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Connectivity analysis of resting-state fMRI has been widely used to identify biomarkers

of Alzheimer’s disease (AD) based on brain network aberrations. However, it is

not straightforward to interpret such connectivity results since our understanding of

brain functioning relies on regional properties (activations and morphometric changes)

more than connections. Further, from an interventional standpoint, it is easier to

modulate the activity of regions (using brain stimulation, neurofeedback, etc.) rather than

connections. Therefore, we employed a novel approach for identifying focal directed

connectivity deficits in AD compared to healthy controls. In brief, we present a model

of directed connectivity (using Granger causality) that characterizes the coupling among

different regions in healthy controls and Alzheimer’s disease. We then characterized

group differences using a (between-subject) generative model of pathology, which

generates latent connectivity variables that best explain the (within-subject) directed

connectivity. Crucially, our generative model at the second (between-subject) level

explains connectivity in terms of local or regionally specific abnormalities. This allows

one to explain disconnections among multiple regions in terms of regionally specific

pathology; thereby offering a target for therapeutic intervention. Two foci were identified,

locus coeruleus in the brain stem and right orbitofrontal cortex. Corresponding disrupted

connectivity network associated with the foci showed that the brainstem is the critical

focus of disruption in AD. We further partitioned the aberrant connectomic network into

four unique sub-networks, which likely leads to symptoms commonly observed in AD.

Our findings suggest that fMRI studies of AD, which have been largely cortico-centric,

could in future investigate the role of brain stem in AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder with a long pre-morbid asymptomatic period (Caselli
et al., 2004) which affects millions of elderly individuals
worldwide (Blennow et al., 2006). The disease is initially
characterized by the presence of neuronal and synaptic loss,
β-amyloid (Aβ) production which results in the formation of
intracellular neurofibrillary tangles and senile plaques (Buerger
et al., 2006), thereby resulting in memory loss, cognitive decline,
etc. Structural and functional decline are inevitable with age
and the existing treatment options for AD are highly limited.
Therefore, determining neural aberrations underlying AD are an
important step in addressing this challenge.

Resting-state functional magnetic resonance imaging (RS-
fMRI) is a promising neuroimaging technique that can
non-invasively characterize underlying brain networks. This
technology has been widely used to identify biomarkers of
AD based on brain network alterations (Wang et al., 2007;
Agosta et al., 2012; Sui et al., 2015). Seed-based approaches
(Fox et al., 2009), independent components analysis (ICA) based
approaches (Lee et al., 2015) and graph theory (Zhang et al.,
2011) have been the three primary methods used in the study
of resting-state functional connectivity (FC) in the brain. The
seed-based approach involves predefining a region of interest
(ROI) and extracting the BOLD signal from it; then a map
of FC is obtained by calculating the cross-correlation between
the time series extracted from the seed ROI and all other
voxels in the brain. Previous studies in AD employing seed-
based FC revealed decreased connectivity between the posterior
cingulate cortex seed and regions spread across the whole
brain in subjects with AD compared to healthy aging, with
the Default Mode Network (DMN) being the most affected
system (Zhang et al., 2009; Dennis and Thompson, 2014). Rather
than define prior seeds, the ICA approach is model-free, which
identifies independent components or co-activation networks
throughout the brain. Damoiseaux et al. (2012) examined the
components corresponding to the DMN for AD patients, and
found significantly decreased FC in the posterior DMN and
increased connectivity in ventral and anterior DMN in the AD
group. Graph theoretic analysis is typically performed using FC
matrices, revealing the topological properties and organization
of the underlying brain network. For example, Brier et al. (2014)
found that AD impacted the clustering coefficient andmodularity
in resting-state networks before the onset of the symptoms,
suggesting that there might be a network-level pathology even
in the preclinical stage. In summary, a profile of decreased
connectivity has been consistently observed in AD.

However, most of the existing works on connectivity analyses

have relied on FC or co-activation patterns, the literature

on directed or effective connectivity (EC) patterns in AD is
comparatively limited (more on this in the next paragraph).
It is noteworthy that synchronization and causality in fMRI
time series both represent distinct mechanisms in the brain
(Friston, 2011), hence investigating EC aberrations in AD
deserves attention. Motivated by this, we employed EC modeling
to investigate aberrations in causal relationships between brain

regions in AD. EC is often obtained using either of the two
popular approaches, Granger causality (GC) (Granger, 1969;
Deshpande et al., 2008, 2010a) and dynamic causal modeling
(DCM) (Friston et al., 2003). DCM is highly dependent on
prior assumptions concerning the underlying connectomic
architecture and is therefore not generally considered suitable for
analyses of large graphs. On the other hand, GC is a data-driven
approach that does not need a predefined model (Deshpande
et al., 2012; Sathian et al., 2013; Grant et al., 2014; Kapogiannis
et al., 2014; Lacey et al., 2014; Wheelock et al., 2014; Chattaraman
et al., 2016). Recent developments have demonstrated that GC
is a viable technique for obtaining EC networks from fMRI data
(Katwal et al., 2013; Wen et al., 2013). Therefore, in this study,
we used a GC-based analysis framework. Strictly speaking, GC
measures directed functional connectivity because it does not
appeal to an underlying model of causal influences. In other
words, GC tests for temporal precedence, thereby endowing
functional connectivity with a direction. However, to emphasize
the distinction between directed and non-directed connectivity,
we will refer to our GC measures as effective connectivity (see
Friston et al., 2013) for further discussion on this issue).

There have been several studies investigating EC-related
aberrations in AD (Liu et al., 2012; Li et al., 2013; Chen
et al., 2014; Zhong et al., 2014). These studies have reported
distributed increases as well as decreases in directed relationships
among brain regions in AD compared to healthy controls.
However, these studies performing conventional GC analysis
assume connectivity to be stationary over time, wherein only one
connectivity value is obtained from the whole scan (Hampstead
et al., 2011; Krueger et al., 2011; Lacey et al., 2011; Preusse
et al., 2011; Sathian et al., 2011; Strenziok et al., 2011). However,
connectivity, specifically the non-directed FC, has been shown
to be non-stationary across time (Chang and Glover, 2010;
Hutchison et al., 2013). Recent works suggests that connectivity
varies over time, and that the temporal variability of connectivity
is sensitive to human behavior in health and disease (Garrett
et al., 2013; Jia et al., 2014; Rashid et al., 2016; Rangaprakash et al.,
2017). Therefore, in addition to studying the conventional static
effective connectivity (SEC), we also estimated dynamic effective
connectivity (DEC; Grant et al., 2015; Hutcheson et al., 2015;
Bellucci et al., 2016; Feng et al., 2016; Hampstead et al., 2016)
from the resting-state fMRI data acquired from participants with
AD as well as healthy controls (HC).

Traditionally, univariate statistical tests are performed for
analyzing connectivity differences in population studies. Based
on the statistical score, connectivity paths that differ fromHC are
ascertained. However, it is not straightforward to interpret such
connectivity results, because traditionally our knowledge of brain
functioning relies more on region-based properties (activations
and morphometric changes) than connectivities. Further, from
an interventional standpoint, it is easier to modulate the activity
of brain regions (using brain stimulation, neurofeedback, etc.)
rather than connections. With these viewpoints, Venkataraman
et al. (2013) recently introduced a technique for identification
of focal regions of functional disruption based on non-directed
FC differences between populations. In this work, we extend
this technique for identifying focal regions of disruption based
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on static as well as dynamic directed/effective connectivity
aberrations in AD compared to HC.

We constructed brain networks using strength (SEC) and
temporal variability (variance of DEC [vDEC]). After certain
modifications to the connectivity measures, we fed them into
the foci-identification model to obtain disrupted foci. The foci
obtained independently from SEC and vDEC networks were
then overlapped (intersection) to identify the common foci
which exhibited impairments in both static and time-varying
EC. Reduced temporal variance in dynamic connectivity is
often associated with psychiatric disorders (Miller et al., 2016;
Rangaprakash et al., 2017), and a relatively low variability
of connectivity has been associated with poor behavioral
performance in healthy individuals (Jia et al., 2014). Recall that
a profile of decreased static connectivity has been consistently
found in AD as discussed above. Taken together, we hypothesized
that AD is characterized by dysfunctional disease foci, and that
these foci are associated with connectivity paths that exhibit
lower strength (SEC) as well as lower variability (vDEC) of
effective connectivity.

MATERIALS AND METHODS

Participants
Data used in this study were obtained from the ADNI database
(http://www.loni.ucla.edu/ADNI). Resting state fMRI data of
30 participants diagnosed with Alzheimer’s disease (AD), along
with 39 matched healthy controls (HC) were obtained through
ADNI-2 cohort. Participants in this study were recruited between
2011 and 2013 through the ADNI-2 protocol, and we selected
participants who had completed both 3D MPRAGE and resting-
state fMRI data. Functional MRI data were obtained from a 3.0
Tesla Philips MR scanner with repetition time (TR) = 3,000 ms,
echo time (TE) = 30 ms, flip angle (FA) = 80 degrees, field
of view (FOV): RL (right-left) = 212, AP (anterior-posterior)
= 198.75 mm, FH (foot-head) = 159 mm, voxel size: RL =

3.3125 mm, AP = 3.3125 mm, slices = 48, thickness = 3.3125
mm. 140 temporal volumes were acquired for each participant
in a single scanning session. All data available from the ADNI
database was acquired in accordance with the recommendations
of local IRBs with written informed consent from all subjects.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by
local IRBs. More specific information can be obtained from the
ADNI website (http://www.loni.ucla.edu/ADNI). The data was
subjected to a standard resting-state preprocessing pipeline using
SPM12 (Friston et al., 1995) and DPARSF toolboxes (Chao-
Gan and Yu-Feng, 2010), including slice timing correction,
realignment andmotion correction, normalization toMNI space,
and spatial smoothing with a Gaussian kernel of 4 × 4 ×

4 mm3 full width at half maximum (FWHM). Six rotation
and translation parameters were first tested individually. Except
rotation in Y axis (P < 0.05), there were no significant differences
between the groups (P > 0.05). Then, all the six head motion
parameters were aggregated into a single metric (i.e., framewise
displacement), and no significant differences in framewise were
found between the groups (P > 0.05). Nuisance variables such as

the mean white matter signal, mean cerebrospinal fluid signal,
and six head motion parameters were regressed out of the
BOLD time series. It should be noted that band-pass filtering
was not performed during pre-processing since it will likely
impact deconvolution. Mean time series were extracted from 200
functionally homogeneous ROIs identified via spectral clustering
(Craddock et al., 2012).

Connectivity Analysis
SEC was obtained using Granger causality (GC) analysis.
However, before GC analysis is performed, it is necessary to
acknowledge the impact of hemodynamic response function
(HRF) on connectivity modeling, which is known to vary across
different regions within a participant, as well as vary across
participants (Handwerker et al., 2004). Previous studies have
shown that results obtained by using GC analysis on HRF-
corrupted fMRI data can be confounded by the variability of
the HRF (David et al., 2008; Deshpande et al., 2010b). Hence, a
blind deconvolution technique, proposed byWu et al. (2013), was
employed to minimize the non-neural variability of the HRF and
estimate the latent neuronal time series from the observed fMRI
data. In brief, the resting-state data was modeled as spontaneous
event-related data (Tagliazucchi et al., 2012), and the HRF of each
voxel was estimated by Wiener deconvolution (Glover, 1999).
The estimated neural time series were then used in further GC
analysis.

The underlying concept of GC is that a directed causal
influence from time series X to time series Y can be inferred if the
past values of time seriesX improves the prediction of the present
and future values of time series Y (Granger, 1969). Let q time
series X(t)= [x1(t), x2(t),...,xq(t)] be the latent neural time series
obtained after HRF deconvolution of selected ROI fMRI time
series, with q being 200 ROIs in this study. Then the multivariate
autoregressive (MVAR) model with order p is given by

X(t) = A(1)X(t − 1)+ A(2)X(t − 2)+ · · · + A(p)X(t − p)+ E(t)

(1)

Where A(1)...A(p) are the model parameters, and E(t) is the
vector of the residual error.

To remove the zero-lag correlation effect (i.e., ignore co-
activations), the time series were input into a modified
multivariate autoregressive model which included the zero-lag
term used by Deshpande et al. (2009) shown as follows:

X(t) = A′(0)X(t)+ A′(1)X(t − 1)+ · · · + A′(p)X(t − p)+ E(t)

(2)

The diagonal elements of A′(0) were set to zero, to model only
the instantaneous cross-correlation rather than zero-lag auto-
correlation. The off-diagonal elements of A′(0) corresponded to
the zero-lag cross-correlation (Deshpande et al., 2009). It is to
be noted that the coefficients in Equation (1) A(1),...A(p) would
not be the same as A′(1)...A′(p) as in Equation (2), because the
modified zero-lag term affects other coefficients since it removes
the zero-lag cross correlation effects from them. Accordingly, the
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correlation-purged granger causality (CPGC) from time series i
to time series j was obtained using the following equation

CPGCij =

p∑

n= 1

(a′ij)
2
(n) (3)

Where a′ij are the elements of A’. It is well-known that

the coupling among brain areas is time-varying and context-
sensitive. Indeed, the most interesting parameters of dynamic
causal models are the fluctuations in effective connectivity
(induced by experimental manipulations or time). In recent
years, the functional connectivity (resting state) community has
dubbed these fluctuations in coupling as “dynamic functional
connectivity.” In our work, we characterized DEC using a
temporally adaptive modified MVAR model:

X(t) = A′(0, t)X(t)+ A′(1, t)X(t − 1)+ · · · + A′(p, t)X(t − p)

+E(t) (4)

In this model, the coefficients A′(p) were allowed to vary over
time, thus “dynamically” estimating EC.

The parameters A′(n,t), n= 0,...,p were estimated in a Kalman
filter framework using variable parameter regression (Arnold
et al., 1998; Büchel and Friston, 1998). The Kalman filtering is
a recursive process, where new information is added when it
arrives. Thus, estimates taken from early steps are less reliable
compared to later ones. A forgetting factor (FF) is introduced
to circumvent this problem by taking recent past Kalman filter
estimates into account during current estimation in order to
control smoothness and enhance stability. The forgetting factor
was determined by minimizing the variance of estimated error
energy (Havlicek et al., 2010) and was found to be equal to one
in our study. In brief, Kalman filtering treats the underlying
MVAR coefficients as slowly fluctuating states. This enables the
estimation of time varying directed connectivity that was used
for subsequent modeling at the between-subject level. The DGC
is estimated as:

DGCij(t) =

p∑

n= 1

(a′ij(n, t))
2

(5)

Where DGCij (t) is the dynamic Granger causality value from
time series i to time series j at time point t. Given that the neural
delays of interest are of the order of a TR or less (Deshpande et al.,
2013), and that previous literature supports using a first order
model to capture most relevant causal information (Deshpande
and Hu, 2012), we employed a first order model for estimating
both SEC and DEC in this work.

Identification of Disease Foci
Connectivity studies often report aberrations in functional
connections between brain regions. While this is useful, it does
not provide a comprehensive characterization of the underlying
connectomics. First, it is likely that several aberrations in
connectivity are the after-effects arising from disruptions in
certain focal brain regions. Second, our knowledge about brain

functioning is centered on functions of regions rather than
connections. Therefore, it is advantageous to identify certain
focal regions of disruption using connectivity data. Thus in
this study, we sought to identify diseased foci in AD. A recent
study introduced a novel technique for the identification of
disease foci (Venkataraman et al., 2013) based on non-directed
FC differences between populations. Here we generalize this
technique to the identification of diseased foci from effective
connectivity as well as dynamic connectivity data.

The model proposed by Venkataraman et al. (2012) considers
the connectivity measure (CM

ij for HC group and PMij for the AD

group) as a noisy observation of the latent connectivity (CL
ij for

HC group and PLij for the AD group). The model is illustrated in

Figure 1 and consists of several parts.
The first part defines a binary indicator vector that

selects disrupted regions, and a binary graph characterizes
corresponding abnormal connectivity. Let N be the total number
of regions in the brain being considered. The model assumes
a the random variable R = [R1,...,RN] is a binary vector (i.e.,
brain regions are either healthy with Ri = 0 or disrupted with
Ri = 1, where i = 1 .. N) indicates the state of each region
in the brain. Elements of R follow an independent, identically
distributed (i.i.d.) Bernoulli distribution model Qb(R) where Q(.)
denotes the posterior distribution and superscript b indicates
a Bernoulli distribution. Then, an underlying binary graph G
which characterizes the network of abnormal connectivity can be
defined as follows: a connection between two healthy regions is
always healthy with probability equal to 1, a connection between
two disrupted regions is always abnormal with probability equal
to 1, and a connection between a healthy region and a disrupted
region is abnormal with probability η. The second part specifies
the latent connectivity for controls (CL) as a tri-state variable
from a multinomial distribution with parameter πk (k denotes
three different states), positive connectivity with probability

FIGURE 1 | General model of the Foci identification technique. Parameters in

circles indicate random variables. Please refer to the text for a description of

the variables.
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π1, little or no functional connection (0) with probability
π0, and negative connectivity with probability π−1. Given the
binary graph G and latent connectivity for controls CL, the tri-
state latent connectivity of the AD population can be defined.
Specifically, the latent connectivity from the control group CL

ij

equals to PLij with probably ǫ if the binary graph connection

between regions i and j is abnormal, CL
ij equals to PLij with

probably 1 − ǫ if the connection between regions i and j is
healthy. The third part characterizes the observed connectivity
measures CM

ij and PMij as Gaussian random variables whose mean

and variance (µ and σ ) depend on the value of CL
ij and PLij . Then,

the joint likelihood of all configurations of latent connections
between regions can be modeled as an 9-state multinomial
distribution model Qm(C, P) (superscriptm denotes thatQ(.) is a
multinomial distribution).

The model in Venkataraman et al. (2013) was applied in
the case of functional connectivity, i.e., the Pearson’s correlation
coefficient between regions. However, EC is not a bounded
measure, a small number of outliers is to be expected. In
our EC data, we found a small portion of connectivity values
which were >1 or < −1 (0.3%), wherein these outliers indicate
stronger causal information flow between regions. To maintain
the importance of those stronger effective connections and
minimize its negative impact on model evaluation, inverse Fisher
transformation was used to render the EC values as a bounded
measure within [−1 1]. For the variance of dynamic EC, the
latent tri-states of variance of connectivity vFij can be considered
as follows: little variability or stationary connection, modest
variability and strong variability. It is to be noted that static FC
is direction-less, hence only the upper or lower triangle of the
symmetric connectivity matrices were needed to fit the model in
Venkataraman et al. However, in our case, both SEC and vDEC
are directed with asymmetric connectivity matrices, and hence
the whole matrices were used in the model. Taken together, these
modifications permitted the model to be applied to both static
and dynamic EC.

After initiating the prior parameters (such as the Bernoulli
prior for binary state vector R, prior for latent connectivity
for controls πk, etc.) for the model, a variational expectation
maximization (EM) algorithm (Dempster et al., 1977) was
adopted for estimating the latent connectivity and model
parameters from the observed connectivity measures (CM and
PM). Technically, we inverted the (between subject) model of
disconnection using variational Bayes. This scheme is formally
similar to an EM algorithm that uses a variational update for
all the factors of an approximate posterior. These included
an approximate posterior distribution over model parameters
(πk, η, ǫ, µ, and σ ), latent connectivity for both groups of
subjects [Qm(C, P)] and regional pathology [Qb(R)]. In brief,
this variational scheme optimizes the sufficient statistics of each
marginal distribution or density with respect to variational free
energy (FE), under the expected values of the remaining factors.
The variational EM alternates between updating the latent
posterior distribution and estimating the nonrandom model
parameters. Convergence was based on the relative change in free
energy of the model of <10−4 between consecutive iterations.

Disrupted focal regions and latent abnormal connectivity would
then be identified from the posterior probabilities for each region
and each connection. Figure 2 illustrates the flow chart of the
algorithm.

The significance of the resulting foci was estimated using
nonparametric permutation tests. Specifically, the group label of
each participant was randomly permuted for 1,000 times. For
each permutation, we fit the data to the model and obtained
the posterior probability of disrupted foci for each region. This
provided an empirical null distribution from which the p-value
of the significance was obtained. The method also identified the
affected connections associated with the disrupted foci. Among
such connections, we retained those that were also in accordance
with our hypothesis (paths exhibit lower SEC, as well as lower
vDEC of effective connectivity in AD compared to healthy
controls with a threshold of p < 0.05).

RESULTS

We identified two disrupted foci which were common to both
SEC and vDEC networks: (1) Locus Coeruleus (LC) in the
Brainstem (p = 0.003 for SEC and 0.006 for vDEC), (2) Right
orbitofrontal cortex or R OFC (p = 0.007 for SEC and 0.002
for vDEC). Disrupted connectivity paths associated with these
foci exhibited higher strength and larger temporal variability in
HC as compared to AD (in accordance with our hypothesis).
Furthermore, they exhibited a unique pattern of disrupted
connectivity—those associated with the LC in the brain stem
emanated from it, while connectivity paths associated with R
OFC converged onto it (Figure 3).

Five of the ten connectivity paths emanating from the LC
resulted in connectivity paths terminating in the R OFC, with
four of these five paths being indirect pathways via the L MFG,
L MTG, R MOG, and L Calcarine, and one path being a direct
connection from LC to R OFC. All connectivity paths exhibited
lower SEC and lower vDEC in AD compared to HC.

Further clarity on the corresponding aberrant connectomic
network was obtained by partitioning the network into four
unique subnetworks: (Figure 4A) LC-PFC working memory
system, (Figure 4B) LC-PHG emotional memory system,
(Figure 4C) LC-visual cortex sensory system, and (Figure 4D)
LC-MTG language system. Note that this partitioning is based
on different functions performed by the locus coeruleus—
norepinephrine system and is not based on any analytical
strategy. Taken together, the disruption of these networks likely
leads to working memory deficits, difficulties in processing
emotional memories, and several other symptoms commonly
observed in those with AD. The relevance of these subnetworks
to AD pathology are discussed in detail in the next section.

DISCUSSION

In this study, we estimated static and dynamic measures
of directed influences between 200 ROIs covering the entire
brain in both AD and HC participants taken from the ADNI
database. SEC and vDEC connectivity data were fed into a
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FIGURE 2 | A flow chart of the Foci identification technique. The foci-identification technique posits that the latent connectivities can be stochastically generated from

a distribution mode, and that the observed connectivity data are a noisy measurement of the latent unmeasured connectivity. Latent variables of the model were

randomly initialized, and the variational EM algorithm was used to obtain the posterior distribution Q (both the nine-state distribution of latent functional connectivity

and distribution over binary vector R) and model parameters to minimize the variational free energy. Then the disrupted foci and corresponding dysfunctional

connections can be identified.

probabilistic model to identify regions with focal connectivity
deficits in AD, with the hypothesis that connections associated
with those regions would be weaker in strength and lower in
temporal variability (i.e., rigid) in AD. We identified two such
foci, brain stem and orbitofrontal cortex, which were affected
significantly by the disease. The aberrant connections emanating
from LC suggested a widespread dysregulation originating from
the brainstem, part of which terminated into the other focus
(orbitofrontal cortex).

Interestingly, all connectivity paths corresponded with the
directed influence of the LC (in the brain stem) on mostly
cortical (and few sub-cortical) regions. This corroborates with
previous studies that have shown progressive damage (Kienzl
et al., 1999) in the brain stem during early periods of AD.
Further, LC in the brain stem is the largest repository of

Norepinephrine (NE) in the human brain (Herregodts et al.,
1991). Noradrenergic neurons in LC have projections to several
parts of the brain including olfactory, limbic, prefrontal, and
other cortical regions (Sara, 2009; Sara and Bouret, 2012). NE
is known to suppress neuroinflammation (Weinshenker, 2008).
This purported role has been hypothesized to be a protective
factor against AD. In fact, Heneka et al. (2010) showed that NE
stimulation of mouse microglia suppressed Aβ-induced cytokine
and chemokine production and increased microglial migration
and phagocytosis of Aβ. Induced degeneration of the brain stem
increased the expression of inflammatory mediators in amyloid
precursor protein (APP)-transgenic mice and resulted in elevated
Aβ deposition. Kelly et al. (2017) suggesting that the decrease
of NE in the brainstem facilitates the inflammatory reaction of
microglial cells in AD and impairs microglial migration and
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FIGURE 3 | Sagittal view (A) and axial view (B) of the disease foci and corresponding disrupted connections. Regions in red are the identified affected foci, located in

Locus Coeruleus and Right orbitofrontal cortex. Regions in blue are the non-foci regions that were connected from/to the disease foci. A schematic of the identified

network is also shown for better visualization of the network architecture (C). The expansions for the abbreviations are as follows: SFG, superior frontal gyrus; MFG,

middle frontal gyrus; IFG, inferior frontal gyrus; MTG, middle temporal gyrus; PHG, parahippocampal gyrus; MOG, middle occipital gyrus; OFC, orbitofrontal cortex.

phagocytosis, thereby contributing to reduced Aβ clearance.
The Aβ is the critical initiating event in AD, starting with
the aberrant clearance of Aβ-peptides followed by consecutive
peptide aggregation and disruption of neural activity (Selkoe,
2002). Moreover, a post-mortem study has found significant

volume decreases in the LC during AD progression, highlighting
the importance of this region in AD (Theofilas et al., 2016). These
findings indicate that the depletion of NE in LC is an etiological
factor in the development of MCI and progression to AD. The
studies discussed above provide some basis for the important
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FIGURE 4 | Disrupted networks associated with the diseased foci, showing

the entire network partitioned into four unique subnetworks: (A) LC-PFC

working memory system, (B) LC-PHG emotional memory system, (C)

LC-visual sensory system, and (D) LC-MTG language system. SFG, superior

frontal gyrus; MFG, middle frontal gyrus; IFG, inferior frontal gyrus; MTG,

middle temporal gyrus; PHG, parahippocampal gyrus; MOG, middle occipital

gyrus; OFC, orbitofrontal cortex.

role of brainstem in AD. Further, an animal study has found
that boosting NE transmission can lead to increased functional
connectivity (Guedj et al., 2016), suggesting that the reduction of
NE could potentially result in lower connectivity between LC and
cortical regions.

Several previous studies have suggested that OFC may
be important for understanding the mechanisms for putative
spreading of AD pathology in the brain (Van Hoesen et al.,
2000; Sepulcre et al., 2013). Robust correlation has been found
between Aβ deposition levels and volume in the orbitofrontal
area (Ishibashi et al., 2014). In fact, the amyloid precursor
protein (APP) gene contains the sequence for the Aβ peptide,
which is concentrated in the senile plaques (SPs) (Cras et al.,
1991). During AD progression, the SPs appear first in the
orbitofrontal and temporal cortices and later extend to the
whole cortex (Braak and Braak, 1999). Further, SPs and Aβ

deposition has been associated with reduced connectivity at
the synaptic level (Yeh et al., 2011), suggesting a potential
mechanism that might link SPs and Aβ deposition with
directed connectivity estimated from fMRI. While we discuss
the role of temporal regions later in this section, the findings

presented above highlight the importance of the role of
OFC in AD.

Connectivity paths from LC to the prefrontal cortex (PFC)
in general, and OFC in specific (note that OFC is a region in
the PFC), can be considered as an aberrant LC-PFC working
memory system (Figure 4A). Given that many studies have
referred to the PFC in general without specifying sub-regions,
and hence we are going to use the same nomenclature in the
ensuing discussion. Previous studies have indicated that NE is
instrumental in enhancing working memory through actions
within the prefrontal cortex (PFC). PFC underlies the encoding
of task-relevant information in working memory (Baddeley,
2003), and it has been shown that damage to the noradrenergic
innervation of the PFC impairs performance in working
memory (Brozoski et al., 1979). The stimulation of α2-adrenergic
receptors in the PFC of nonhuman primates has been shown to
improve performance in working memory tasks (Li et al., 1999)
while α1-adrenergic receptors impaired the working memory
(Arnsten and Jentsch, 1997). α2-adrenergic receptors have a
higher affinity for NE compared to α1-adrenergic receptors,
thus under normal conditions, NE facilitates working memory
performance via actions at α2-adrenergic receptors in general
and also in the PFC. However, dysfunction in noradrenergic
pathways emanating from LC may result in low PFC NE levels,
affecting working memory (O’Rourke et al., 1994).

The connectivity from LC to PHG can be considered as a
LC-PHG emotional and spatial memory system (Figure 4B). The
LC-NE system modulates emotional memories, and studies have
suggested that emotional memories induce the activation of LC
and subsequent NE release (Weiss et al., 1980). Corticotropin-
releasing hormone (CRH) receptors are known play an important
role in the coordination of autonomic and electrophysiological
responses associated with emotional memories (Koob and
Bloom, 1985; Dunn and Berridge, 1990). CRH-immunoreactive
fibers were observed in the LC, suggesting that CRH may
modulate LC neuronal activity (Merchenthaler et al., 1982;
Cummings et al., 1983). In fact, many studies (Valentino et al.,
1983; Finlay et al., 1997; Jedema et al., 2001) have shown that
CRH administered locally into the LC increases LC discharge
activity and NE release in its terminal fields. Moreover, an
abundant expression of CRH was found in PHG (Wong et al.,
1994). The first sign of emotional memories was also observed
in PHG, and was found to then gradually spread to PFC and
other cortical regions (Sotiropoulos et al., 2011). On the other
hand, PHG is known to be involved in spatial memory (Bohbot
et al., 1998). Noradrenergic neurons within LC have widely
distributed, ascending projections to the limbic system including
PHG (Szabadi, 2013). Thus, the LC-NE system may help trigger
the involvement of the PHG in spatial memory. An animal
study has indicated that the LC-NE system is necessary for the
acquisition of spatial memories (Gertner and Thomas, 2006).
These evidence suggest that the decrease of NE in LC could likely
cause dysregulation of the emotional and spatial memory system
in the LC-PHG network.

Connectivity paths from LC to the frontal cortex, mediated by
sensory visual regions, can be considered as a LC-visual sensory
system (Figure 4C). Previous works in animal models have
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shown that the LC-NE system can alter receptive field properties
such as velocity tuning, direction selectivity, etc. (Waterhouse
et al., 1990; McLean and Waterhouse, 1994). Malfunction of the
LC-visual sensory network may contribute to deficits in visual
assessment (Johnson et al., 2012).

Connectivity paths from LC to the OFC mediated by MTG
can be considered as a LC-MTG language system (Figure 4D). A
previous study has shown decreased regional cerebral blood flow
(rCBF) after ingestion of an α2-adrenergic agonist drug in the
MTG (Swartz et al., 2000). Given that the noradrenergic system in
the brain originates from LC, this suggests that theremight exist a
noradrenergic pathway between LC and MTG which is impaired
in AD. The malfunction of the LC-MTG language system may
cause language impairments often observed in AD (Ferris and
Farlow, 2013; Szatloczki et al., 2015).

It is evident that most of the disrupted connectivity paths
emanating from the LC in the brain stem drive OFC either
directly or via other systems. OFC is known to play a critical
role in memory, emotions, reward, as well as decision-making
mechanisms (Rolls, 2004; Rempel-Clower, 2007). Disrupted
connectivity paths that converge into the OFC were observed
in three of the subnetworks, and could potentially underlie
behavioral deficits in these domains.

Taken together, we identified LC in the brainstem and OFC
as the foci of network disruption in AD. The dysregulation
of LC-NE neurotransmission likely contributes to behavioral
deficits observed in AD. In corroboration, previous literature has
pinpointed the same regions (Heneka et al., 2010; Ishibashi et al.,
2014) to be affected in AD. Our identification of the LC in the
brain stem as the disease focus in AD supports these previous
observations and suggests that functional MRI studies of AD,
which have been largely cortico-centric (Dennis and Thompson,
2014; Li et al., 2014), must in future investigate the role of this
structure in AD.

Previous studies have also identified some other regions to
be crucial to AD pathology (Brier et al., 2014; Dai et al., 2015;
Mutlu et al., 2016). In fact, our foci-identification technique
did identify some of the regions reported in these papers.
Specifically, we also identified parahippocampal gyrus, middle
frontal gyrus, and precuneus as foci only considering DEC
networks. Further, middle temporal gyrus, lateral occipital
cortex and cerebellum posterior lobe were identified as foci
in SEC networks. However, these regions were not identified
as foci in both DEC and SEC networks. Acknowledging that
previous studies reported regions as having significantly different
static connectivity between the groups, in this study we only
reported the foci and the associated connectomic network
that were found as having impairments in both static and
dynamic EC.

Next, we report a few noteworthy limitations of this
work. We have based our interpretation on the efferent
projections of neurotransmitters arising out of LC. We
employed this logic since functional imaging studies of
the brain stem (and LC) in AD are limited, with the
existing literature employing functional imaging in AD being
cortico-centric. However, we have not directly measured
norepinephrine in the brain, as it is difficult to do so using

MRI. Therefore, our results form the basis for a hypothesis
regarding dysfunction in the noradrenergic pathways in AD.
Future studies must employ other modalities such as positron
emission tomography for in vivo imaging of noradrenergic
pathways (not just NE deficits) in AD. This could potentially
open up possibilities for therapeutic interventions in AD.
Further, the proposed methodology of combining static as well
as DEC analysis with probabilistic modeling for identifying
dysfunctional foci and associated dysfunctional networks could
provide novel insights into the pathophysiology of other brain-
based disorders.
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