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Cerebral blood flow (CBF) alterations and amyloid-β (Aβ) accumulation have been
independently linked to cognitive deficits in older adults at risk for dementia. Less is
known about how CBF and Aβ may interact to affect cognition in cognitively normal
older adults. Therefore, we examined potential statistical interactions between CBF and
Aβ status in regions typically affected in Alzheimer’s disease (AD) within a sample of
older adults from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Sixty-
two cognitively normal participants (mean age = 72 years) underwent neuroimaging
and memory testing. Arterial spin labeling magnetic resonance imaging was used to
quantify CBF and florbetapir PET amyloid imaging was used to measure Aβ deposition.
Aβ status (i.e., positivity versus negativity) was determined based on established cutoffs
(Landau et al., 2013). The Rey Auditory Verbal Learning Test was used to assess
memory. Linear regression models adjusted for age, education, and sex, demonstrated
significant interactions between CBF and Aβ status on memory performance. Among Aβ

positive older adults, there were significant negative associations between higher CBF
in hippocampus, posterior cingulate, and precuneus and poorer memory performance.
In contrast, among Aβ negative older adults, there were no significant associations
between CBF and cognition. Our findings extend previous CBF studies of dementia
risk by reporting interactions between Aβ status and CBF on memory performance in
a sample of well-characterized, cognitively normal older adults. Results suggest that
differential CBF-cognition associations can be identified in healthy, asymptomatic Aβ

positive older adults relative to Aβ negative individuals. Associations between higher

†Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation
of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing
of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledge
ment_List.pdf
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CBF and poorer memory among Aβ positive older adults may reflect a cellular and/or
vascular compensatory response to pathologic processes whereby higher CBF is
needed to maintain normal memory abilities. Findings indicate that CBF and its
associations with cognition may have utility as a reliable marker of brain function early in
the AD process when interventions are likely to be beneficial.

Keywords: aging, Alzheimer’s disease, cerebral blood flow, amyloid, arterial spin labeling (ASL), positron
emission tomography (PET), neuroimaging, memory

INTRODUCTION

Cerebral blood flow (CBF) alterations (Bangen et al., 2014) and
amyloid-β (Aβ) accumulation (Rodrigue et al., 2012) have been
independently linked to increased risk of developing dementia. It
is well established that Aβ accumulation is an early event in the
Alzheimer’s disease (AD) pathological process (Jack et al., 2010,
2013) and there is accumulating evidence of the role of early
cerebral vascular dysfunction in AD (Iadecola, 2004; Zlokovic,
2011). This includes disruptions in neurovascular function,
which is the normal regulation of CBF by arterioles and the
capillary neurovascular unit (Girouard and Iadecola, 2006).

Arterial spin labeling (ASL) is a non-invasive magnetic
resonance imaging (MRI) technique in which arterial water
is magnetically labeled and used as an endogenous tracer to
measure CBF (Detre and Alsop, 1999). ASL has been used
to reliably measure CBF in AD patients (Johnson et al.,
2005); individuals with mild cognitive impairment (MCI)
(Bangen et al., 2012); and cognitively normal older adults
(Bangen et al., 2009). ASL studies of individuals with AD
demonstrate similar patterns of regional hypoperfusion as
those shown with studies using fluorodeoxyglucose positron
emission tomography (FDG-PET) and single photon emission
computed tomography (SPECT) (Chen et al., 2011; Takahashi
et al., 2014). ASL techniques have advantages over PET and
SPECT including (1) non-invasive use of an endogenous tracer
rather than an intravenously administered contrast agent; (2)
relatively brief scan times (typically 5–10 min) and can be
repeated in short succession due to the magnetization of
the labeled blood water that decays within seconds; and (3)
quantitative measurement of CBF at rest or during a functional
task (Johnson et al., 2005). These advantages along with
its increased sensitivity and ability to quantitatively measure
perfusion make it ideal to extend its applications for research
and in clinical settings (Telischak et al., 2015) designed to
monitor neural and vascular changes in healthy aging and
disease.

Previous studies have reported associations between Aβ

deposition and CBF among older adults across the cognitive
spectrum from normal aging to AD. For example, among
182 Alzheimer’s Disease Neuroimaging Initiative (ADNI)
participants, Mattsson et al. (2014) reported that higher cortical
Aβ load measured by florbetapir PET imaging was associated
with reduced CBF in several regions of interest, independent
of diagnostic group (cognitively normal, early MCI, late MCI,
or AD) (Mattsson et al., 2014). Further, they reported that
associations of Aβ load with CBF and brain volume varied across

the disease stages. Specifically, in normally aging participants,
higher Aβ load was associated with reduced CBF; however, in
individuals with late MCI and dementia, higher Aβ load was
related to greater reductions of gray matter volume. Given these
findings, it was hypothesized that Aβ pathology may lead to
reduced CBF early in the disease process and volumetric changes
later in the disease process, although longitudinal studies are
needed to confirm these temporal relationships (Mattsson et al.,
2014). In another study including a sample of 27 cognitively
normal older adults and 16 individuals diagnosed with amnestic
MCI, Michels et al. (2016) reported a trend toward lower global
CBF among those that had greater Aβ deposition measured with
Pittsburgh Compound B (PiB) PET (Michels et al., 2016). Taken
together, these studies suggest that CBF may be an important
mechanism leading to cognitive decline, and may play an even
more prominent role among those with elevated Aβ load.

Findings from several postmortem studies (Arriagada et al.,
1992; Ingelsson et al., 2004) and in vivo PET imaging studies
(Engler et al., 2006; Jack et al., 2009) have found no significant
association between fibrillar amyloid load and degree of cognitive
impairment in individuals with AD dementia. As such, it is
thought that fibrillar aggregates of Aβ may not be the immediate
cause of cognitive decline and/or Aβ accumulation may be an
early event in the AD pathological cascade and may plateau
before onset of dementia (Hampel, 2013). If Aβ accumulation is
most dynamic before onset of dementia, its effects on cognition
should be studied prior to the onset of significant cognitive
decline (Hampel, 2013). Although several postmortem and
amyloid PET studies have shown that a considerable portion
of asymptomatic older adults have increased Aβ burden in the
absence of any cognitive impairment (Price and Morris, 1999;
Fagan et al., 2006), other previously published reports have shown
statistically significant associations between increased Aβ load
on PET and poorer cognitive performance in cognitively normal
older adults (Rentz et al., 2011). These effects may be best detected
on challenging episodic memory tasks and may interact with
various AD risk factors such as genetic risk (Pike et al., 2011;
Kantarci et al., 2012). Little is known about how CBF and Aβ,
which may both serve as early markers of AD changes, may
interact to affect cognition in cognitively normal older adults.

There is growing evidence supporting the notion that ASL
MRI may be a useful biomarker in predicting cognitive decline
and progression to MCI and dementia (Chao et al., 2010; Beason-
Held et al., 2013). However, most previous studies have focused
on individuals already demonstrating cognitive impairment
(MCI and AD) and, to our knowledge, no study has considered
how ASL MRI CBF and Aβ status may interact to affect cognition
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in cognitively normal older adults. Therefore, we examined
potential statistical interactions of ASL MRI CBF and Aβ status
on cognitive function within a sample of normally aging older
adults drawn from the ADNI study.

MATERIALS AND METHODS

The ADNI Dataset
Data used in the preparation of this article were obtained from
the ADNI database1. The ADNI was launched in 2003 as a
public–private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, PET, other biological markers, and clinical
and neuropsychological assessment can be combined to measure
the progression of MCI and early AD.

Participants
Participants were cognitively normal older adults from the
ADNI-2 ASL substudy. All participants included in ADNI-2
were between the ages of 55 and 90 years old, had completed
at least 6 years of education, were fluent in Spanish or English,
and were free of any significant neurological disease other
than AD. ADNI control participants had Mini-Mental Status
Examination scores ≥ 24 and Clinical Dementia Rating score of
0. Full criteria for ADNI eligibility and diagnostic classifications
are described in detail at http://www.adni-info.org/Scientists/
ADNIGrant/ProtocolSummary.aspx. This study was approved
by the Institutional Review Boards of all of the participating
institutions. Informed written consent was obtained from all
participants at each site.

Of the 80 control participants who underwent ASL scanning,
we included those individuals who had processed data available
for download as of September 2016. We further excluded
individuals who failed the ADNI raw quality control assessment
of ASL data (n = 6), were missing PET data (n = 1), or
were classified as normal controls in ADNI but met criteria
for MCI according to comprehensive neuropsychological criteria
that operationalizes impairment as performance falling greater
than one standard deviation below normative expectations on
at least two measures within a cognitive domain (n = 11) (Jak
et al., 2009; Bondi et al., 2014; Edmonds et al., 2015). This resulted
in a final sample of 62 individuals for statistical analyses. The
following six measures of cognition were used when diagnosing
and excluding for MCI using comprehensive neuropsychological
criteria: (1) Animal Fluency, total score; (2) 30-item Boston
Naming Test (BNT) total score; (3) Trail Making Test, Part A;
time to completion, (4) TMT, Part B; time to completion, (5)
Rey Auditory Verbal Learning Test (AVLT) 30-min delayed free
recall; number of words recalled, and (6) AVLT recognition;
number of words correctly recognized. These measures were
selected given their frequent use in assessing early cognitive
changes in AD, they were administered to all participants, and
they assessed three different domains of cognition – language
(Animal Fluency, BNT), speed/executive function (Trail Making

1adni.loni.usc.edu

Test, Parts A and B), and episodic memory (AVLT recall and
recognition).

Memory Variable Construction
The AVLT assesses an individual’s abilities to acquire 15
words across five immediate learning trials, to recall the words
immediately after an intervening interference list (Trial 6), and
to recall and recognize the words after a 30-min delay. On
verbal serial list-learning tasks, individuals with AD often show
a profile involving rapid forgetting after the introduction of an
interference trial and profligate responding to delay recognition
foils such that overall performance is often at the level of
chance (Libon et al., 2011). As such, in addition to AVLT 30-
min delayed free recall total number of words recalled and
recognition total hits, we calculated additional memory variables
to more accurately capture this profile. These additional variables
included (1) a post-interference recall score identified as loss of
information from Trial 5 to Trial 6 (Mitrushina et al., 1991)
and (2) a corrected recognition score considering the number of
false positive errors (calculated as [number of recognition hits –
number of false positives]). Raw neuropsychological scores for
each participant were converted into z-scores.

Arterial Spin Labeling MRI Data
Acquisition and Processing
Magnetic resonance imaging was performed on a 3.0 Tesla MR
scanners from a single vendor (MAGNETOM Trio, Verio, and
Skyra, Siemens). A resting state pulsed ASL scan was acquired
utilizing QUIPS II with thin-slice TI1 periodic saturation
sequence (“Q2TIPS”) with echo-planar imaging (Luh et al., 1999).
The sequence included the following parameters: inversion time
of arterial spins (TI1) 700 ms, total transit time of the spins
(TI2) 1900 ms, tag thickness 100 mm, tag to proximal slice gap
25.4 mm, repetition time 3400 ms, echo time 12 ms, field of
view 256 mm, 64×64 matrix, 24 4 mm thick axial slices [52
tag+ control image pairs], time lag between slices 22.5 ms.

Detailed information describing the ASL MRI data acquisition
and processing is available online at www.loni.usc.edu. Briefly,
the pipeline involves motion correction, aligning each ASL
frame to the first frame using a rigid body transformation, and
least squares fitting using SPM8. Perfusion weighted images are
computed as the difference between the mean of tagged and
untagged ASL data sets. Perfusion weighted images were intensity
scaled in order to account for signal decay during acquisition
and to allow for intensities in meaningful physiological units.
After geometric distortion correction, ASL images were aligned
to structural T1-weighted images. Given that we are interested in
CBF in gray matter and therefore want to minimize the effects
of the lower perfusion in white matter on our CBF estimates,
a partial volume correction was performed that assumes that
CBF in gray matter is 2.5 times greater than in white matter.
The partial volume corrected perfusion weighted images were
normalized by the reference image (i.e., an estimate of blood
water magnetization) to convert the signal into physical units
(mL/100 g tissue/min). Quality control procedures include
inspecting image quality and rating quality as pass or fail.
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FreeSurfer was used to generate anatomical regions of interest
(ROIs) for the CBF data and, for secondary analyses, cortical
thickness and volume and data for these ROIs. We examined
the following four a priori ROIs: (1) hippocampus, (2) posterior
cingulate, (3) precuneus, and (4) postcentral gyrus. The first
three ROIs were selected because they have been implicated
in early AD. These regions are part of the neural network
subserving episodic memory function and substantially overlap
with the default mode network (Hampel, 2013). It’s thought that
lifetime cerebral metabolism associated with default activity may
predispose these regions to AD-related alterations including Aβ

deposition and disrupted connections with the medial temporal
lobe which leads to memory impairment (Buckner et al., 2005).
A postcentral ROI was selected to serve as a control region, as
we do not expect changes in this region in early AD. Mean CBF
corrected for partial volume effects was extracted for each of
the four ROIs for each hemisphere separately. Mean CBF for
each ROI was calculated by averaging the mean CBF of each
hemisphere, with each hemisphere’s contribution to the average
weighted by the surface area of the ROI for that hemisphere.

Florbetapir PET Data Acquisition and
Processing
A detailed description of ADNI florbetapir PET imaging
data acquisition and processing can be found online2. Briefly,
florbetapir scans were reviewed for quality control before
being co-registered, averaged, reoriented into a standard
160 × 160 × 96 voxel image grid with 1.5 mm cubic voxels, and
smoothed to a uniform isotropic resolution of 8 mm full width
at half maximum. Structural MR images were skull-stripped,
segmented, parcellated using FreeSurfer and subsequently co-
registered to each participant’s first florbetapir image.

A florbetapir mean cortical summary standardized uptake
value ratio (SUVR) was calculated by averaging across the four
main cortical regions (i.e., frontal, anterior/posterior cingulate,
lateral parietal, and lateral temporal cortices) and dividing by
the mean florbetapir value of the whole cerebellum (white and
gray matter). Increased retention of florbetapir is thought to
reflect greater cortical Aβ load. Aβ positivity versus negativity was
determined using the recommended threshold for cross-sectional
florbetapir analyses of 1.11 using the whole cerebellum as the
reference region (Clark et al., 2012; Joshi et al., 2012; Landau
et al., 2013, 2014). In total, 76% of the sample (n = 47) was
determined to be Aβ negative, while 24% met criteria for Aβ

positivity (n= 15).

Statistical Analyses
Chi-squared analyses were utilized to compare the groups in
terms of categorical variables and analysis of variance (ANOVA)
was used for continuous variables. Hierarchical linear regressions
were performed to determine the main effects and interaction
of Aβ status (positive or negative) and CBF ROIs on memory
performance. For these hierarchical regression analyses, age,
education, and sex were the independent variables entered in
block 1; CBF of ROIs and Aβ status were predictors entered in

2www.loni.usc.edu

block 2; and the interaction term was entered in block 3. Memory
variables served as the dependent variable in all regression
models. Separate regression models were run for each of the four
a priori ROIs.

We ran two sets of secondary analyses. First, we ran secondary
analyses using the same hierarchical regression models described
above but examining Aβ as a continuous variable (i.e., SUVR
for the a priori ROIs) rather than as a binary variable (i.e.,
positive versus negative). Second, we ran additional secondary
analyses using the same hierarchical regression models described
above but also including APOE genotype (ε4 carrier versus non-
carrier), pulse pressure (i.e., brachial systolic blood pressure
minus diastolic blood pressure), and volume (for hippocampus)
or cortical thickness (for posterior cingulate and precuneus) for
the a priori ROI in addition to the demographic variables on
block 1. APOE genotype and pulse pressure, a measure of arterial
stiffening, are two AD risk factors that are thought to relate to Aβ

accumulation and cerebrovascular functioning (Zlokovic, 2011;
Bell et al., 2012; Nation et al., 2015). We also adjusted for volume
or cortical thickness of the a priori ROI of the CBF variable in
the model to minimize the potential influence of structural brain
changes on findings.

For all analyses, the sign of the post-interference recall
score and the Trail Making Test variables was reversed
during calculation of z-scores to be consistent with the other
neuropsychological measures (i.e., higher scores reflect better
performance). One Aβ negative participant was not administered
AVLT Trial 6 and, therefore, this individual was not included in
statistical analyses examining the post-interference recall score
(i.e., Trial 5 minus Trial 6). All analyses were performed using
the Statistical Package for the Social Sciences (SPSS) version 23
(SPSS IBM, Armonk, NY, United States).

RESULTS

Participant Characteristics
Participant demographics are presented in Table 1. The Aβ

positive group was significantly older, reported fewer years of
education, and had a greater proportion of APOE ε4 carriers
in comparison to the Aβ negative group (all p-values ≤ 0.004).
There were no significant group differences with respect to sex,
pulse pressure, and cognitive performances across the language,
executive functioning, and memory measures (p-values > 0.05).
There were also no differences between Aβ positive or negative
individuals in terms of CBF in any of the ROIs (p-values> 0.05).

Interaction of Amyloid-β and CBF of
AD-Vulnerable Regions on Memory
Performance
A series of multiple hierarchical linear regression models
adjusting for age, education, and sex were first performed to
determine whether there was an interaction between Aβ status
and CBF of the ROIs on the post-interference recall score (i.e.,
computed as Trial 5 minus Trial 6). Regression analyses revealed
there were significant interactions of Aβ status and CBF in
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TABLE 1 | Demographic and neuropsychological characteristics of amyloid negative and amyloid positive groups.

Amyloid-β
negative (n = 47)

Amyloid-β
positive (n = 15)

F or X2 Significance Effect size

Demographics

Age, years, mean (SD) 70.5 (5.8) 76.6 (6.8) F = 11.6 p = 0.001 η2
p = 0.16

Education, years, mean (SD) 17.0 (2.4) 14.1 (3.1) F = 13.7 p < 0.001 η2
p = 0.19

Sex, M:F, (% female) 18:29 (61.7%) 4:11 (73.3%) X2
= 0.7 p = 0.41 ϕc = 0.10

APOE ε4, +:−, (% +) 12:35 (25.5%) 10:5 (66.7%) X2
= 8.4 p = 0.004 ϕc = 0.37

Pulse pressure, mmHg, mean (SD) 60.5 (16.1) 67.5 (11.5) F = 2.4 p = 0.13 η2
p = 0.04

Cognitive measures (z-score)∗ mean (SD)

Language

Animal Fluency 0.11 (1.03) −0.35 (0.83) F = 0.05 p = 0.83 η2
p = 0.001

Boston Naming Test 0.00 (1.05) 0.01 (0.87) F = 2.13 p = 0.15 η2
p = 0.04

Attention/Executive function

Trail Making Test, Part A∗∗ 0.18 (0.86) −0.57 (1.21) F = 2.47 p = 0.12 η2
p = 0.04

Trail Making Test, Part B∗∗ 0.17 (0.91) −0.52 (1.09) F = 0.99 p = 0.32 η2
p = 0.02

Memory

AVLT Recall Total Correct 0.11 (1.01) −0.35 (0.93) F = 0.45 p = 0.51 η2
p = 0.008

AVLT Post-interference Recall (Trial 5–Trial 6)∗∗ 0.07 (0.91) −0.23 (1.25) F = 0.07 p = 0.79 η2
p = 0.001

AVLT Recognition Total Hits 0.01 (0.98) −0.04 (1.10) F = 1.02 p = 0.32 η2
p = 0.02

AVLT Recognition Corrected Total (Hits–False Positives) 0.05 (0.87) −0.17 (1.35) F = 0.68 p = 0.41 η2
p = 0.01

SD, standard deviation; APOE, apolipoprotein E; AVLT, Rey Auditory Verbal Learning Test.
∗Results from analysis of covariance (ANCOVAs) comparing the amyloid-β positive and negative groups on cognitive measures adjusted for age, education, and gender.
∗∗The sign for this score was reversed during calculation of z-scores to be consistent with the other neuropsychological measures (i.e., higher scores reflect better
performance).
One Aβ negative participant was not administered AVLT Trial 6 and, therefore, not included in statistical analyses examining the forgetting after interference variable (i.e.,
Trial 5 minus Trial 6).
Amyloid-β negativity versus positivity was based on the recommended threshold for cross-sectional florbetapir analyses of 1.11 using the whole cerebellum as the
reference region.
In this cognitively normal sample included in the present paper, the mean SUVR with whole cerebellum (gray and white) as reference region was 1.08 (SD = 0.15,
range = 0.93–1.70). Among Aβ negative individuals, the mean SUVR was 1.02 (SD = 0.05, range = 0.93–1.10). Among Aβ positive individuals, the mean SUVR was
1.27 (SD = 0.18, range = 1.11–1.70). In our previously published report of ADNI participants with MCI, in a group of single domain amnestic MCI (n = 227) and multiple
domain dysexecutive/mixed MCI (n = 37), the mean cortical summary SUVRs were 1.24 (SD = 0.22, range = 0.84–1.86) and 1.37 (SD = 0.24, range = 0.88–1.85),
respectively (Bangen et al., 2016). Notably, the dysexecutive/mixed group were more severely impaired (i.e., showed impairment in multiple cognitive domains) relative to
the amnestic group. In addition, in the present study, in this subset of cognitively normal older adults from the ADNI cohort, 24% of individuals met the threshold for Aβ

positivity. A previously published report showed that 29% of participants with normal cognition, 43% of individuals with early MCI, 62% of the participants with late MCI,
and 77% of those with Alzheimer’s disease were A positive on florbetapir PET imaging in the ADNI cohort (Landau et al., 2012).

the hippocampus [1F(1,54) = 8.28, p = 0.006, 1R2
= 0.11,

B = −0.11], posterior cingulate [1F(1,54) = 5.04, p = 0.03,
1R2

= 0.07, B = −0.06], and precuneus [1F(1,54) = 9.97,
p = 0.003, 1R2

= 0.13, B = −0.08]. Examination of simple
main effects using non-parametric tests (Spearman’s correlation)
revealed there were significant negative associations between
post-interference recall memory and CBF of the hippocampus
(ρ=−0.78, p= 0.001), posterior cingulate (ρ=−0.64, p= 0.01),
and precuneus (ρ = −0.65, p = 0.009) of the Aβ positive
group; however, there were no significant associations between
post-interference recall memory and CBF of the hippocampus
(ρ=−0.14, p= 0.37), posterior cingulate (ρ=−0.04, p= 0.81),
and precuneus (ρ = −0.17, p = 0.25) in the Aβ negative
group (See Figure 1 and Table 2). When secondary analyses
were performed with Aβ as a continuous variable (i.e., SUVR
for the a priori ROI) rather than as a binary variable (i.e.,
positive versus negative) regression analyses revealed there was
a significant interaction of Aβ and CBF of the precuneus
[1F(1,54) = 6.97, p = 0.01, 1R2

= 0.10, B = −0.18].
Interactions of Aβ and CBF in the hippocampus and posterior

cingulate were attenuated and no longer statistically significant
[1F(1,54) = 3.61, p = 0.06, 1R2

= 0.05, B = −0.29] and
posterior cingulate [1F(1,54) = 1.49, p = 0.23, 1R2

= 0.02,
B=−0.08].

When additional secondary analyses adjusting for APOE
genotype (ε4 carrier versus non-carrier), pulse pressure, and
volume or cortical thickness of the a priori ROI were performed,
results remained qualitatively and statistically similar to the
findings for the primary analyses reported above. There were
no main effects of Aβ status or CBF on post-interference recall
memory (all p-values > 0.05) for any ROI. For delayed recall
memory as assessed as total number of words correctly recalled
after a 30-min delay, there were no main effects or interactions
(all p-values> 0.05).

A second set of multiple linear regressions were performed to
determine whether there was an interaction between Aβ status
and CBF of our ROIs for recognition memory performance
(total hits minus false positive errors). Regression analyses
adjusting for age, education, and sex, revealed there were
significant interactions of Aβ status and CBF in the hippocampus
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FIGURE 1 | Scatterplots of interaction of Aβ and cerebral blood flow on post-interference recall memory (Rey Auditory Verbal Learning Trial 5-Trial 6 raw z-score) for
3 a priori cortical regions of interest. Aβ positivity is based on threshold of based on the recommended threshold for cross-sectional florbetapir analyses of 1.11
using the whole cerebellum as the reference region. CBF is presented in standard deviation units. All interactions were statistically significant (p < 0.05).
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[1F(1,55)= 11.98, p= 0.001,1R2
= 0.15, B=−0.13], posterior

cingulate [1F(1,55) = 7.92, p = 0.007, 1R2
= 0.11, B = −0.07],

and precuneus [1F(1,55) = 6.35, p = 0.015, 1R2
= 0.09,

B = −0.07]. Examination of simple main effects using non-
parametric tests (Spearman’s correlation) revealed there were
significant negative associations between recognition memory
performance and CBF of the hippocampus (ρ=−0.57, p= 0.03)
and posterior cingulate (ρ = −0.59, p = 0.02) in the Aβ

positive group. There was a trend toward worse recognition
memory performance and higher CBF of the precuneus in the Aβ

positive group (ρ = −0.46, p = 0.09). There were no significant
associations between recognition memory and CBF of the
hippocampus (ρ = 0.13, p = 0.39), posterior cingulate (ρ = 0.25,
p = 0.09), or precuneus (ρ = 0.17, p = 0.25) in the Aβ negative
group (see Figure 2 and Table 3). When secondary analyses
were performed with Aβ as a continuous variable (i.e., SUVR for
the a priori ROIs) rather than as a binary variable (i.e., positive
versus negative), results remained similar. Regression analyses
revealed there were significant interactions of Aβ and CBF in
the hippocampus [1F(1,55) = 18.62, p < 0.001, 1R2

= 0.21,
B = −0.58], posterior cingulate [1F(1,55) = 12.69, p = 0.001,
1R2

= 0.16, B = −0.22], and precuneus [1F(1,55) = 21.13,
p< 0.001,1R2

= 0.24, B=−0.28].
When additional secondary analyses adjusting for APOE

genotype (ε4 carrier versus non-carrier), pulse pressure, and
volume or cortical thickness of the a priori ROIs were performed,
results remained qualitatively and statistically similar to the
findings for the primary analyses reported above. There were
no main effects of Aβ status or CBF on post-interference recall
memory (all p-values > 0.05) for any ROI. For delayed recall
memory as assessed as total number of words correctly recalled
after a 30-min delay, there were no main effects or interactions
(all p-values > 0.05). In addition, findings were qualitatively
and statistically similar when total recognition hits (i.e., not
considering false positives) served as the dependent variable.
As hypothesized, there were no interactions of Aβ status and
postcentral CBF on memory performance (all p-values > 0.05).
In addition, there were no main effects of Aβ status or CBF on
recognition memory performance (all p-values > 0.05) for any
ROI.

DISCUSSION

Our study extends previous CBF studies of dementia risk by
showing statistical interactions between Aβ status (negative
or positive) and regional CBF on memory performance in a
sample of well-characterized, cognitively normal older adults.
Specifically, we found that among Aβ positive older adults,
there were significant associations between higher CBF and
poorer verbal memory performance in regions known to
be predilections sites for AD—the hippocampus, posterior
cingulate, and precuneus. In contrast, among Aβ negative older
adults, there were no significant relationships between memory
performance and CBF, although there was a trend toward
higher CBF in the posterior cingulate and better verbal memory
performance. Importantly, our findings demonstrate differential
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FIGURE 2 | Scatterplots of interaction of Aβ and cerebral blood flow on recognition memory (Rey Auditory Verbal Learning recognition hits-false positives raw
z-score) for 3 a priori cortical regions of interest. Aβ positivity is based on threshold of based on the recommended threshold for cross-sectional florbetapir analyses
of 1.11 using the whole cerebellum as the reference region. CBF is presented in standard deviation units. All interactions were statistically significant (p < 0.05).
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associations between CBF and cognition for Aβ positive versus
negative cognitively normal older adults.

Although regional decreases in CBF are interpreted as
reflecting decreased brain function, increases in perfusion in
the context of preclinical AD—particularly when cognitive
performance is maintained or even improved—has often been
considered to represent a compensatory response to an incipient
pathologic process (Dai et al., 2009). Indeed, several previously
published studies have found significant differences in resting
hyperperfusion in tandem with better memory function in non-
demented older adults at risk for AD, and researchers have
interpreted this finding as a potential compensatory response
reflecting metabolic alterations and/or increased need for glucose
and oxygen to support neuronal activity (Fleisher et al., 2009;
Bangen et al., 2012; Zlatar et al., 2014). In contrast, we found
that higher resting CBF was associated with poorer memory
performance among older adults at increased risk for AD
by virtue of elevated Aβ accumulation, possibly reflecting
cerebrovascular dysregulation or a cellular and/or vascular
compensatory response to pathologic processes whereby higher
CBF is needed to maintain normal memory abilities. Unlike
our previously published work, all individuals in this study
were cognitively normal and, importantly, there were no group
differences among the Aβ positive and Aβ negative group in
terms of cognitive performance. The heightened CBF in Aβ

positive individuals may suggest that these individuals are on a
declining trajectory of RAVLT performance (albeit still normal),
and they need more CBF to support this declining memory
system. Hyperperfusion in early MCI followed by hypoperfusion
later in MCI when approaching the transition to dementia has
been shown and it is possible that the Aβ positive individuals in
our sample are closer to developing MCI. Further longitudinal
studies investigating perfusion differences across the course of the
disease are needed to further examine the role of higher CBF.

Our work showing statistical interactions of perfusion and Aβ

status is consistent with previous studies that have demonstrated
links between Aβ and cerebrovascular dysregulation. Specifically,
prior work has shown that Aβ increases the vulnerability of the
brain to cerebral ischemia through its effects on the cells of the
neurovascular unit (Zhang et al., 1997; Iadecola, 2004; Girouard
and Iadecola, 2006). Moreover, cerebrovascular dysfunction
upregulates amyloid precursor protein and Aβ cleavage (Abe
et al., 1991; Yokota et al., 1996; Iadecola, 2004). Ultimately, Aβ

and cerebrovascular dysfunction are thought to reinforce one
another thereby amplifying their deleterious effects on the brain
(Iadecola, 2004). The present findings provide further support for
the role of vascular alterations in the AD prodrome.

Previous studies of cerebral perfusion across the continuum
from the preclinical phase to AD suggest a biphasic
pattern characterized by early hyperperfusion preceding
later hypoperfusion (Wierenga et al., 2014). In this way,
cerebrovascular dysregulation becomes more pronounced over
time as the disease progresses (Mentis et al., 1998). This may
be due to several factors including neuronal death and synaptic
loss resulting in a reduced hemodynamic response to neural
activation; accumulating amyloid in cerebral arterioles leading to
disruptions in the ability of vascular smooth muscles cells to relax

Frontiers in Aging Neuroscience | www.frontiersin.org 9 June 2017 | Volume 9 | Article 181

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


fnagi-09-00181 June 6, 2017 Time: 15:57 # 10

Bangen et al. CBF × AB and Memory

thereby creating a mechanical obstacle to vasodilation (Christie
et al., 2001); and atherosclerosis in the circle of Willis (Roher
et al., 2003) and conduit cerebral arteries resulting in reduced
global CBF and further disruption in the ability of neural stimuli
to increase perfusion (Iadecola, 2004). Furthermore, evidence
suggests that increased activation within neural networks may
modulate Aβ accumulation given that brain regions with lifelong
high activity levels (e.g., default mode network) also have the
greatest predisposition for Aβ accumulation and increased
synaptic transmission results in increased interstitial fluid Aβ

levels (Cirrito et al., 2008; Hampel, 2013).
Accumulating evidence suggests that ASL CBF represents a

useful biomarker in at-risk individuals since this technique can
sensitively differentiate those at risk from control participants
(Fleisher et al., 2009; Bangen et al., 2012; Wierenga et al.,
2012). Additionally, ASL CBF indices have reliably predicted
progression from normal cognition to MCI (Beason-Held et al.,
2013), and MCI to AD (Chao et al., 2010). Longitudinal studies
have shown that, relative to individuals who remained cognitively
normal, older adults who later developed MCI demonstrated
hyperperfusion in orbitofrontal, medial frontal, and anterior
cingulate regions over time, accompanied by reduced CBF in
parietal, temporal, and thalamic regions (Beason-Held et al.,
2013). These changes occurred several years prior to the
development of cognitive impairment and were observed in
regions known to be predilection sites for early AD pathology
(Beason-Held et al., 2013). Additionally, these changes were
independent of longitudinal changes in tissue volume. This
is consistent with findings from our secondary analyses that
revealed significant interactions of Aβ status and CBF on memory
performance independent of volume or cortical thickness, further
suggesting that CBF may play a role in cognitive functioning
independent of tissue loss.

In the few existing longitudinal prospective studies using ASL
MRI, resting hypoperfusion of the right inferior parietal cortex
and right middle frontal cortex at baseline predicted progression
from MCI to dementia at 3-year follow-up (Chao et al., 2010)
and in another study reduced CBF in the posterior cingulate at
baseline was associated with development of cognitive decline
at 18-month follow up in healthy older adults (Xekardaki et al.,
2015). Our present findings highlight the important association
between CBF and memory, and they provide further support for
the notion that CBF is a useful marker of AD risk and correlate
of cognitive function in older adults. Specifically, we observed
evidence of dysregulated CBF patterns in Aβ positive individuals
who are cognitively normal suggesting that ASL MRI is sensitive
to very early changes in the brain.

The present findings suggest that Aβ accumulation and CBF
alterations together influence memory performance in at-risk
older adults. These findings add to a growing body of evidence
underscoring the importance of multiple pathological processes
co-occurring in AD and the interactive influence of several risk
factors. Neuropathological studies have shown that clinically
diagnosed MCI and AD are both pathologically heterogeneous
disorders (Schneider et al., 2007; Nettiksimmons et al., 2014). In
our own sample of autopsy-confirmed AD, we found that the
presence of mild cerebrovascular changes was associated with less

severe AD pathology yet there were no differences in severity
of cognitive impairment between the AD patients with and
without evidence of cerebrovascular disease (Bangen et al., 2015).
These results raise the possibility that cerebrovascular changes
contribute to overall severity of cognitive impairment, even in
patients with both autopsy-confirmed AD and relatively mild
cerebrovascular disease (Bangen et al., 2015). We have also shown
that the presence of multiple AD risk factors (e.g., advanced age,
APOE ε4 allele, family history of AD, and/or increased vascular
risk burden in different combinations) has additive or interactive
effects on brain function and cognition (Fleisher et al., 2009;
Bangen et al., 2014). The present findings extend this work by
demonstrating interactions between PET brain Aβ positivity and
CBF on memory performance.

Our results did not reveal any significant main effects of
Aβ status or CBF on memory performance in our sample.
With respect to Aβ, findings from cross-sectional studies have
been inconsistent with some studies reporting no relationship
between burden of amyloid in the brain and cognition in
cognitively normal or non-demented older adults (Mintun et al.,
2006; Aizenstein et al., 2008; Mormino et al., 2009; Rowe
et al., 2010) whereas other studies showed associations between
greater amyloid and worse cognition (Rodrigue et al., 2012).
Additionally, other studies have showed relationships between
greater amyloid and worse cognition in APOE ε4 carriers, while
no such relationship (Lim et al., 2013) or a weaker relationship
among non-carriers (Kantarci et al., 2012).

Prospective longitudinal studies have also been mixed with
some studies reporting greater faster rates of cognitive decline
in non-demented older adults with high cerebral Aβ load over
an 18-month period following PET imaging (Doraiswamy et al.,
2012; Lim et al., 2012; Ellis et al., 2013; Kawas et al., 2013) whereas
other studies have found no difference in rate of cognitive change
over 2- to 3-year follow-up between cognitively normal older
adults who had high versus low Aβ at baseline (Villemagne
et al., 2011; Ewers et al., 2012). However, prospective longitudinal
studies have generally had little follow up after PET imaging
(Gu et al., 2015), and retrospective longitudinal studies have
shown that non-demented older adults who have higher levels
of Aβ showed faster cognitive decline prior to PET scanning
relative to their counterparts with lower level of Aβ (Resnick
et al., 2010; Landau et al., 2012; Gu et al., 2015). A meta-
analysis of 64 studies examining amyloid-cognition associations
in healthy older adults found that episodic memory had a
small and significant relationship to amyloid burden whereas
other cognitive abilities (e.g., working memory, processing speed,
visuospatial function, semantic memory) did not have significant
relationships to amyloid. Study design, that is cross-sectional
vs. longitudinal design, had little influence on findings (Hedden
et al., 2013). Although the role of Aβ in cognitive decline and the
clinical expression of AD is complex and may be moderated by
additional risk factors and variables (Kantarci et al., 2012; Lim
et al., 2013; Gu et al., 2015), there is clear evidence to suggest it
contributes to the AD process and pivotal to the amyloid cascade
model (Jack et al., 2010, 2013).

In contrast to our current ADNI-based findings, we have
previously found in our own community samples main effects
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of CBF on cognition when examining both cognitively normal
older adults and those with MCI (Bangen et al., 2012, 2014). In
the present sample of ADNI participants, all individuals were
cognitively normal and, given selection criteria for ADNI, all
participants had very low vascular risk burden. It is possible
that we would have found main effects of CBF on memory
if there were a greater range of cognitive performance and
CBF values. A previously published paper in the ADNI cohort
found that the effects of higher brain Aβ load was associated
with reduced CBF in cognitively normal older adults and with
reduced brain volume in late MCI and dementia suggesting
that the relationship between Aβ and CBF changes over the
course of the disease (Mattsson et al., 2014). In the current
study, we focused on the interaction between Aβ and CBF on
memory and it is possible that we would have observed different
relationships among Aβ status, CBF, and memory performance if
we included participants with more pronounced cerebrovascular
disease and/or individuals with MCI or AD. However, given a
critical need to examine preclinical AD in its very earliest stages,
for the purposes of the current study we emphasized associations
among Aβ status, CBF and memory function in older adults who
show brain Aβ positivity on PET in the context of no detectable
cognitive impairment.

This work has several important research and clinical
implications. First, our findings suggest a dynamic relationship
between cerebral perfusion and Aβ in the expression of
memory function in individuals with preclinical AD. Results
further underscore the potential value in examining sensitive
vascular variables in the pathogenesis of AD. Additionally,
pharmacological and behavioral interventions, including physical
exercise, may play a critical role in the regulation of CBF and,
ultimately, the prevention of cognitive decline. Interestingly,
a recent study showed that older adults taking angiotensin
II AT1-receptor blockers exhibited reduced cerebral amyloid
retention (Nation et al., 2016). As noted by the authors, this
finding is consistent with results from studies in transgenic
animals, and they may explain in part why older adults who use
AT1-receptor blockers show reduced progression to dementia
despite greater vascular risk burden (Nation et al., 2016).
Future research is needed to further determine whether anti-
hypertension medication and/or behavioral lifestyle changes may
improve cerebral microcirculation and reduce Aβ retention.

Strengths of this study include a well-characterized sample
of older adults who have undergone multi-modal neuroimaging
and neuropsychological assessment as part of a national study
on aging and AD. Limitations of our study include use of a
global measurement of Aβ pathology rather than local or regional
measures. In addition, this was a cross-sectional study and we
did not assess cognitive outcome. It is possible that some of the
Aβ positive individuals in this study will not develop AD and,
likewise, some of the Aβ negative individuals may express the
disease at some point. Furthermore, previously published results
have reported an absence of cross-sectional associations between
amyloid and cognition in healthy controls but have found
negative associations for when data is examined longitudinally
(Gu et al., 2015). Despite these limitations, in the search for
reliable biomarkers of very early AD, ASL MRI may prove

especially useful, and the combination of both cerebrovascular
and Aβ markers may more completely inform the complex
pathological processes underlying the clinical expression of
AD than either biomarker class alone. Finally, since vascular
risk factors are modifiable, these results may have important
implications for biomarker studies, clinical trials, and treatment.
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