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Neurofeedback (NF) is a form of biofeedback that uses real-time (RT) modulation of
brain activity to enhance brain function and behavioral performance. Recent advances
in Brain-Computer Interfaces (BCI) and cognitive training (CT) have provided new tools
and evidence that NF improves cognitive functions, such as attention and working
memory (WM), beyond what is provided by traditional CT. More published studies have
demonstrated the efficacy of NF, particularly for treating attention deficit hyperactivity
disorder (ADHD) in children. In contrast, there have been fewer studies done in older
adults with or without cognitive impairment, with some notable exceptions. The focus
of this review is to summarize current success in RT NF training of older brains
aiming to match those of younger brains during attention/WM tasks. We also outline
potential future advances in RT brainwave-based NF for improving attention training
in older populations. The rapid growth in wireless recording of brain activity, machine
learning classification and brain network analysis provides new tools for combating
cognitive decline and brain aging in older adults. We optimistically conclude that
NF, combined with new neuro-markers (event-related potentials and connectivity) and
traditional features, promises to provide new hope for brain and CT in the growing older
population.
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The ability to focus attention, encode and maintain information are among the brain’s most
important cognitive functions. Attention is a central component of cognitive ability. Measurements
of neural activity have become strong predictors of cognitive impairments in persons afflicted
with various kinds of cognitive deficits. Lapses in attention can impair memory and behavioral
performance.

Complaints about declined attention and memory are common in healthy and cognitively intact
older adults during brain aging. Deficits in attention and memory are also the most common
symptoms in older adults with dementia such as Alzheimer’s disease (AD), Parkinson’s, or
vascular dementia (VD). Old-age dementia affects patients’ daily lives with memory loss and
cognitive impairments. The most common early symptoms of AD are problems with short-term
memory (Reiman et al., 2011). Since there is no effective drug treatment thus far to stop
cognitive decline, attention training has become an increasingly attractive option. The effectiveness
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of cognitive rehabilitation including attention training has been
under debate for decades. A recent review has shown evidence
that attention training enhances attention and memory with
moderate success (Cicerone et al., 2011). Since attention is a
core function for multitude of cognitive processes (e.g., memory
and perception), most cognitive training (CT) programs seek to
increase the existing attentional capacity.

BRAIN-COMPUTER INTERFACE (BCI)

Research on Brain-Computer Interface (BCI), also known
as brain-machine interface (BMI), dates back to the 1960s
(Miranda et al., 2015). BCIs and BMIs are systems that utilize
recorded brain activity to communicate between the brain and
computers in order to control the environment in a manner
that is compatible with the intentions of humans and to
receive feedback from environment. In BCI, the brain activity
is recorded through various neuroimaging methods, which
can be categorized in two groups: invasive and noninvasive.
Electrocorticography (ECoG) and Electroencephalography
(EEG) are known as the most common invasive and
noninvasive methods, respectively (Nicolas-Alonso and
Gomez-Gil, 2012). A closed-loop BCI system with real-
time (RT) modulation and communication can not only be
employed in directly controlling external devices, but can
also be utilized as a biofeedback platform to improve and
enhance the cognitive abilities of individuals (Chaudhary et al.,
2016).

NEUROFEEDBACK (NF)

Neurofeedback (NF) is a form of EEG biofeedback used
to successfully improve cognitive and physical performance
of humans (Daly and Wolpaw, 2008; Pfurtscheller et al.,
2008; Machado et al., 2013; Broccard et al., 2014; Chaudhary
et al., 2016). Cognitive enhancement training after mild
traumatic brain injury (mTBI) has been shown to increase
focused attention and memory, thus improving the patient’s
performance in daily life (Cicerone et al., 2011). More
convincing evidence of effectiveness of working memory (WM)
and executive-control training in older adults comes from
a meta-analysis by Karbach and Verhaeghen (2014). They
examined 61 independent samples in adults over the age of
60. Cognitive interventions resulted in significant improvement
in performance on the trained task and untrained similar
tasks. There was even a small but significant training-
induced improvement in untrained tasks in a different
domain, demonstrating that training has transferred far into
learning.

The presently popular CT method is attention process
training (APT; Sohlberg et al., 2000), which also includes WM
components. While efficacy of these methods differs, all have
been reported to enhance performance in focused attention
tasks, cognitive function and WM tasks. Some attention training
showed a learning transferable effect, i.e., improved performance
in untrained tasks (Sinotte and Coelho, 2007; Westerberg et al.,
2007; Cicerone et al., 2011; Kuo et al., 2014). However, evidence

for improvement in everyday life utilizing cognition has been
limited thus far, which provides impetus for developing better
and time-efficient methods to directly train neural processes
underlying attention. Cicerone et al. (2011) concluded that
attention seems to train better than other domains of cognition.
For treatment of children with attention deficit/hyperactivity
disorder (ADHD), NF has been shown to be a better intervention
than traditional attention (Hurt et al., 2014; Steiner et al., 2014)
or WM training (YuLeung To et al., 2016). Notice though,
evidence from meta-analyses of randomized controlled trials
fails to support NF as an effective treatment for ADHD in
children and adolescents. The significant treatment results only
occur in the outcome measures that are not properly blinded
(Cortese et al., 2016). In a comprehensive review on EEG-based
BCI NF, Ordikhani-Seyedlar et al. (2016) pointed out that,
despite amazing progress, a major challenge for attentional
training via NF is improving signal processing algorithms that
dissociate brainwaves of attended from those of unattended
items.

WHAT’S SPECIAL ABOUT COGNITIVE AND
BRAIN AGING?

Challenges of Training Older Adults
The challenge of attentional training in older adults is that
measurement of CT is often confounded with multiple factors,
such as individual differences that tend to increase with
age. These factors include individual differences in brain
aging associated with visual attention (Monge et al., 2016),
attention capture to rewarding objects (e.g., a parieto-occipital
electrophysiological responses; Donohue et al., 2016), WM
and performance (Parasuraman and Jiang, 2012), learning
transfer beyond trained tasks (Greenwood and Parasuraman,
2016), and placebo effects where performance of older adults
is simply improved by participating in CT (Foroughi et al.,
2016).

Unlike ADHD in children, prominent cognitive deficits in
aging brain occur in the switching and division of attention,
whereas phasic arousal and focused attention to stimulus
features are only minimally affected in the early stages of
AD. For instance, selective attention deficit is one of the
first cognitive indicators of neocortical dysfunction in early
AD (Parasuraman and Haxby, 1993). Despite many challenges,
comprehensive treatment in patients with mild cognitive
impairments (MCI), including NF training, diet and fitness
programs, has shown great promise in cognitive improvement
(Bredesen et al., 2016; Fotuhi et al., 2016). Importantly,
efficacy of all NF training schemes will need to be rigorously
tested by comparing independent measures and sensitive
indicators of attention and WM before and after attention
training.

Training Attention and Working Memory to
Prevent AD Risk
Besides attention, neural mechanisms underlying short-term
memory (e.g., WM) undergo a significant early change in
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aging (Lawson et al., 2007) and in AD dementia patients
(Grady et al., 2001). The memory decline also includes neural
mechanisms underlying repetition learning, a form of implicit
memory (Jiang et al., 1999, 2009). Early AD/MCI manifests itself
in loss of short-term memory but retention of intact long-term
memory. Since WM and attention shared common neural
mechanisms (e.g., Gazzaley and Nobre, 2012), enhancement of
attention improves encoding, maintenance and retrieval of items
held in WM for online usage.

It is critical that future attention training via NF in
older adults targets specific neuro-markers underlying
attention/WM and related performance. For instance, a
short-term memory paradigm based on well-established
single-cell electrophysiological experiments in primates
(Miller and Desimone, 1994) was developed for human
neuroimaging using functional magnetic resonance imaging
(fMRI; Jiang et al., 2000, 2016), and EEG (Lawson et al.,
2007; Guo et al., 2008). Using the short-term memory
paradigm, the same patterns of brain responses in older
adults and MCI have been validated in a Chinese cohort of
older adults (Yu et al., 2016). Testing a cohort of cognitively
normal older adults in the U.S., Jiang et al. (2016) reported
that increased bilateral parietal connectivity during the
short-term memory task is correlated with higher Tau levels
in Cerebrospinal fluid (CSF) biomarker, indicating increased
risk of AD. CSF Tau AD biomarker did not show such a
link to brain connectivity during resting state, but only when
the brain was challenged with a cognitive task. In contrast
to CSF AD biomarkers, which showed no associations with
cognitive status in normal these adults, functional brain
connectivity between left temporal and parietal gyri during the
memory task strongly correlated with overall cognitive status.
Furthermore, modulating cognitive neuro-markers validated
by AD biomarkers (e.g., CSF) should be even more effective
approach in cognitive improvement specifically targeting aging
brain.

ADVANCEMENT IN BRAIN TRAINING
METHODOLOGY

The effectiveness of CT has been subject to doubt for decades.
Recently, brain training has experienced a renaissance due to
new advances in brain imaging, BCI and advanced analytical
tools. Applying state-of-the-art RT classification tools, a recent
study used fMRI to provide NF during attention training
and successfully improved visual attention and behavioral
performance (deBettencourt et al., 2015). This study also aimed
to increase the efficiency of attention so that a personmay sustain
high attention to a task for a longer period of time to improve
memory, which is the key element for improvement in cognitive
aging.

EEG Based Neurofeedback Training
EEG has been in use since 1930s (Adrian and Matthews,
1934). What are the new tricks for improving brain training?
For decades, scalp EEG studies of AD mainly focused on
characterizing clinically-evident disease stages rather than

preclinical AD. The important EEG components in human
adults are the delta (<4 Hz), theta (4–7 Hz), alpha (8–13 Hz),
and beta waves (>13 Hz). Theta and delta waves are
known as slow waves. Alpha waves, sourced in frontal sites
including anterior cingulate cortex, are related to attention,
WM, and related performance in humans. It has been shown
to be sensitive to suppression of unattended stimuli (Händel
et al., 2011). EEG theta oscillations are also related to
hippocampal activity during WM (Tesche and Karhu, 2000).
Spatial attention is a constant theta-rhythmic sampling process
implemented through gamma-band synchrony (Landau et al.,
2015).

NF using traditional EEG and new EEG neuro-markers has
demonstrated success in recent times, especially in children
with ADHD in the 6–12 age range (Holtmann et al., 2014).
Relative power of theta, alpha, beta, theta/alpha and theta/beta
ratios were applied during successful training in children with
ADHD (Hillard et al., 2013), and by using Theta/Alpha Ratio
(Steiner et al., 2014). Similar success has been shown in NF
training using theta/Alpha ratio in children age 6–12 with a
learning disorder (Fernández et al., 2016). However, in slightly
older children with ADHD, failure of improvement was reported
in a double-blind placebo-controlled study (Vollebregt et al.,
2014), which theta/beta ratio and theta/alpha ratio were utilized.
The outcome measures of neurocognitive performance before
and after treatment failed to show improvement, possibly
due to sensitivity of the outcome measures and other study
limitations.

As for NF training in the older brains, the seminal work by
Angelakis et al. (2007) applied EEG NF in the older population
and showed improved processing speed and executive functions
(EFs). Additional success has been reported using EEG-based
NF for attention training and WM in young adults (Egner and
Gruzelier, 2001; Zoefel et al., 2011; Ros et al., 2013, 2014), in
post-traumatic stress disorder (Ros et al., 2016), and in older
dementia patients (e.g., Surmeli et al., 2016). We summarize
some of the recent studies on attention or WM training in older
and younger adults in Table 1.

NOVEL NEURO-MARKERS FOR
COGNITIVE CHANGE IN OLD AGE

Recent work has identified neurosynaptic changes as one of the
earliest biomarkers of preclinical AD, appearing before onset
of tau-mediated neuronal injury or brain structure changes
(Jack et al., 2011; Sperling et al., 2011). EEG recordings directly
measure post-synaptic potentials and are able to detect these
early changes. It has been shown that measured synchronized
electrophysiological signals during sleep and rest can be used
as neurophysiological biomarkers for the early detection and
classification of dementias (Al-Qazzaz et al., 2014).

Cognitive ERP Markers
The averaged EEG signals, i.e., ERPs during cognitive events
known as cognitive ERP, provides a promising neuro-markers
for indexing changes of neural mechanisms underlying cognition
and memory (Olichney et al., 2011). Altered amplitude or
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TABLE 1 | Selective studies on attention or working memory training using neurofeedback (NF) in older and younger adults.

Publications Age group Mean age (Range
in years)

Tasks (number of participants) Neuro-markers Improvement?

Angelakis et al. (2007) Older adult (H) 74 (70–78) Memory, Processing speed; NFT and
SNFT (n = 3 each group/condition)

Alpha Frequency Y (Speed and EF)

Lecomte and Juhel (2011) Older adult (H) 75.25 (65–85) Working Memory; NFT and SNFT Alpha, Theta Mixed (Memory)

Becerra et al. (2012) Older adult (H) 65.8 (60–84) Executive Function + Memory Tasks;
NFT and SNFT (n = 7 each)

Theta Y (WM)

Wang and Hsieh (2013) Young + Older (H) 21.8 (21–25); 64.6
(61–67)

Attentional Network + Recognition Task;
NFT and SNFT (n = 8 each)

Fronto-midline
Theta

Y (Attention and WM)

Staufenbiel et al. (2014) Older adult (H) 67.8 Intelligence + Memory Task; Beta and
Gamma Groups (n = 10 each)

Gamma, Beta Y (WM)

Luijmes et al. (2016) Older adult (AD) 64–78 Cognitive Examination; NFT (n = 10) Delta, Theta, Alpha,
Beta

Y (WM)

Reis et al. (2016) Older adult (H) 65.97 (59.3–72.6) Working Memory Task; NFT (n = 9),
NFCT (n = 8), CT (n = 7), SNFT (n = 6)

Theta, Alpha Y (WM)

Surmeli et al. (2016) Older adult (AD + VD) 68.9 (58–79) EEG-guided
NFT (n = 20); within subjects’ design

Inhibit Theta, Alpha,
Beta (21–32 Hz)

Y∗ (MMSE)

Egner and Gruzelier (2001) Young adult (H) 22.1 Oddball Task; NFT (n = 22) P300 ERP, beta1,
SMR learning

Y (Attention)

Zoefel et al. (2011) Young adult (H) 23 (21–26) Mental Rotation Task; NFT (n = 14), SNF
(n = 10)

Upper Alpha
Frequency

Y (Mental rotation)

Ros et al. (2013) Adult (H) 32.6 (22–42) Attentional and Oddball Tasks; NFT and
SNFT (n = 17 each)

fMRI, Alpha
frequency

Y (Attention)

deBettencourt et al. (2015) Adult (H) 20.3 Selective attention task (superimposed
images Figure 1; n = 16 each condition)

Real-time
fMRI

Y (Attention)

H, Healthy participants; LD, Leaning disorder; ADHD, attention deficit hyperactivity disorder; AD, Alzheimer’s disease; VD, vascular dementia; mTBI, mild traumatic brain

injury; NFT, neurofeedback training group; SNFT, sham neurofeedback group; CT, cognitive training; NFCT, neurofeedback and cognitive training group; RT, real-time;

EF, executive function; WM, working memory; Y∗, some of the participants; MMSE, Mini Mental State Exams.

latency of ERP signals in patients with AD have been reported
(Jackson and Snyder, 2008). In addition, abnormal cognitive ERP
P600 during a word memory task in a small sample of older
adults with preclinical AD has been reported (Olichney et al.,
2008, 2011, 2013). Similar to EEG, cognitive ERP biomarkers are
a noninvasive and more cost-effective method than CSF, PET
biomarkers for early diagnosis of AD. Cognitive ERP biomarkers
are sensitive to WM and attention deficits before conventional
biomarkers of AD can be detected by behavioral performance
changes (Li et al., 2017).

Brain Network-Based Neuromarkers
Recent evidence in animal models and neuroimaging also
points to brain connectivity networks as novel neuro-markers
for indexing early deficits in AD risk. Aß peptides disrupt
neural activity at the synaptic level and induce aberrant
activity patterns in neural network circuits within and between
brain regions in animal models (Palop and Mucke, 2010).
Resting-state network based technology using EEG has
demonstrated abnormalities in cognitive ability (Babiloni
et al., 2006a,b, 2009, 2010; Prichep et al., 2006; Prichep,
2007). Patterns of functional brain connectivity in humans are
highly predictive of cognitive performance (Hachinski et al.,
2006; Finn et al., 2015). Recent fMRI work shows that brain

connectivity correlates differentially with CSF AD biomarkers
both during resting state and cognitive tasks (Jiang et al.,
2016).

ADVANCED REAL-TIME EEG ANALYSIS

Advanced Network Causality Analysis in
Old Brains
As brain ages, Aβ plaques form within distinct regions of the
brain’s default-mode network (Buckner and Vincent, 2007).
Other factors such as age, genes and cognitive reserve in
older individuals also add to the complexity of predicting
AD risk in an individual. While fMRI connectivity is a good
indicator for network of brain circuits, EEG offers superior
temporal resolution, simpler and more affordable application
in clinical settings. For instance, the network EEG neuro-
marker can be a predictive neuro-marker for AD risk (Stam,
2014). Growing evidence has shown that brain functional
connectivity changes in dementia can be identified in EEG
recordings (McBride et al., 2013, 2014, 2015; Sargolzaei et al.,
2015). Engels et al. (2015) reported decreasing functional
connectivity in the posterior regions, together with a shifted
hub location from posterior to central regions with increasing
AD severity. In addition, causality analysis is taking the
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center stage. For instance, causality analysis based on the
Granger method was used to infer synaptic transmission,
which was reflected in EEG measurement and information
flow in the neural network (Trongnetrpunya et al., 2016).
The Granger causality algorithm was also used to assess brain
connectivity in scalp EEG with success (e.g., Barrett et al.,
2012). They identified significant increases in bidirectional
Granger causality during loss-of-consciousness, especially in
the beta and gamma frequency ranges. In contrast to Granger
causality analysis (Bressler and Seth, 2011), Sugihara et al.
(2012) proposed the dynamic causation concept (Deyle and
Sugihara, 2011). A novel brain functional connectivity marker
based on Sugihara’s causality definition (McBride et al., 2015)
has been developed to allow characterization of brain network
changes beyond traditional features at localized brain sites.
Figure 1 illustrates the consistent connectivity changes in
older brain using measures of network EEG (Figure 1A),
fMRI connectivity (Figure 1B), and white matter integrity
(Figure 1C) in the aging cohort followed by Sanders-
Brown Center on Aging at Bluegrass Region in Central
Kentucky. These findings open up new ways in training
older brainwaves during tasks toward those seen in younger
brains.

Real-Time EEG and fMRI Based NF
Training
Brain training using frequency based EEG features (alpha,
theta, or theta/beta power) is commonly used in the NF
attentional training. Applying EEG-based NF for improving
cognitive performance has been reviewed comprehensively by
Gruzelier (2014). New studies using EEG neuro-markers beyond
frequency neuromarkers have been showing new promise. The
brain dynamics (EEG long-range temporal correlations) can
be modulated with stimulation in an involuntary manner,
which is an excitation-inhibition balance change achieved by
the closed-loop neuro-regulation (Ros et al., 2014; Reis et al.,
2016; Zhigalov et al., 2016). Using simultaneous EEG and fMRI,
Zotev et al. (2014) demonstrated potential applications of novel
NF paradigms for treating mental disorders including cognitive
aging. Liu et al. (2015) proposed a fractal dimension (FD)-based
NF training protocol with adaptive algorithm. The FD-based NF
does not require before-training recording. The efficiency of the
FD-based NF training in comparison with traditional individual
theta/beta based NF training is assessed for focused attention
and test of attentional vigilance. They reported that after NF
training participants from FD-based training group have similar
or better test performance than the one from the ratio-based
group.

RT classification of complex brain activity has been an
exciting development. A recent study demonstrated that NF
using ‘‘RT’’ fMRI during attention training can be used to
successfully improve visual attention (deBettencourt et al.,
2015). Although fMRI-based NF has definite advantage of
revealing where the modulation occurs in the brain, the use
of MRI requires participants to remain motionless during
training sessions. Additionally, fMRI technique indirectly
measures neural activity by quantifying blood oxygen levels,

and is costly as well. Thus, there is renewed interest in
developing user-friendly advanced EEG-based NF. Aided by
new EEG recording technologies such as wireless EEG headsets
(e.g., Emotiv device featured in Figure 1D) and gaming
devices, more investigations on NF via brain network that
utilize faster RT classification analysis have emerged. The
following example is how the combination of EEG frequency
and advanced EEG features analysis (e.g., spectral entropy)
are used to modulate brain activity for better attention
training.

Feature Extraction and Close-Loop BCI
Neurofeedback
The employed features from collected EEG data for focused
target in initial testing and validation of the platform are
oscillation activity of delta, theta, alpha, beta and gamma bands,
as well as the spectral entropy. Additionally, spectral entropy
is information entropy that is able to quantify the spectral
complexity of an uncertain system. Modeled after successful
fMRI paradigm of attention training (deBettencourt et al.,
2015), a new noninvasive BCI system has been developed
using scalp EEG to decode the sustained attention level of
a human participant with an efficient NF based on his/her
level of attention-related brain signals. Figure 1D shows a
schematic of the attention-based NF system. During the test,
scalp EEG signals of a subject are recorded via wireless
EEG headset while the subject is focusing on a sequence
of superimposed images. Each image is a mixture of two
transparent pictures from two categories (Scene vs. Face).
At a given time, an observer is instructed to pay attention
to the task-relevant stimulus (e.g., scene) and ignore the
irrelevant stimulus (e.g., face). The level of the attentional
state of the subject towards the targeted task-relevant stimulus
will be determined from a regression model of the EEG
signals in RT. If the attentional level is high for the
current image, then the subject is rewarded with improved
sharpness of the target stimulus in the next composite
image. Thus, the dynamics of changing superimposed images
serves as rewarding positive NF, encouraging the subject to
focus his/her attention on the target visual stimuli. Several
EEG and EPR-based BCI platforms for prosthetic control
(Abiri et al., 2015a, 2016a) and NF of attention training
have been developed in adults (Abiri et al., 2015b, 2016b),
which is promising as foundation for the next step of
testing in older adults using well designed and controlled
experiments.

CONCLUSION

This review has summarized the rapid growth in BCI technology,
online machine learning classification, and advanced brain
network analysis, which are some of the exciting new methods
in combatting cognitive and brain training in older adults.
BCI-based NF training provides new methods for instant
reward of brainwave patterns associated with better cognitive
functions or younger brains. We envision great progress
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FIGURE 1 | The individual brainwaves are neuromarkers for cognitive states. (A) The network electroencephalography (EEG) causality analysis of brain
connectivity differentiates healthy older adults (NC) from early Alzheimer’s disease (AD) patients (Adaptation of McBride et al., 2015). (B) Functional magnetic
resonance imaging (fMRI) brain network analysis from cognitive normal participants in the University of Kentucky cohort (bilateral anterior temporal connectivity
correlates with early AD risk; Jiang et al., 2016). (C) Cortical thinning in temporal cortices (n = 24) was seen in older patients with very early stage of AD at the
Unviersity of Kentucky. (D) The integrated platform for EEG/ERP closed-looped neurofeedback (NF) during attention training. Facial images are used with permission.
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will occur in brain training of attention and short-term
memory, core cognitive abilities, by modulating non-invasively
recorded electrical brain activity via RT NF in older adults.
This is an exciting time for developing CT in older adults.
With the work reviewed here, we conclude that RT NF,
combining traditional frequency and new neuro-markers,
promises to provide new hope for brain and CT in older
adults.
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