were more prominent in hippocampal-
dependent boundary learning than in striatal-dependent cue-
based learning (Schuck et al., 2015). Previous research indicated
that aging-related structural and neurobiological alterations in
the hippocampus (see Rosenzweig and Barnes, 2003 for review;
Wilson et al., 2006) as well as neuromodulatory changes in
the midbrain DA system (see Bäckman et al., 2010; Li and
Rieckmann, 2014 for reviews) might contribute to deficits in
spatial learning and memory in old age. During normal aging,
hippocampal volume progressively declines by 1–2% per year
(Raz et al., 2005), which presumably affects spatial memory
performance in old age (Erickson et al., 2011). Based on evidence
from animal studies, the aging hippocampus, especially the
perforant path receiving input from the entorhinal cortex, is
further characterized by a multitude of subtle alterations in
synaptic plasticity, including loss and shrinkage of synapses
(Geinisman et al., 1992; Smith et al., 2000; Nicholson et al.,
2004), reduced excitability leading to increasing stimulation
thresholds (Barnes et al., 1994, 2000) and faster decay of
long-term potentiation (Landfield et al., 1978; Barnes and
McNaughton, 1985). Atrophy of the perforant path was also
observed in healthy older compared to younger adults using
diffusion tensor imaging (Kalus et al., 2006) and was even more
pronounced in postmortem brain tissue of older adults with
mild cognitive impairment (MCI) despite otherwise comparable

volumes in the unimpaired and MCI groups (Scheff et al.,
2006). Moreover, the extent of synaptic loss in the perforant
path was negatively correlated with pre-mortem memory status.
Taken together, aging-related changes in structure and function
of the hippocampus may at least in part underlie older adults’
increased reliance on striatal-dependent cue-based navigation
strategies.

Evidence from animal research indicates that midbrain
DA modulation of the hippocampus plays an important
role in stabilizing transient memory traces and maintaining
encoded memory associations in long-term memory (Bethus
et al., 2010; see Lisman and Grace, 2005 for review; Rossato
et al., 2009). In the context of spatial learning, Kentros
et al. (2004) showed that DA D1/D5 agonist enhances the
stability of hippocampal place fields in rats. In humans, a
recent pharmacological imaging study showed that a DA
agonist and DA precursor levodopa enhanced episodic memory
and brain activation in older adults (Chowdhury et al.,
2012). Relatedly, recent behavioral genetic evidence showed
that genetic predispositions of DA transporter (DAT1) and
receptor (DRD2) genes are associated with individual differences
in serial memory (Li et al., 2013) and long-term episodic
memory forgetting, particularly in older adults (Papenberg
et al., 2013). In terms of spatial learning, a recent study
with Parkinson’s (PD) patients showed that, after the patients
had some prior experiences with a given spatial environment,
the prioritization of hippocampal-dependent boundary learning
was increased relative to striatal-dependent cue-based learning
when they were on dopaminergic medication (Thurm et al.,
2016).

Taken together, in the two sections above we have reviewed
findings indicating that normal aging is associated with
prominent declines in working memory and episodic memory,
with negative consequences for older adults’ daily activities.
Structural and functional changes as well as aging-related
suboptimal dopaminergic neuromodulation in the fronto-
striatal-parietal and fronto-hippocampal-striatal brain network,
respectively, may contribute to these aging-related working
memory and episodic memory impairments. According to
the framework of the aging neuronal gain control theory (Li
et al., 2001), reduced working memory and episodic memory
capacity may stem from suboptimal DA modulation of the
relevant networks, which may impair the SNR of information
transfer within and between the respective brain circuitries,
thus causing reduced specificity of information processing
and less distinctive brain activation patterns. Facing increasing
population aging, developing interventions that could activate
the developmental reserve capacity in older adults and augment
the aging brain’s attenuated neuronal gain control to maintain
or promote working memory and episodic memory functions
(see Figure 2 for a schematic diagram) is of high societal
relevance. In the following sections, evidence for why cognitive
training and non-invasive brain stimulation can be seen as
potential candidate interventions for promoting the aging brain’s
neuronal gain control will be reviewed, alongside with critical
discussions about the short- and long-term effects of these
interventions.
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FIGURE 2 | Schematic diagram of expected effects of activating aging

neuronal gain control through cognitive training and non-invasive brain

stimulation. Comparable to Figure 1A the y-axis indicates the activation

value of units of the artificial neural network. The activation value as bounded

by the sigmoidal activation function is between 0 and 1. The x-axis denotes

incoming excitatory or inhibitory inputs, which ranged from −10 to +10. The

s-shaped logistic activation function transforms the net inputs into the strength

of an output signal. The responsivity of a unit to inhibitory or excitatory inputs is

modulated by the slope of the function, which is regulated by the gain

parameter (see Li et al., 2001). Reducing the slope flattens the activation

function and the unit becomes less responsive, whereas steepening the slope

of the function enhances the responsivity.

INTERVENTION METHODS ENHANCING
NEURONAL GAIN CONTROL

Behavioral Training Interventions
Enhancing Neuronal Gain Control
Ameliorating older adults’ cognitive decline through behavioral
interventions has received a lot of attention during the last couple
of years. Thus, a plethora of heterogeneous intervention methods
has been developed and evaluated. For instance, cognitive,
physical or combined cognitive and physical interventions (see
Bamidis et al., 2014 for review) as well as action video game
training (see Bavelier et al., 2012 for review) have been shown to
induce behavioral and/ or brain plasticity effects. In the following
we will primarily focus on cognitive training interventions in the
workingmemory and episodic memory domain and refer readers
interested in other interventions methods to the cited reviews.

Cognitive training promotes structural changes in the
brain’s gray and white matter. According to the animal
literature, candidate cellular mechanisms underlying gray matter
plasticity encompass axon sprouting, dendritic branching and
synaptogenesis, neurogenesis and glial changes (see Zatorre
et al., 2012 for review). Beyond these structural changes, of
specific relevance in the context of this review is the evidence
for training-induced changes in neurotransmitter systems. For
instance, animal studies showed that motor training in rats
seems to increase the expression of muscarinic acetylcholine

(Ibarra et al., 1995) and DA (MacRae et al., 1987; Soiza-Reilly
et al., 2004) receptors in the striatum. Spatial working memory
training in monkeys has been shown to induce a reduction
in the variability of firing rates across trials and a decline
in cross-trial correlations of neuronal discharges, suggesting
that training could lower random processing fluctuation which
functionally increases the SNR of information processing and
the precision of stimulus representations in PFC neurons (Qi
and Constantinidis, 2012a,b). Of note, human studies using
PET imaging in younger adults provide evidence for training-
induced changes in striatal (Bäckman et al., 2011b) and cortical
dopaminergic neuromodulation that were associated with larger
workingmemory training gains (McNab et al., 2009). Taken these
findings together, training interventions seem to be promising
candidates to enhance neuronal gain control in older adults
and thus promote cognitive and brain plasticity, with potential
transfer effects to other functions than the trained domains. In
the following, we will review in more details adult age differences
in working memory and episodic memory plasticity. Other than
focusing on training gains of the trained tasks, improvements in
non-trained tasks closely related to working memory or episodic
memory (so-called near-transfer effects), performance gains in
other functional domains (so-called far-transfer effects), and
stability of training- and transfer-effects (maintenance effect) will
be highlighted.

Age Differences in Working Memory Training-Induced

Behavioral and Brain Plasticity
Lifespan age differences in cognitive plasticity following training
seems to vary across cognitive domains, with comparable effect
sizes of immediate working memory training gains across
younger and older adults (Schmiedek et al., 2010; Karbach
and Verhaeghen, 2014). In contrast, near- and far-transfer
effects were shown to be present in younger adults ( e.g.,
Jaeggi et al., 2008; Chein and Morrison, 2010) but reduced or
absent in older adults (e.g., Buschkuehl et al., 2008; Dahlin
et al., 2008b; Li et al., 2008; Schmiedek et al., 2010; Richmond
et al., 2011; Brehmer et al., 2012). With regard to maintenance
effects in older adults there is evidence that training and
transfer-effects of working memory training remain stable over
a period of months (Dahlin et al., 2008b; Li et al., 2008;
Borella et al., 2010; Richmond et al., 2011; Zinke et al.,
2014).

Working memory training studies in humans have revealed
quantitative changes in functional activation (see Constantinidis
and Klingberg, 2016 for review; Olesen et al., 2004; Dahlin
et al., 2008a; Jolles et al., 2013; Kühn et al., 2013; Thompson
et al., 2016) and DA signaling (McNab et al., 2009; Bäckman
et al., 2011b) of the fronto-striatal-parietal network (see Figure 3
for an overview diagram). For instance, compared to pre-
training fronto-parietal functional connectivity increased in
younger adults (Jolles et al., 2013; Thompson et al., 2016).
Furthermore, changes in striatal brain activity have also been
observed and associated with working memory training-induced
improvements (Dahlin et al., 2008a; Kühn et al., 2013). Of
note, using PET imaging in humans, McNab and colleagues
provide evidence for a training-induced enhancement in cortical
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FIGURE 3 | Overview of existing evidence of training and tDCS effects on working memory and episodic memory functions subserved by the

fronto-striatal-parietal and fronto-hippocampal-striatal circuitries. PFC, prefrontal cortex; PPC, posterior parietal cortex; HC, hippocampus; VTA, ventral

tegmental area; SNc, subthalamic nucleus; AtDCS, anodal transcranial direct current stimulation.

DA neuromodulation that is reflected by reduced D1-receptor
binding potential, which could reflect enhanced DA release
after training in task-relevant brain areas. Individuals who
showed greater training-induced changes in D1 receptor binding
potential also showed greater training-related improvements
in working memory performance (McNab et al., 2009). A
further PET imaging study could show that working memory
training results in enhanced striatal DA release in younger adults
(Bäckman et al., 2011b).

So far, studies investigating the neural correlates of working
memory training in older adults are rather scarce. There
is evidence for training-induced decreases in cortical brain
activations (frontal, parietal, temporal, occipital), pointing to an
increase in neural efficiency, and training-induced increases in
subcortical (thalamus and caudate) brain activations. Critically,
the degree of the striatal changes was associated with training
gains (Brehmer et al., 2011). Regarding transfer effects of
working memory training, Dahlin and colleagues indicated
that younger adults’ transfer effects were based on training-
induced increases in striatal activity in the trained and transfer
task whereas this was not the case in older adults (Dahlin
et al., 2008a). Thus, based on these results and given the
working memory training-induced effects on striatal DA release
(Bäckman et al., 2011b), aging-related reduction in transfer
effects in older adults may be driven by their deficient striatal DA
functioning.

Age Differences in Episodic Memory

Training-Induced Behavioral and Brain Plasticity
Episodic memory plasticity has been shown to be more limited
in old age compared to young adulthood or childhood (see
Brehmer et al., 2007; Shing et al., 2010 for review; Shing et al.,
2008). These age differences in training-induced plasticity are
more pronounced for episodic compared to working memory
(see Lindenberger, 2014 for review; Schmiedek et al., 2010).
Notwithstanding the more limited episodic memory plasticity
in old age, cognitive interventions might be able to reduce
aging-related performance disadvantages by providing sufficient
environmental support (cf. Lindenberger, 2014). For instance,
aging-related under-recruitment in prefrontal regions can be
reversed when encoding strategies are externally provided rather
than self-initiated by the participants (Logan et al., 2002).

Early episodic memory training interventions mainly focused
on instructing mnemonic (e.g., method of loci) and other
memory strategies in order to facilitate task-specific encoding
or retrieval in younger and older adults (see Brehmer et al.,
2014 for review). For instance, Brehmer and colleagues compared
the effects of a multisession mnemonic training in a lifespan
sample, from childhood to old age. As a function of mnemonic
instruction and adaptive training, all age groups showed
improvements in the trained memory task but with older adults
clearly showing the smallest training gains (Brehmer et al., 2007).
Other studies showed equivocal or less promising results of
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various memory trainings (e.g., Jennings et al., 2005; Craik et al.,
2007; Lustig and Flegal, 2008). In the very old (i.e., older adults
aged 75–100 years or older), memory plasticity seems to be
further reduced resulting in observable but very small negligible
gains from instruction and adaptive practice compared to old
adults below the age of 75 years (Singer et al., 2003). Training
gains in very old age might be increased when memory training
is combined with other training modules (Oswald et al., 2006) or
intervention techniques.

In the COGITO study (Schmiedek et al., 2010), 100 days of
memory training with verbal, numerical, and spatial material was
associated with reliable near-transfer effects in both younger and
older adults. However, the effect sizes for performed episodic
memory tasks and latent cognitive variables were rather small in
older adults (latent effect size of .09 compared to .52 in younger
adults). Similarly, the ACTIVE study investigated potential far-
transfer effects to functions of everyday life in older adults
by comparing a verbal memory, a speed of processing, and
a reasoning training with a passive control group. Cognitive
training involved 10 sessions of 60–75 min over 5–6 weeks,
followed by four additional training sessions two and 5 years
after the initial training intervention was completed. The
memory training group showed significant practice gains in
the trained cognitive domain, which were stable up to 5 years
after the intervention, but no further gains following additional
training and no far-transfer effects of the memory training or
the additional memory training on measures of everyday life
functioning could be observed (Ball et al., 2002; Willis et al.,
2006). Overall, the literature indicates that older adults can
benefit from episodic memory training but direct training gains,
so far, are much smaller compared to younger age groups and
other cognitive domains. Furthermore, evident (far)-transfer
effects are limited at best or lacking (cf. Noack et al., 2009, 2014).

The small behavioral effects with regard to transfer and
generalizability notwithstanding, episodic memory training-
induced alterations in brain structure and function have been
reported (see Figure 3 for an overview diagram). For instance,
at the structural level, memory training was associated with
increases in cortical thickness and gray matter volume in
younger, middle-aged and older adults (Engvig et al., 2010, 2012,
2014). Training-induced improvements in memory performance
were further positively correlated with the extent of cortical
thickness increase in the lateral orbitofrontal cortex and the
right fusiform gyrus (Engvig et al., 2010) and with the extent of
volume increase in the left hippocampus (Engvig et al., 2014).
A further study investigated effects of a spatial memory training
i.e., episodic memory training with spatial context, on cognitive
and structural brain plasticity in younger and older adults. Four
months of spatial memory training in a virtual zoo not only
facilitated task performance but also counteracted aging-related
hippocampus shrinkage up to 4 months after training in both age
groups (Lövdén et al., 2012). However, training-related cortical
thickening in the left paracentral lobule and precuneus were
only evident in younger but not in older participants (Wenger
et al., 2012), indicating that aging-related differences in training-
induced structural plasticity are region-specific. Additionally,
hippocampal volume prior to cognitive interventions might be

one predictor of memory training outcomes in old age (Engvig
et al., 2012). At the functional level, effects of episodic memory
training have, so far, mainly been observed in the fronto-parietal
network (Nyberg et al., 2003). After being instructed to use the
method of loci as a mnemonic strategy, increased brain activities
in frontal as well as occipito-parietal regions were observed in
younger adults. In contrast, accompanying their reduced episodic
memory plasticity as indicated by the reduced training gain, older
adults did not show training-related increase in frontal activity,
and only those older adults who benefited from the memory
training showed increased occipito-parietal activity. Moreover,
animal literature indicates that DA plays a crucial role for long-
term maintenance of episodic memory training-induced effects
(Rossato et al., 2009; Bethus et al., 2010), although direct evidence
of enhanced DA modulation after episodic memory training is
still lacking. Brain-derived neurotrophic factor (BDNF) might be
one further factor modulating DA effects on episodic memory
consolidation following training in rodents (Rossato et al., 2009)
and spatial memory training-induced effects on cognitive and
brain plasticity in adult humans (Lövdén et al., 2011).

In summary, both working memory and episodic memory
training research reveal that cognitive plasticity following
interventions is more limited in older adults and this is
particularly so in the domain of episodic memory. So far,
evidence for the transfer of training-effects to related or other
cognitive processes (i.e., near- and far-transfer effects) in older
adults is rare. This may reflect that solely relying on cognitive
training interventions could be limited in their effects in
promoting behavioral and brain plasticity in older adults (see
Figure 2 for a schematic diagram). Thus, other interventions or
the combination of training with other intervention methods
need to be explored. Since the last 15 years transcranial electrical
stimulation methods (tES) are receiving increasing attention in
the field of behavioral and brain plasticity. In the following,
we will briefly highlight in what ways tES, particularly anodal
transcranial direct current stimulation (atDCS), may be suitable
for the enhancement of neuronal gain control and thus cognitive
performance in older adults. Afterwards, we will review current
existing findings about the behavioral and brain plasticity effects
of atDCS applications in the field of working memory and
episodic memory.

Transcranial Direct Current Stimulation
(tDCS) as a Means for Enhancing Neuronal
Gain Control
Transcranial direct current stimulation (tDCS) in which a
constant, low intensity current (1–2 mA) is passed through two
electrodes is one commonly applied stimulationmode in the field
of tES techniques. Besides tDCS, tES techniques also encompass
transcranial alternating current stimulation (tACS) in which
a sinusoidal current is applied to modulate brain oscillatory
activity and transcranial random noise stimulation (tRNS) in
which current intensity and frequency vary in a random manner
(see Antal and Herrmann, 2016 for review). During the last
couple of years the number of published articles on tES-induced
effects on cognition has increased tremendously. The endeavor of
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reviewing findings of all three tES methods on working memory
and episodic memory functions would be beyond the scope
of this article. As tDCS is the most systematically studied tES
method, we limited our review on tDCS studies only.

During tDCS subthreshold changes of neuronal resting
membrane potentials are induced, which alter cortical excitability
and activity, dependent on the direction of the current flow.
Studies of stimulating the human motor cortex have shown that
anodal tDCS (atDCS) facilitates, while cathodal tDCS (ctDCS)
reduces excitability. Stimulations lasting for a few seconds seems
to induce solely changes in membrane potentials, while longer-
lasting stimulation for a few minutes induce changes in cortical
excitability, which remain stable for about 1 h or longer (see
Kuo and Nitsche, 2015 for review; Nitsche and Paulus, 2000,
2001). Studies applying atDCS have shown beneficial effects on
cognitive functions in young (e.g., see Brunoni and Vanderhasselt
for review; Parasuraman et al., 2014; Scheldrup et al., 2014),
and old age (e.g., Berryhill and Jones, 2012; see Hsu et al.,
2015 for review; Flöel et al., 2012), presumably by enhancing
excitability (Nitsche and Paulus, 2000, 2001), facilitating synaptic
(Stagg et al., 2009; Stagg and Nitsche, 2011), neural (Islam et al.,
1995) and cognitive plasticity (see Filmer et al., 2014 for review;
Liebetanz et al., 2002; Flöel and Cohen, 2010), and by changing
brain network connectivity (e.g., Meinzer et al., 2012; Sehm et al.,
2012).

Non-invasive brain stimulation techniques seem to have a
modulatory effect on dopaminergic neurotransmission (Strafella
et al., 2001; Keck et al., 2002; Cho and Strafella, 2009; Tanaka
et al., 2013). For instance, repetitive transcranial magnetic
stimulation (rTMS) over prefrontal brain regions has been
shown to induce increased extracellular DA levels in striatal
(Strafella et al., 2001; Keck et al., 2002) and extra-striatal brain
regions i.e., anterior cingulate and orbitofrontal cortex (Cho
and Strafella, 2009). With regard to tDCS an animal study
provides direct evidence for a modulatory effect of tDCS on
dopaminergic neurotransmission. More specifically, extracellular
DA levels in the striatum of rats increased for more than 400
min following the application of 10 min cortical ctDCS but
not atDCS (Tanaka et al., 2013). Combined tDCS and drug-
intervention studies further support a link between DA and
tDCS-induced excitability and neuroplastic after-effects (Nitsche
et al., 2006; Kuo et al., 2008; Monte-Silva et al., 2010; Fresnoza
et al., 2014a,b). For instance, levodopa significantly prolongs
the after-effects of tDCS applied over the motor cortex (Kuo
et al., 2008), but in a non-linear, dose-dependent manner
(Monte-Silva et al., 2010). More specifically, low and high
dosage of levodopa abolished excitatory as well as inhibitory
modulatory effects of tDCS, whereas a medium dosage turned
excitatory into inhibitory plasticity and prolonged inhibitory
plasticity effects. Taken together, although the exact underlying
mechanisms are yet not completely understood, tDCS-induced
plasticity effects seem to be partly driven by changes in the
dopaminergic system. Evidence of neurocomputational, receptor
imaging, and behavioral genetic studies suggests that deficient
dopaminergic neurotransmission contribute to aging-related
declines in working memory and episodic memory (see Li
and Rieckmann for review) and older adults’ reduced plasticity

(Kishore et al., 2014). Consequently, tDCS interventions may
be a promising tool for enhancing behavioral and neural
plasticity via modulating dopaminergic signaling. Within the
theoretical framework of neuronal gain control tDCS-induced
improvements in dopaminergic neurotransmission are likely
to enhance the gain control of the information transfer
function and consequently improve the SNR of information
processing in older adults resulting in higher representational
distinctiveness and more selective recruitment of relevant
processing modules. In terms of functional consequences this
more efficient processing is likely to lead to behavioral and neural
benefits in working memory and episodic memory functions.
In the following two sections, we will review findings on the
effects of tDCS on behavioral and brain plasticity in the domains
of working memory and episodic memory (for an overview of
tDCS-study characteristics see Table 1).

Effects of tDCS on Working Memory Plasticity
As aforementioned, working memory processes rely on a
broad network encompassing frontal, parietal and striatal brain
regions. During the last couple of years a plethora of studies
assessing tDCS effects on working memory performance in
humans targeting frontal and parietal stimulation sites have
been published, for instance, 10 min of ctDCS with a current
intensity of 1.5 mA over the right posterior parietal cortex
(PPC; P4 electrode site of the International 10–20 system)
impaired working memory performance dependent on the
specific working memory process that was probed. Recognition
performance was impaired, whereas verbal recall of the encoded
objects remained unchanged. Interestingly, atDCS did not
show any effect (Berryhill et al., 2010). Inconsistent with
these findings, Tseng et al. (2012) could show that 15 min
of 1.5 mA atDCS but not ctDCS over the right PPC had
a performance enhancing effect in a visual change-detection
paradigm. There is also evidence that effects of tDCS over
the right PPC were only apparent for a more challenging
task and that younger adults with high working memory
capacity benefited from either atDCS or ctDCS application,
whereas those with low working memory capacity did not
(Jones and Berryhill, 2012). In contrast, applying atDCS over
the right PPC revealed that participants with low compared
to those with high working memory capacity performed better
in a difficult change detection task during atDCS (Tseng
et al., 2012). Thus, tDCS over the posterior parietal cortex
seems to modulate working memory performance, but the
type and the consequences of stimulation are inconsistent.
The resulting heterogeneity across studies may be due to
differences in task paradigms, corresponding task difficulty
and interindividual differences in baseline working memory
capacity. Studies investigating the effects of atDCS over the
left PFC on working memory performance (e.g., Ohn et al.,
2008; Andrews et al., 2011; Zaehle et al., 2011) reported more
consistent performance enhancing effects. In order to reduce
heterogeneity across studies a recent meta-analysis included
only non-invasive brain stimulation (NIBS) studies assessing
the effects of atDCS and rTMS effects over the right, left or
bilateral DLPFC on performance in n-back tasks. Critically
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TABLE 1 | Overview of characteristics of working memory and episodic memory tDCS studies.

Authors Design Conditions

(excluding

sham)

tDCS set-up Task sample

Anode–Cathode Density

(mA/cm2)

Duration

(min)

N Age Female%

WORKING MEMORY

Berryhill et al., 2010 Cross-over 1 left cheek–P4 0.043 10 WM 11 25.0 45

2 P4–left cheek 0.043 10 WM 11 25.0 45

Tseng et al., 2012 Cross-over 1 P4–left cheek 0.094 15 WM 20 22.0 65

Jones and Berryhill, 2012 Cross-over 1 left cheek–P4 0.043 10 WM 20 23.25 60

2 P4–left cheek 0.043 10 WM 20 23.25 60

Zaehle et al., 2011 Cross-over 1 left mastoid–F3 0.029 15 WM 16 23.0–27.0 62.5

2 F3–left mastoid 0.029 15 WM 16 23.0–27.0 62.5

Berryhill and Jones, 2012 Cross-over 1 F3–right cheek 0.043 10 WM 25 63. 7 57

2 F4–left cheek 0.043 10 WM 25 63. 7 57

Nilsson et al., 2015 Cross-over 1 F3–right SO 0.029 25 WM 30 69.0 ± 7.0 46.7

2 F3–right SO 0.057 25 WM 30 69.0 ± 7.0 46.7

EPISODIC MEMORY

Manenti et al., 2013 Cross-over/

between

1 left/right DLPFC/PARC–cSO 0.043 LTM 32 23.7 ± 3.2 71.9

2 left/right DLPFC/PARC–cSO 0.043 LTM 32 67.9 ± 4.7 53.1

Sandrini et al., 2014 Between 1 (reminder) F3–right SO 0.043 15 LTM 12 67.5 ± 2.7 66.7

2 (no reminder) F3–right SO 0.043 15 LTM 12 67.6 ± 4.3 66.7

Sandrini et al., 2016 Between 1 F3–right SO 0.043 15 LTM 14 68.6 ± 4.2 64.3

Smirni et al., 2015 Cross-over/

between

1 shoulder–F3/F4 0.029 20 LTM 20 23.6 ± 2.3 88.9

2 F3/F4–shoulder 0.029 20 LTM 16 24.7 ± 2.2 88.9

Zwissler et al., 2014 Between 1 F3–right shoulder 0.029 15 LTM 24 24.8 ± 2.9 62.5

2 right shoulder–F3 0.029 15 LTM 24 24.8 ± 2.9 62.5

Jones et al., 2014

(tDCS-encoding)

Cross-over 1 P3–right cheek 0.043 15 LTM 20 23.4 ± 3.3 75

Jones et al., 2014

(tDCS-maintenance)

Cross-over 1 P3–right cheek 0.043 15 LTM 20 22.2 ± 2.5 70

Pisoni et al., 2015 Between 1 P3–P4 0.043 15 LTM 15 23.5 ± 2.6

2 T3–T4 0.043 15 LTM 15 23.1 ± 3.5

Boggio et al., 2009 Cross-over 1 F3–right SO 0.057 30 LTM 10 79.1 ± 8.8 60

2 T7–right SO 0.057 30 LTM 10 79.1 ± 8.8 60

Ferrucci et al., 2008 Cross-over 1 P3/T5-P6/T4–shoulder 0.057 15 LTM 10 75.2 ± 7.3 70

2 shoulder–P3/T5-P6/T4 0.057 15 LTM 10 75.2 ± 7.3 70

Brunyé et al., 2014 Cross-over/

between

1 T8–CP6, FC6, FT10, TP10 HDtDCS up to 20 SM 16 20.1 0

2 T7–CPS, FC5, FT9, TP9 HDtDCS up to 20 SM 16 20.1

Hampstead et al., 2014 Between 1 Pz–AF4 0.057 20 SM 8 24.6 ± 2.4 50

2 AF4–Pz 0.057 20 SM 24.4 ± 5.1 37.5

Krishnamurthy et al., 2015 Between 1 Pz–AF4 0.057 20 rs-fMRI 19–27 33.3

2 AF4–Pz 0.057 20 rs–fMRI 19–27 33.3

Flöel et al., 2012 Cross-over 1 P6–left SO 0.029 2 SM 20 62.1 ± 9.2 50

cSO, contralateral supraorbital cortex; SO, supraorbital cortex; HD-tDCS, high-definition tDCS; WM, working memory; LTM, long-term memory; SM, spatial memory; rs-fMRI-

resting-state functional magnetic resonance imaging; N, number of participants; PARC, parietal cortex.

for the current review, atDCS was shown to improve n-back
performance, which was reflected by shorter reaction times, when
compared to sham tDCS. This pattern of results was present
across different stimulus intensities, stimulus durations, and in

healthy and clinical samples (see Brunoni and Vanderhasselt,
2014 for review). Unfortunately, effect sizes in dependence of
stimulation site i.e., right, left, or bilateral DLPFC, were not
further discussed.
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Studies investigating the underlying neuronal mechanisms
of tDCS-induced effects on working memory performance
are scarce (for an overview see Figure 3). Zaehle et al.
(2011) studied working memory performance after a single
application of 15 min 1mA atDCS or ctDCS over the left
DLPFC and the corresponding changes in oscillatory activity by
using electroencephalography (EEG). The results revealed that
tDCS altered working memory performance and changed the
underlying neural oscillations at posterior electrode sites in a
polarity-specific way (Zaehle et al., 2011). Specifically, atDCS
amplified, whereas ctDCS attenuated oscillatory power in the
theta and alpha bands, which are both critical for working
memory processes. Local increases in alpha amplitude are related
with preventing uptake of irrelevant information during working
memory retention, whereas theta oscillations are thought to
play an important role in the integration and organization of
the different cognitive processes involved in working memory
(see Sauseng et al., 2010 for review). Investigating the effects of
atDCS over the left DLPFC on brain network connectivity using
resting-state fMRI indicated a significant increase in functional
connectivity in the default-mode and left and right fronto-
parietal resting-state network (Keeser et al., 2011). The relevance
of fronto-parietal functional connectivty for working memory is
well established (e.g., Hampson et al., 2010; Rieckmann et al.,
2011), but a direct link between tDCS-induced alterations in
resting-state functional connectitvity and changes in working
memory performance remains to be determined.

Evidence for enhancing effects of atDCS on cognitive
functions in older adults is much more limited than in younger
adults but slowly accumulating. Recent meta-analyses lend
support for enhancing effects of NIBS methods on cognitive
performance in older adults (Hsu et al., 2015; Summers et al.,
2016). Hsu et al. (2015), for instance, considered studies
examining tDCS and also TMS effects on performance across a
broad variety of tasks targeting different cognitive processes (e.g.,
workingmemory, episodicmemory, inhibition, error awareness).
The meta-analysis revealed an overall moderate effect size (0.42).
However, a systematic review and meta-analysis comparable
to Brunoni and Vanderhasselt (2014) including only studies
applying stimulation over the same brain area, the same working
memory paradigm, and analyzing the same outcome measures in
older adults is unfortunately still missing. Overall there are mixed
results for atDCS-effects on working memory performance in
older adults. For instance, Berryhill and Jones (2012) conducted
a sham-controlled experiment with atDCS over the DLPFC
before a visuo-spatial and verbal working memory task. The
anode was placed either over the F3 or F4 electrode site of
the 10–20 International system and 1.5 mA direct current was
applied for 10 min. The results indicated that atDCS improved
working memory performance independently of stimulation site.
Critically, only older adults with high education levels showed
the stimulation effect, which may reflect that highly educated
older adults employ a different working memory strategy that
can be boosted by atDCS compared to older adults with lower
levels of education (Berryhill and Jones, 2012). More recently,
Nilsson et al. (2015) systematically investigated the influence of
atDCS over the left DLPFC on performance in an n-back task in

older adults. The authors compared different current intensities
(1 vs. 2 mA) and investigated the temporal development of
the atDCS effect i.e., n-back performance was assessed before,
three times during, 5 and 30 min after the 25 min-stimulation
period. The results revealed no significant effects of atDCS.
Compared to sham stimulation atDCS did not modulate working
memory performance at any point during or after stimulation
(Nilsson et al., 2015). These results should be interpreted with
caution, as possible practice effects due to multiple testing in
sham and atDCS stimulation conditions may have masked the
stimulation effects. However, the lack of a robust effect after a
singular application of tDCS is consistent with a meta-analysis,
indicating that multi-session stimulations are more effective than
single-session stimulations in older adults (Hsu et al., 2015).

Effects of tDCS on Episodic Memory Plasticity
Most studies investigating potential facilitating effects of atDCS
on episodic memory functions focused on verbal and visual
memory, which are memory functions subserved by a broader
fronto-hippocampal-parietal circuitry. As direct stimulation of
critical subcortical structures such as the hippocampus or
striatum is not applicable in healthy human subjects, network
activations via the stimulation of cortical areas as the frontal
and parietal cortex are commonly applied. There is evidence
indicating that, relative to sham or control site conditions,
atDCS stimulation of the left DLPFC with a current of 1–2
mA for up to 20 min during or immediately after encoding
of the stimulus material improved immediate recognition and
retrieval or reduced long-term forgetting of verbal and visual
episodic memories in younger (e.g., Javadi and Walsh, 2012;
Manenti et al., 2013; Gray et al., 2015) and older adults (e.g.,
Manenti et al., 2013; Sandrini et al., 2014, 2016). Stimulation
effects were independent of stimulation hemisphere in young
adulthood but memory improvements in older adults were only
observed following left hemisphere stimulation (Manenti et al.,
2013). Nevertheless, beneficial stimulation effects have also been
observed 48 h later (Sandrini et al., 2014, 2016) or up to 1
month after applying atDCS (Sandrini et al., 2014) in older adults.
However, there are also other studies that failed to replicate these
results in younger adults (Smirni et al., 2015) or even reported an
increase of false alarm rates in episodic memory (Zwissler et al.,
2014).

Fewer studies involving younger adults investigated potential
effects of atDCS over the temporal or parietal cortices. For
instance, Jones and colleagues showed facilitations in verbal long-
term memory in younger adults when atDCS was administered
during encoding but not during maintenance over the left PPC
with a current of 1.5 mA for 15 min (Jones et al., 2014).
Bilateral atDCS (i.e., the anode over the left and the cathode over
the right temporal cortex or the PPC) during the recognition
phase of a word list learning task showed differential effects in
younger adults: recognition performance of old (hit) but not
new items (correct rejection) was improved in the temporal
cortex stimulation group whereas recognition performance of
new but not old items was improved in the PPC stimulation
group (Pisoni et al., 2015). Such findings indicate that potential
effects of facilitation vs. inhibition of new afferent information
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depend on the stimulation site and, hence, on the underlying
brain circuitry of the respective cognitive domain. Evidence from
healthy aging studies is, so far, missing, but improvements in
recognition memory up to 4 weeks after stimulation (over the
left DLPFC or bilateral over temporoparietal areas with 1.5–2mA
for 15–30 min) had been observed in Alzheimer’s disease patients
(Ferrucci et al., 2008; Boggio et al., 2009).

Thus, far, there are even fewer studies, which investigated
effects of tDCS on spatial learning and memory. Nevertheless,
the available results offer some optimism regarding tDCS-
induced spatial memory plasticity in the adult lifespan. In
younger adults, applying atDCS at 2 mA for 20 min over
the right centrotemporal cortex during spatial navigation in a
virtual environment facilitated later performance in a sketch
map drawing test that required the participants to re-draw the
layout of the virtual environment from memory. Interindividual
differences in the sense of direction predicted atDCS-induced
spatial navigation benefits, with low-performing individuals
benefitting more (Brunyé et al., 2014).

Regarding the underlying neural correlates, animal literature,
so far, provides only tentative evidence that BDNF and
neurogenesis in the dentate gyrus might play a role in
atDCS-induced improvements in episodic and spatial memory
performance (see Bennabi et al., 2014 for review). Recent studies
combining tDCS with fMRI investigated the effects of tDCS
on activation and functional connectivity within the fronto-
hippocampal-striatal network in humans (Hampstead et al.,
2014; Krishnamurthy et al., 2015; see Figure 3 for an overview
diagram). Network-modulatory effects of tDCS were investigated
by applying 20 min of 2 mA tDCS offline before the participants
performed a spatial navigation task assessing hippocampal- vs.
striatal-based spatial memory in the MR scanner. The anode and
cathode were placed over midline parietal and frontal regions,
respectively. The parietal-anode/frontal-cathodemontage had no
effect on hippocampal activity in both hippocampal- and striatal-
dependent spatial navigation conditions but was associated with
increased right caudate activation during sequential stimulus-
response-based spatial navigation and greater connectivity
between the left prefrontal and the parietal cortex. In contrast,
the frontal-anode/parietal-cathode montage was associated
with increased right hippocampal and bilateral activity in
prefrontal regions during hippocampus-dependent navigation
and with greater connectivity between prefrontal regions and
the right hippocampus (Hampstead et al., 2014). The parietal-
anode/frontal-cathode montage was further associated with
increased fMRI resting-state functional connectivity between the
superior parietal lobule and other brain regions of the spatial
learning and memory network 10 min after the stimulation
(Krishnamurthy et al., 2015). To our knowledge, only one
study has, so far, investigated effects of atDCS on spatial
memory in healthy older adults (Flöel et al., 2012). In a 2-
sessions within-subject cross-over design, atDCS with a current
of 1 mA for 20 min over the right temporoparietal cortex
was applied during the learning phase of an object-location
learning paradigm. Despite lacking tDCS-induced effects during
learning, healthy older adults showed tDCS-induced benefits of
memory recall 1 week after stimulation, indicating that tDCS can

have medium- to long-term effects on spatial memory even in
old age.

Taken together, only a small number of studies have
investigated the effects of atDCS on episodic and spatial
memory in older adults and existing findings indicate further
needs of systematic investigations. Of note, in the domain of
working memory the results are rather mixed. Two possible
factors may explain the, for now, inconsistent results. Given
that interindividual variability in widespread changes in brain
physiology and brain plasticity increase with old age, optimal
tDCS parameters (i.e., current intensity, stimulation duration,
and frequency, electrode montage) for applications in older
adults can be expected to differ from those for younger
adults (Zimerman and Hummel, 2010; Fertonani et al., 2014).
Thus, developing age-appropriate stimulation protocols require
more systematic investigations. Furthermore, across various
cognitive functions multi-session tDCS applications seem to
be more efficient compared to single-session application in
older adults (Hsu et al., 2015). Thus, tDCS applied in
combination with cognitive training over multiple sessions
may provide the added neural boost for enhancing and
prolonging transfer effects that are known to be reduced
or lacking in older adults (see Figure 2 for a schematic
diagram).

COMBINING COGNITIVE TRAINING AND
tDCS

Very recently, a few studies have started to explore the effects
of combining motor learning (Reis et al., 2009) or cognitive
training with atDCS interventions in younger (Meinzer et al.,
2014; Richmond et al., 2014; Au et al., 2016; Looi et al.,
2016; Mancuso et al., 2016) and older adults (Jones et al.,
2015b; Stephens and Berryhill, 2016). In younger adults, first
evidence for atDCS-enhancing effects on training gains have
been shown across various cognitive functions, e.g., arithmetic
operations (Looi et al., 2016), language (Meinzer et al., 2014),
and working memory (Richmond et al., 2014; Au et al.,
2016). For episodic memory though, there is yet no study
investigating synergistic effects of atDCS and episodic memory
training neither in healthy young nor older populations. There
is, to the best of our knowledge, only one study that applied
2 mA atDCS for 25 min over the left DLPFC during 10
sessions of memory training in Alzheimer’s disease patients
without being able to show ameliorating effects of atDCS
on the training-related memory improvements (Cotelli et al.,
2014).

With respect to working memory, Richmond et al. (2014)
let their participants take part in an adaptive training over 10
sessions concurrent with either 15 min of 1.5 mA atDCS or
sham stimulation over the left DLPFC. The results showed that
compared to sham stimulation atDCS enhanced learning and
near-transfer to other non-trained working memory tasks. Far-
transfer or maintenance effects were not investigated. Enhanced
training performance due to additional atDCS could also be
reported by Au et al. (2016). In seven sessions participants
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received 25 min of 2 mA atDCS over the right or left DLPFC
concurrent with a visual-spatial working memory training.
Near-transfer to non-trained visual or spatial working memory
tasks could also be observed but only in the right DLPFC
stimulation group which is in line with the right-hemispheric
dominance of the DLPFC for spatial working memory functions
(Wager and Smith, 2003). Critically, the authors also assessed
maintenance effects and could show that the atDCS- enhanced
training effects remained stable up to 8 months after training
completion (Au et al., 2016). Thus, there is promising evidence
for prefrontal atDCS-enhancing effects on immediate training
gains and near-transfer effects. The effects on far-transfer
effects still need to be explored. Taken together, the currently
existing empirical findings in younger adults lend support to the
idea that concurrent atDCS-training applications might bolster
older adults’ limited working memory training and transfer
gains.

There is already some preliminary but promising evidence
suggesting that older adults can benefit from combined atDCS
and training interventions. For instance, older participants who
received 30 min of 2 mA atDCS over the DLPFC during 10
sessions of computer-based cognitive training showed greater
improvements in verbal working memory compared to a sham
stimulation group. This effect maintained up to 28 days (Park
et al., 2014). Near- and far-transfer effects were not assessed.
Jones et al. (2015b) could provide evidence for maintenance
effects of atDCS on training-related improvements and transfer
effects in older adults. In their study older adults received
sham or atDCS over the right DLPFC, parietal, or alternating
prefrontal/parietal cortices (stimulation site was varied across
training sessions). The participants were randomly assigned to
one of the four groups and were matched according to age,
education and cognitive status. In 10 sessions, after 10 min of
1.5 mA tDCS participants performed a working memory task.
All groups benefited from working memory training and showed
significant improvements in the trained and near-transfer tasks.
Critically, after 1 month of no contact, only the participants in
the atDCS group maintained the significant improvement for
the trained and near-transfer tasks. Interestingly, the magnitude
of this improvement did not vary as a function of stimulation
site condition indicating that all stimulation sites equally well
targeted the fronto-parietal network, which could also be
confirmed by current modeling (Jones et al., 2015b). In a
more recent study of the same group, standard far-transfer
effects (i.e., processing speed, cognitive flexibility, arithmetic) and
ecologically valid far-transfer effects were assessed to investigate
translation to other cognitive abilities and daily activities as
e.g., scheduling appointments, driving, safety awareness, and
route planning. In this study older adults took part in a 5-
day working memory training combined with 15 min of either
sham, 1, or 2 mA atDCS over the right DLPFC. Comparable to
their first study, the authors replicated the general improvement
in the trained task across all groups. Critically, 2 mA atDCS
induced significantly greater far-transfer gains after 1 month
of no contact (Stephens and Berryhill, 2016). Taken together,
working memory training when combined with atDCS seems
to offer promise in enhancing and maintaining older adults’s

working memory training as well as near- and far-transfer gains.
Whether the effect sizes of atDCS-enhancing training gains in
older adults are comparable to those of younger adults needs to
be determined.

LIMITATIONS AND OUTLOOK

Notwithstanding the promising effects of combined atDCS and
cognitive training interventions, there are several open questions
and limitations that should be addressed in future studies. As
there was no comparison group in all the combined atDCS and
cognitive training studies that underwent only tDCS, no firm
conclusions about the synergistic effects of brain stimulation
and cognitive training intervention can yet be drawn. Thus,
future work should include a tDCS-only control group to
clarify whether tDCS, cognitive training and the combination
of tDCS and cognitive training contribute differently to short-
and long-term benefits. The response to tDCS has been shown
to be state-dependent and critically vary as a function of
interindividual differences in educational level (Berryhill and
Jones, 2012) or baseline task performance (Jones and Berryhill,
2012; Tseng et al., 2012). It is likely that tDCS interacts
with individual endogenous activity levels within the region of
targeted neurons, rather than exerting a homogeneous effect
across individuals (Learmonth et al., 2015). Further, the results
of a previous study could show that tDCS effects were boosted
after supplying a task strategy or financial motivation (Jones
et al., 2015a). Thus, considerable attention should be paid to the
thorough assessment of baseline task ability and the influences of
motivational factors when designing future tDCS and combined
tDCS and training interventions. Given the existence of an
inverted-U relationship between DA level and cognition (Li
and Sikström, 2002; Cools and D’Esposito, 2011) and non-
linear, dose-dependent effects of levodopa on tDCS-induced
plasticity (Monte-Silva et al., 2010), atDCS could also shift
performance beyond the optimal range. Thus, interindividual
differences in baseline DA-level should be kept in mind when
interpreting interindividual differences in tDCS-induced effects.
Furthermore, so far, we can only infer that the effects of combined
tDCS and training interventions on working memory may be
mediated through the strengthening of functional connectivity in
the fronto-striatal-parietal as well as dopaminergic modulation
of this circuitry (Jones et al., 2015b). Future fMRI and PET
studies should, therefore, investigate the underlying neuronal
mechanisms of combined tDCS and training effects in order to
explore whether these effects go beyond the known training-
induced changes in brain activation and functional connectivity
in the fronto-striatal-parietal network (e.g., Dahlin et al., 2008a;
Jolles et al., 2013; Kühn et al., 2013; Thompson et al., 2016)
as well as cortical and striatal DA signaling (McNab et al.,
2009; Bäckman et al., 2011b). Given that older adults’ reduced
cognitive plasticity following cognitive training interventions is
particularly limited in the domain of episodic memory, future
studies should investigate whether similarly promising results
can be shown for episodic memory and maybe other cognitive
domains. Furthermore, as older adults are particularly limited in
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transfer effects of cognitive training interventions, future work
should by default include both, near- and far-transfer tasks
and invest more effort in developing protocols that enable the
investigation of transfer particularly to daily activities. Related
to this, future work should also focus on the home-based
applicability of combined tDCS and training interventions to
pave ways for more ecologically valid interventions that may
promote the maintenance of autonomy and quality of life in
old age.
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