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Alzheimer’s disease (AD) is a chronically progressive neurodegenerative disease highly
correlated to aging. Whether AD originates by targeting a localized brain area and
propagates to the rest of the brain across disease-severity progression is a question with
an unknown answer. Here, we aim to provide an answer to this question at the group-
level by looking at differences in diffusion-tensor brain networks. In particular, making use
of data from Alzheimer’s Disease Neuroimaging Initiative (ADNI), four different groups
were defined (all of them matched by age, sex and education level): G1 (N1 = 36,
healthy control subjects, Control), G2 (N2 = 36, early mild cognitive impairment, EMCI),
G3 (N3 = 36, late mild cognitive impairment, LMCI) and G4 (N4 = 36, AD). Diffusion-
tensor brain networks were compared across three disease stages: stage I (Control vs.
EMCI), stage II (Control vs. LMCI) and stage III (Control vs. AD). The group comparison
was performed using the multivariate distance matrix regression analysis, a technique
that was born in genomics and was recently proposed to handle brain functional
networks, but here applied to diffusion-tensor data. The results were threefold: First, no
significant differences were found in stage I. Second, significant differences were found
in stage II in the connectivity pattern of a subnetwork strongly associated to memory
function (including part of the hippocampus, amygdala, entorhinal cortex, fusiform gyrus,
inferior and middle temporal gyrus, parahippocampal gyrus and temporal pole). Third,
a widespread disconnection across the entire AD brain was found in stage III, affecting
more strongly the same memory subnetwork appearing in stage II, plus the other new
subnetworks, including the default mode network, medial visual network, frontoparietal
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regions and striatum. Our results are consistent with a scenario where progressive
alterations of connectivity arise as the disease severity increases and provide the brain
areas possibly involved in such a degenerative process. Further studies applying the
same strategy to longitudinal data are needed to fully confirm this scenario.

Keywords: diffusion-tensor imaging, brain networks, Alzheimer’s disease, severity progression

INTRODUCTION

Alzheimer’s disease (AD), the most common form of dementia,
is a chronically progressive neurodegenerative disease highly
correlated to aging; indeed, although the prevalence of clinically
manifested AD is about 2% at the age of 65 years, it increases to
30% at the age of 85 years (Wimo et al., 1997).

Alzheimer’s disease is characterized by an accumulation of
beta-amyloid plaques and neurofibrillary tangles composed of tau
amyloid fibrils (Hardy, 2006) associated with synapse loss and
neurodegeneration leading to long-term memory impairment
and other cognitive problems. To date, there is no treatment
known to slow down the progression of this disorder.

The initial AD pathology develops many years before the
cognitive and functional impairments are evident. Different
terms have been used to describe this disease-starting condition,
including pre-dementia and prodromal AD and, more often,
MCI (mild cognitive impairment). The concept of MCI varied
over the past two decades and has been classified into different
broad categories depending on memory performance and the
number of impaired cognitive functions (Mueller et al., 2005).

An accurate prediction for the conversion from MCI to AD
can help to clinicians to evaluate AD risk pre-symptomatically,
initiate treatments at early stage, and monitor their effectiveness
(Li et al., 2014; Cheng et al., 2015). However, such a prediction
is challenging, as the MCI group is highly heterogeneous and
only a few patients convert to AD, a rate of about 8% to 15%
convert per year (Mitchell and Shiri-Feshki, 2009; Ritter et al.,
2015). However, the amnestic subtype of MCI is more prevalent
than the non-amnestic MCI (Petersen et al., 2010), and has
an annual conversion rate higher of about 30 to 40% (Geslani
et al., 2005; Rozzini et al., 2007; Schmidtke and Hermeneit,
2008).

This study aims to search for neuroimaging biomarkers that
can account for differences with respect to a healthy control
population from the early to the final stages of AD. Multitude
of different neuroimaging studies has addressed the conversion
from MCI to AD, see (Zhang et al., 2014) and references therein.
In relation to structural magnetic resonance imaging (MRI), it
was shown that the hippocampus volume and the volume from
other subcortical structures at MCI were well correlated to a
worse progression to AD, with accuracy of about 65% in the
prediction from MCI to AD (Teipel et al., 2015).

Rather than assuming that specific brain regions are affected
in AD, a blind approach using multiple regions of interest has
been shown to achieve a better predictive accuracy (of about
80%) of the conversion from MCI to AD (Westman et al.,
2011; Eskildsen et al., 2013; Liu J. et al., 2013). The use of
tensor diffusion MRI in combination with structural MRI has

provided better results as compared to only structural MRI,
showing that white-matter integrity of the fornix, cingulum, and
parahippocampal gyrus provided accuracy varying from 80 to
even 95% (Mielke et al., 2012; Douaud et al., 2013; Wee et al.,
2013).

Initiatives like the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) provide important resources to study AD
to the research community (including demographic data,
imaging datasets, cognitive tests, etc.), pushing forward
multimodal studies correlating different imaging modalities
to neuropsychological functioning. Interestingly, ADNI also
allows the possibility of studying variations in the images at
a group level across disease’s progression, as brain images are
categorized in different groups ranging from Control to AD,
with two intermediate stages, early and late mild cognitive
impairment, EMCI and LMCI, respectively. Importantly,
although EMCI and LMCI patients have memory impairment
(Medina et al., 2006), the conversion rate to AD is only between
8 and 15% per year (Mitchell and Shiri-Feshki, 2009), making
this group have a special relevance in the development of
novel imaging techniques that could correlate with disease
progression.

Despite extensive research shedding light into the MCI to
AD conversion, the precise mechanisms and clinical variables
responsible for such progression are poorly understood, mainly
due to the lack of time-resolved longitudinal studies in large
populations. Taking into consideration previous work (Douaud
et al., 2011; Acosta-Cabronero et al., 2012; Bosch et al., 2012;
Preti et al., 2012; Liu Y. et al., 2013; Khedher et al., 2015), the
present study focus on the variations of brain networks across
AD progression at a group level. It is hypothesized that if in the
transition from Control to MCI the connectivity pattern of some
subnetworks are altered, in further disease stages the alterations
of the same subnetworks will coexist together with alterations
of new different subnetworks in the AD brain, in a manner
that connectivity alterations will finally extend to the rest of the
brain.

MATERIALS AND METHODS

Ethics
The present study made use of ADNI data previously collected in
50 different institutions. Participants provided informed consent
before recruitment and data collection started. In addition,
participants filled questionnaires approved by each participating
site’s Institutional Review Board (IRB). The complete list of
ADNI sites’ IRBs can be found using the following link:
http://adni.loni.usc.edu/about/.
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TABLE 1 | t-test and χ2 test across groups.

Control vs. EMCI Control vs. LMCI Control vs. AD

Test value p-value Test value p-value Test value p-value

Age (t-test) 0.0349 0.9722 0.5539 0.5814 0.2071 0.8365

Sex (χ2 test) 0.2338 0.6287 0.2338 0.6287 0.2338 0.6287

EMCI, Early mild cognitive impairment; LMCI, Late mild cognitive impairment; AD, Alzheimer disease.

TABLE 2 | Further information about ADNI group classification.

Control EMCI LMCI AD

LMIIS (maximum of 25 points)

Education ≥ 16 years ≥9 [9–11] ≤8 ≤8

Education [8–15] years ≥5 [5–9] ≤4 ≤4

Education [0–7] years ≥3 [3–6] ≤2 ≤2

MMSE (Maximum of 30 points) [24–30] [24–30] [24–30] [20–26]

CDR 0 0.5 0.5 0.5 or 1

Memory Box Score (subpart of CDR) 0 At least 0.5 At least 0.5 NA

EMCI, Early mild cognitive impairment; LMCI, Late mild cognitive impairment; AD, Alzheimer disease; LMIIS, Logical Memory II subscale; MMSE, Mini Mental State
Examination; CDR, Clinical Dementia Rating.

Alzheimer’s Disease Neuroimaging
Initiative (ADNI)
Diffusion tensor imaging (DTI) data was used in this paper from
ADNI database http://adni.loni.usc.edu. ADNI was launched in
2003 by the Nat. Inst. on Aging (NIA), the Nat. Inst. Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and
non-profit organizations, as a $60 million, 5-year public-private
partnership. ADNI’s main goal has been to test whether serial
MRI, positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early AD.
Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians to
develop new treatments and monitor their effectiveness, as well
as to lessen the time and cost of clinical trials. The Principal
Investigator of this initiative is Michael W. Weiner, MD, VA
Medical Center and University of California – San Francisco, CA,
United States. ADNI subjects have been recruited from over 50
sites across the United States and Canada. Currently, around 1500
adults were recruited in the different ADNI initiatives, ages 55 to
90, consisting of cognitively normal older (NC), early/late MCI
(EMCI/LMCI), significant memory concern (SMC) and early AD
individuals. The follow up duration of each group is specified in
the protocols for ADNI-1, ADNI-2 and ADNI-GO, see further
information in www.adni-info.org.

Demographic Data
A total number of N = 144 subjects were used in this study
(Supplementary Table S1). This number was chosen in order to
get the biggest four groups as possible (Control, EMCI, LMCI
and AD), balanced by size, age and sex. DTI images were
selected and downloaded from ADNI database, belonging to four
different groups: Control (N1 = 36), EMCI (N2 = 36), LMCI

(N3 = 36) and AD (N4 = 36). Age and sex were balanced
across groups (Table 1), respectively, using a t-test and chi-
squared test. In addition, it is important to remark that the
“years of education” variable was already controlled by the ADNI
group classification, for details see Inclusion criteria in page 31
of https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-
procedures-manual.pdf.

ADNI Group Classification
The group labels Control, EMCI, LMCI and AD are based
on several test scores, such as the Logical Memory II
subscale (LMIIS) from the Wechsler Memory Scale, the
Mini-Mental State Examination (MMSE) and the Clinical
Dementia Rating (CDR), as well as National Institute of
Neurological and Communicative Disorders and Stroke and
the AD and Related Disorders Association (NINCDS/ADRDA)
criteria in AD cases. In the procedures manual each of the criteria
are cited1.

Control subjects are free of memory complaints (beyond
normal aging), verified by a study partner. EMCI, LMCI and
AD must have a subjective memory concern as reported by the
subject, study partner, or clinician. Details of specific groups are
given in Table 2.

Group-Level Stages for AD Progression
Alzheimer’s disease progression was defined by three different
stages: stage I (control vs. EMCI), stage II (control vs. LMCI) and
stage III (control vs. AD). Further details are given in Figure 1.

DTI Acquisitions
All subjects in this study had the same ADNI imaging protocol,
explained in http://adni.loni.usc.edu/methods/documents/mri-

1http://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.
pdf
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FIGURE 1 | Methodological sketch. Alzheimer’s disease progression is addressed across three stages. Four groups of 36 subjects each at different stages of AD
(Control, Early and Late MCI, Alzheimer) following the ADNI classification criterion. All groups have been balanced with respect to age, sex and years of education.
Brain connectivity patterns and its relation with disease progression are accomplished by comparing the control group with the rest of groups, i.e., Control vs. EMCI
(stage I), Control vs. LMCI (stage II), and Control vs. AD (stage III).

protocols/ and consisting in whole-brain MRI 3T scanners
and Diffusion Weighted Images (DWI) images of the axial
DTI series. The DTI images were acquired using spin echo
pulse sequence echo-planar-imaging (SE-EPI) with the following
parameters: TR = 9050.0 ms; TE set to minimum (values
ranging from 60 ms till 69 ms); 59 slices with thickness of
2.7 mm with no gap among slices; 128 × 128 matrix with
a FOV of 35.0 cm; with matrix pixels 256 × 256 × 2714
and voxel size 1.36 mm × 1.36 mm × 2.7 mm, flip
angle = 90◦. A diffusion gradient was applied along 41 non-
collinear directions with a b value of 1000 s/mm2. Additionally,
one set of images was acquired with no diffusion weighting
(b= 0 s/mm2).

Diffusion Tensor Brain Networks
Diffusion tensor brain networks were built following a similar
methodology to previous work (Marinazzo et al., 2014; Alonso-
Montes et al., 2015; Amor et al., 2015; Diez et al., 2015, 2017)
using FSL (FMRIB Software Library v5.0) and the Diffusion
Toolkit. First, all the selected images were downloaded in
DICOM and transformed to Nifti format for further analysis.
Next, an eddy current correction was applied to overcome the
artifacts produced by variation in the gradient field directions,
together with the artifacts produced by head movements.
Next, using the corrected data, a local fitting of the diffusion
tensor was applied to compute the diffusion tensor model
for each voxel. Next, a Fiber Assignment by Continuous
Tracking (FACT) algorithm was applied (Mori et al., 1999).
Next, a transformation from the Montreal Neurological Institute
(MNI) space to the individual-subject diffusion space was
computed and applied to the brain hierarchical atlas (BHA)
with M = 20 modules, which was shown in Diez et al.
(2015) to have the best correspondence between functional
and structural modules. This atlas developed by the authors
is available to download at http://www.nitrc.org/projects/biocr_
hcatlas/. This allowed building 20 × 20 structural connectivity
(SC) matrices, each per subject, by counting the number of
white matter streamlines connecting all module pairs. Thus, the
element matrix (i,j) of SC is given by the streamlines number

between modules i and j. As a result, SC is a symmetric
matrix, where the connectivity from i to j is equal to the one
from j to i.

Labeling of Anatomical Regions
The anatomical representation of the initial 2,514 brain regions
existing in BHA was identified by using the Automated
Anatomical Labeling (AAL) brain atlas (Tzourio-Mazoyer et al.,
2002). Therefore, the anatomical identification of the brain
regions used in this work followed the labels existing in the AAL
atlas.

Cross-Group Analysis: Multivariate
Distance Matrix Regression
The cross-group analysis has been performed using the
Multivariate Distance Matrix Regression (MDMR) approach
proposed in Shehzad et al. (2014). Connectome-wide association
studies are usually performed by means of mass-univariate
statistical analyses, in which the association between a phenotypic
variable (e.g., the score in a neuropsychological test) with each
entry of the brain connectivity matrix is tested across subjects.
Such analysis, however, exhibits two main pitfalls: First even at
the level of region of interest (ROI) and thus choosing much
less regions as voxels, the number of statistical tests entailed
is large (Milham, 2012), which increases the potential for false
positives. On the other hand, studying each brain connectivity
matrix entry separately, concurrent contributions from other
entries are necessarily ignored (Cole et al., 2010). In multivariate
methods, instead, the simultaneous contribution of entire sets of
brain connectivity entries to a phenotypic variable is evaluated,
in a manner that it better captures the concurrent global changes
and reduces the number of false positives.

A multivariate distance regression was applied and the
variation of distance in connectivity patterns between groups as
a response of the Alzheimer’s progression as compared to the
Control state was tested. For a fixed brain module i, the distance
between connectivity patterns of module i to the rest of the brain
was calculated per pair of subjects (u,v) –by calculating Pearson
correlation between connectivity vectors of subject pairs–, thus
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FIGURE 2 | Multivariate distance matrix regression analysis to find differences in brain connectivity patterns across severity progression of AD. In a first step (Image
preprocessing in a red box), brain images are preprocessed by using standard techniques, mainly eddy current and head motion corrections). Next, diffusion tensor
reconstructions are built that allows calculating the tractography for each subject (further details in Materials and Methods). In the next step (Distance matrix
calculation in a green box), first the streamline number connectivity matrix is obtained (here, represented by λ), one per subject, corresponding to 20 × 20 entries of
values given by α. Second, the connectivity patterns of subjects for a given module are used to construct the distance matrix in the subject space by means of
Pearson correlation coefficients. Once the distance matrix for a given module is calculated (here, we highlight in red the first row that corresponds to the first
module), we test in the third step (Multivariate regression in a blue box) whether the variability in distance between different groups is statistically related with disease,
for which we compare the observed results with a simulated distribution given by N permutations of the labels. We repeat this operation for every module. We finally
apply the fourth step (False discovery rate corrections in a black box) to correct for multiple comparisons.

leading to a distance matrix in the subject space for each module
i investigated. In particular, the following formula was calculated

di
uv =

√
2 · (1− ruv) (1)

where ruv is the Pearson correlation between connectivity
patterns of i for subjects u and v. After repeating the same
procedure for all subjects, as many distance matrices as partition
modules (i = 1, ......, 20) were obtained. Next, MDMR was
applied to perform cross-group analysis as implemented in R
(McArtor, 2016).

It is important to emphasize that MDMR does not look
to how individual modules are locally organized or connected,
but to the integration connectivity pattern between those
segregated modules to the rest of the brain. Therefore, when
group differences were found on a MDMR given module, the
connectivity alterations from that module suggests an significant
affect to the rest of the brain.

Multivariate distance matrix regression yielded a pseudo-F
estimator (analogous to that F-estimator in standard ANOVA
analysis), which addresses significance of disease strength due to
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between-group variation as compared to within-group variations
(McArdle and Anderson, 2001). To compare between groups
when the regressor variable is categorical (i.e., the group label),
given a distance matrix, one can calculate the total sum of
squares as

SST =
1
N

∑
u= 1

∑
v= 1 + 1

d2
uv, (2)

with N being the total number of subjects. Notice that, from here
on, we will consider duv = di

uv. Thus, we got a different SST for
each module i. Similarly, the within-group sum of squares can be
written as

SSw =
∑ 1

ng

∑
u= 1

∑
v= u+ 1

d2
uv ε

g
uv, (3)

where ng is the number of subjects per group and ε
g
uv a variable

equal to 1 if subjects u and v belong to group g and 0 otherwise.
The between-group variation is simply SSB = SST − SSW, which
leads to a pseudo-F statistic that reads

F =
SSB

/
(m− 1)

SSW
/

(N −m)
(4)

where m is the number of groups. As it was acknowledged in
Zapala and Schork (2006), the pseudo-F statistic is not distributed
like the usual Fisher’s F-distribution under the null hypothesis.
Accordingly, we randomly shuffled the subject indices and
computed the pseudo-F statistic for each time. A p-value is
computed by counting those pseudo F-statistic values from
permuted data greater than that from the original data respect
to the total number of performed permutations.

Finally, we controlled for type I errors due to the 20
independent statistical performed tests by false discovery rate
corrections (Benjamini and Hochberg, 1995). Corrected whole-
brain connectivity patterns of modules are the ones related to AD
progression at the different stages. A schematic overview of the
method can be found in Figure 2.

RESULTS

Results are summarized in Table 3 and modules involved in the
disease progression at the group level are shown in Figure 3. See
also Supplementary Table S2 for examples of the different terms
participating in the statistical test.

Stage I: Control vs. EMCI
A total number of 36 images per each group were selected
to perform group comparison. No significant differences were
found in terms of module connectivity patterns to the whole
brain.

Stage II: Control vs. LMCI
A total number of 36 images per each group were selected to
perform group comparison. Significant differences were found
for the connectivity between the module 18 and the rest of the
brain (p = 0.007). As detailed in Diez et al. (2015), the module

TABLE 3 | p-values associated to each module from the brain hierarchical atlas.

Module Control vs. EMCI Control vs. LMCI Control vs. AD

1 0.956 0.753 0.023∗

2 0.956 0.466 0.049∗

3 0.956 0.441 0.049∗

4 0.880 0.532 0.031∗

5 0.859 0.689 0.973

6 0.859 0.438 0.546

7 0.956 0.900 0.503

8 0.859 0.449 0.031∗

9 0.859 0.600 0.591

10 0.956 0.900 0.627

11 0.956 0.438 0.759

12 0.956 0.466 0.031∗

13 0.859 0.600 0.531

14 0.956 0.438 0.006∗∗

15 0.956 0.753 0.031∗

16 0.956 0.986 0.031∗

17 0.890 0.898 0.546

18 0.399 0.007∗∗ 0.002∗∗∗

19 0.956 0.438 0.109

20 0.956 0.986 0.972

EMCI, Early mild cognitive impairment; LMCI, Late mild cognitive impairment;
AD, Alzheimer disease; ∗0.01 < p < 0.05; ∗∗0.005 < p < 0.01: ∗∗∗p < 0.005.
Connectivity alterations start in module 18 (marked in black and underlined), and
in later stages grow (increasing significance) and extend to a multitude of different
other modules.

18 of the BHA incorporated part of the hippocampus, amygdala,
entorhinal cortex, fusiform gyrus, inferior temporal gyrus, middle
temporal gyrus, parahippocampal gyrus and temporal pole.

Stage III: Control vs. AD
A total of 36 images per group were selected to perform
group comparison. At this stage, significant different connectivity
patterns were found in multiple modules existing in BHA:

Module 1 (p = 0.023); including part of the posterior
cingulate.

Module 2 (p= 0.049); including part of the putamen, anterior
cingulate, rostral pars of the middle frontal gyrus, superior
parietal gyrus, supramarginal gyrus, insula, inferior parietal
gyrus, precentral gyrus and superior frontal gyrus.

Module 3 (p = 0.049); part of the paracentral lobe, precentral
gyrus, post-central gyrus, precuneus, superior frontal gyrus,
superior parietal gyrus, superior temporal gyrus, supramarginal
gyrus and insula.

Module 4 (p = 0.031); part of the cuneus, lateral occipital
sulcus, lingual gyrus, pericalcarine cortex and precuneus.

Module 8 (p = 0.031); part of the caudate nucleus and
putamen.

Module 12 (p = 0.031); part of the inferior parietal gyrus,
inferior temporal gyrus, lateral frontal orbital gyrus, pars
orbitalis, pars triangularis, rostral pars of the middle frontal
gyrus, superior frontal gyrus, caudate nucleus and anterior
cingulate.
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FIGURE 3 | Pseudo F-statistic brain maps across the severity progression of AD. Brain disconnection as disease progresses is quantitatively addressed by looking
at the Pseudo F-statistic values of the modules. At first stages (Control vs. EMC, top), fibers deterioration is not sufficient to yield significant changes in modules
connectivity patterns. In the following stage (Control vs. LMCI – middle), the connectivity pattern of module 18, which involves parts of the hippocampus, entorhinal
cortex, amygdala and other memory-related areas, disconnects statistically with respect to control (p-value = 0.007). Such connectivity differences are widely
spread to the rest of the brain at the final stage (Control vs. AD, bottom).
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Module 14 (p = 0.006); part of the thalamus, hippocampus,
amygdala, putamen, ventral diencephalon, banks of the superior
temporal sulcus, parahippocampal gyrus, superior temporal
gyrus, insula, middle temporal gyrus and temporal pole.

Module 15 (p = 0.031); part of the thalamus, putamen,
pallidum, brainstem, hippocampus, amygdala, accumbens
nucleus, ventral diencephalon, orbital gyrus and insula.

Module 16 (p = 0.031); part of the cerebellum, banks of
the superior temporal sulcus, inferior parietal gyrus, cingulate
isthmus, middle temporal gyrus, precuneus and superior
temporal gyrus.

Module 18 (p = 0.002); see previous 3.2 section for the
anatomical description, but notice a reduction in p-value from
0.007 (Control vs. LMCI) to 0.002 (Control vs. AD).

Common Affected Modules between
Stages
Connectivity pattern of module 18 to the rest of the brain was
found at stage II (p = 0.007) and at stage III (p = 0.002),
indicating that the further the disease progresses, the greater the
connectivity of module 18 is altered to the rest of the brain.

DISCUSSION

The aim of the present study was to identify differences
in brain connectivity patterns between a control group and
three pathological groups by disease severity. For this purpose,
diffusion tensor brain networks were built allowing determining
connectivity differences at three consecutive severity stages: stage
I (Control vs. EMCI), stage II (Control vs. LMCI) and stage III
(Control vs. AD).

The results showed an absence of significant changes in
connectivity patterns in stage I, that is, between patients
with early MCI and healthy individuals. The MDMR analysis
we have applied finds group differences in the connectivity
patterns from different modules to the rest of the brain.
Therefore, when observing early MCI, our analysis allows
for some possible structural damages to locally occur. This
study has shown that even if local alterations exist, they
are not capable of producing global inter-module network
reorganization/redistribution detectable by the MDMR
analysis.

Significant differences were found by the MDMR method in
stage II in relation to a network involved with memory (module
18), which includes the hippocampus, amygdala, entorhinal
cortex, fusiform gyrus, inferior temporal gyrus, mean temporal
gyrus, parahippocampal gyrus and the temporal pole. Strikingly,
the change in module 18 connectivity becomes more evident
in stage III (i.e., in patients with AD), and memory alterations
coexist with alterations in a multitude of different modules
(modules 1–4, 8, 12, 14–16, and 18), which encompass the
default mode network, the sensory-motor network, the medial
visual network, frontoparietal regions and subcortical networks
(including part of the hippocampus, amygdala and putamen).

The brain connectivity alterations found in this study in
stage II might be related to the appearance of several cognitive

manifestations, which are typical of AD. For example, many
studies have determined the main cognitive impairment in
the preclinical phase of AD is episodic memory (Almkvist,
1996; Albert et al., 2001; Arnáiz and Almkvist, 2003; Bäckman
et al., 2004, 2005; Grober et al., 2008), in which hippocampus;
entorhinal cortex and amygdala are involved. Following this
line of results, research has found that alterations in the
temporal-medial lobe have an affect before AD is even clinically
diagnosed (Almkvist, 1996; Small et al., 1999, 2003; Estévez-
González et al., 2003; Bäckman et al., 2004, 2005). Moreover,
research has also shown that the initial neuronal lesions in
AD begin in the entorhinal region (included in module 18,
therefore, in agreement with our results) with the accumulation
of neurofibrillary tangles and neuritic plaques (Gómez-Isla et al.,
1996).

Although alterations of the episodic memory are considered
the most critical ones at the preclinical phase of AD (Small et al.,
2003; Storandt, 2008) and tasks that measure episodic memory
have been shown to be particularly effective at identifying people
at risk for developing AD (Tierney et al., 1996; Elias et al., 2000),
studies have shown that people with MCI who have altered
(in addition to episodic memory) other cognitive areas such as
verbal ability (Arnáiz and Almkvist, 2003; Bäckman et al., 2004,
2005; Apostolova et al., 2008; Joubert et al., 2010), executive
functions (Albert et al., 2001; Bäckman et al., 2004, 2005; Rapp
and Reischies, 2005; Blacker et al., 2007; Dickerson et al., 2007;
Grober et al., 2008; Storandt, 2008), perceptual speed (Bäckman
et al., 2005), visuo-spatial / visuoperceptive skills (Almkvist, 1996;
Arnáiz and Almkvist, 2003; Bäckman et al., 2004, 2005; Alegret
et al., 2009), attention (Bäckman et al., 2005; Rapp and Reischies,
2005), etc., are more likely to convert to AD than those with
only memory impairment (Bozoki et al., 2001). As indicated
by Bäckman et al. (2004, 2005), a number of different areas in
addition to the ones in the temporal-medial lobe are altered
prior to the diagnosis of AD (such as the anterior cingulate,
temporal sulcus, posterior cingulate, temporoparietal regions,
frontal regions and precuneus). This may explain why studies
attempting to find cognitive markers of the AD preclinical stage
find alterations in other cognitive functions apart from episodic
memory.

As the disease progresses, not only the disconnection pattern
of module 18 becomes more evident (increasing the distance
between AD and controls, Table 3), but such significant changes
extend to other brain regions. For example, areas of the
hippocampus affected by module 14 are well known to suffer
a very severe cognitive degeneration, a fact also confirmed
by functional connectivity studies (Zhou et al., 2008). The
results also indicate a significant connectivity change with
temporal medial areas, as revealed by module 16, as shown in
Tract Based Spatial Statistics at (Stricker et al., 2009; Acosta-
Cabronero et al., 2010; Salat et al., 2010). Similarly to the
results of this study, He et al. (2007) demonstrated, through
a combined structural and functional analysis, changes in
connectivity between the lingual and cuneus, by using only SC
data.

The results of the present study indicate a significant change
in the connectivity from the entire brain to the areas provided
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by module 4, mainly associated to visual function. A decrease
in virtual capacity in AD is well known, especially in those
areas involving movement blindness, depth perception, color
perception and contrast sensitivity (Whittaker et al., 2002).
Again, this damage expansion to other brain regions also
agrees with the extent and worsening of cognitive aspects
(e.g., memory, attention, language; Weintraub et al., 2012) and
neurobehavioral problems (e.g., personality changes, anxiety,
depression, agitation, hallucinations; Bassiony et al., 2000; Chung
and Cummings, 2000; Senanarong et al., 2003) of patients
with AD.

Previous studies have analyzed the connectivity differences
from tensor diffusion networks in AD and have found significant
alterations in the inferior longitudinal fasciculus for patients
at risk of AD (Smith et al., 2010), which could correspond
to LMCI. Similarly, a voxel-based analysis in Honea et al.
(2009) showed a significant decrease in FA for fibers connecting
the parahippocampal gyrus. In addition, patients diagnosed in
the early stages of AD (corresponding to early or late mild
cognitive impairment in this study) had a significant reduction
in white matter in the upper longitudinal fasciculus, which
also connects part of module 18 in the BHA with the frontal
lobe (Rose et al., 2000). The authors (Hanyu et al., 1998)
found significant changes in apparent diffusion coefficients
and diffusion anisotropy in patients with recent progressive
cognitive impairment, suggesting an early decrease in temporal
fiber density, a region included in the module 18, therefore in
concordance to our results.

A Different Comparison between
Pathological Groups
By defining disease progression across three stages, I (control
vs. EMCI), II (control vs. LMCI) and III (control vs. AD),
we have found progressive variations in connectivity patterns
that start in a module clearly associated to memory function
(including part of the hippocampus, amygdala, entorhinal
cortex, fusiform gyrus, inferior and middle temporal gyrus,
parahippocampal gyrus and temporal pole) and later on,
alterations are found widespread along the entire brain.
Therefore, it is important to emphasize that we have defined
disease progression by comparing each pathological group with
respect to the control group. A different possibility for assessing
connectivity variations is to perform comparisons between
pathological groups, i.e., EMCI vs. LMCI, LMCI vs. AD, EMCI
vs. AD. For the two comparisons EMCI vs. LMCI and LMCI
vs. AD, none of the module showed differences in connectivity
patterns (Supplementary Table S3). However, the EMCI vs.
AD comparison showed differences in modules 2, 3, 4, 14,
and 16.

The reason why our strategy of defining disease progression
with respect to the control group found differences in module
18 at the beginning of the progression is due to the fact that
the within-group distance contribution of the control group is
smaller than the corresponding one in any of the pathological
groups. In particular, we calculated the sum of distances squared
(defined in Eq. 1) between pairs of subjects of connectivity

between module 18 and the rest of the brain and obtained values
of 62 (control), 76 (EMCI), 83 (LMCI), and 82 (AD). In other
words, the tensor-diffusion connectivity values of module 18 are
more homogeneous between subjects within the control group
as compared to subjects within any other pathological group,
what makes our strategy to successfully detect differences in the
connectivity pattern of module 18 at the early stages of disease
progression.

Implications
In recent years a great deal of emphasis has been placed on
early AD detection (Albert et al., 2001); from looking for
pharmacological or non-pharmacological treatments to help
delay the age of onset disease and to slow down the clinical
disease progression. Similar to other studies, these results provide
(by looking to diffusion tensor brain networks) that the earliest
detection in connectivity patterns affecting globally the rest of
the brain starts in a network mainly encompassing memory
function.

On the other hand, identifying brain connectivity patterns
in patients who have not yet developed AD might shed some
light in determining how these connectivity patterns evolve
as time goes on. In addition, it will be possible to associate
connectivity patterns with clinical patient’s variations existing
at each disease stage. This might help better understand the
relationship between deterioration in brain functioning and
clinical patient’s characteristics.

Limitations
The results of the present study should be interpreted in light
of the following limitations. First, it is a cross-sectional study
with different groups of patients in each experimental group
and with a small sample size, so future studies should try
to extend to bigger cohorts and follow the same group of
people over time as the disease progresses. Second, the patients
included in the study have a probable AD, which means that the
definitive diagnosis of AD can only be performed post-mortem
(Fearing et al., 2007). The use of patients with familiar AD
could help to know in depth the evolution of the disease and
the changes in cerebral connectivity from many years back to
its onset. Third, there are a number of risk factors associated
with the decline of MCI which can affect brain connectivity
such as advanced diabetes, symptomatology depressive disorder,
hypertension, hypotension, obesity, history of traumatic brain
injury and APOE genotype, that have not been taken into
account in this study. Future studies should take into account the
possible influence of these variables on the processes of cerebral
connectivity.

Summary
In conclusion, the results obtained from this study applying a
multivariate method to diffusion tensor connectivity networks
across AD severity progression, are in line with the evolution
of AD from both the neuropathological and neuropsychological
points of view. That is, first alterations occur in the connectivity
of regions of the middle temporal lobe (hippocampus and
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entorhinal), which coincides with the first symptoms of
altered episodic memory in the preclinical stage and in
MCI. As the disease progresses, the brain damage and its
disconnection of these regions become more evident and expands
to other areas, which coincides with the expansion and/or
worsening of other cognitive functions and neurobehavioral
aspects seen in the individuals with AD. Future developments
will deal with the application of the same methodology
to longitudinal data, a mandatory step to confirm our
results.
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