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While year after year, conditions, quality, and duration of human lives have been improving
due to the progress in science, technology, education, and medicine, only eight diseases
have been increasing in prevalence and shortening human lives because of premature
deaths according to the retrospective official review on the state of US health, 1990-2010.
These diseases are kidney cancer, chronic kidney diseases, liver cancer, diabetes, drug
addiction, poisoning cases, consequences of falls, and Alzheimer’s disease (AD) as one
of the leading pathologies. There are familial AD of hereditary nature (~4% of cases)
and sporadic AD of unclear etiology (remaining ~96% of cases; i.e., non-familial AD).
Therefore, sporadic AD is no longer a purely medical problem, but rather a social
challenge when someone asks oneself: “What can | do in my own adulthood to
reduce the risk of sporadic AD at my old age to save the years of my lifespan from
the destruction caused by it?” Here, we combine two computational approaches for
regulatory SNPs: Web service SNP_TATA_Comparator for sequence analysis and a
PubMed-based keyword search for articles on the biochemical markers of diseases.
Our purpose was to try to find answers to the question: “What can be done in adulthood
to reduce the risk of sporadic AD in old age to prevent the lifespan reduction caused by
it?” As a result, we found 89 candidate SNP markers of familial and sporadic AD (e.g.,
rsb562962093 is associated with sporadic AD in the elderly as a complication of stroke
in adulthood, where natural marine diets can reduce risks of both diseases in case of
the minor allele of this SNP). In addition, rs768454929, and rs761695685 correlate with
sporadic AD as a comorbidity of short stature, where maximizing stature in childhood
and adolescence as an integral indicator of health can minimize (or even eliminate) the
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risk of sporadic AD in the elderly. After validation by clinical protocols, these candidate
SNP markers may become interesting to the general population [may help to choose a
lifestyle (in childhood, adolescence, and adulthood) that can reduce the risks of sporadic
AD, its comorbidities, and complications in the elderly].

Keywords: gene, promoter, TATA-binding protein, TBP-binding site, single nucleotide polymorphism, expression
change, Alzheimer’s disease, SNP marker

INTRODUCTION

While year after year, conditions, quality, and duration of human
lives have been improving due to the progress in science,
technology, education, and medicine, only eight diseases have
been increasing in prevalence and shortening human lives
because of premature deaths according to the retrospective
official review on the state of US health, 1990-2010 (Murray
et al,, 2013). These diseases are kidney cancer, chronic kidney
diseases, liver cancer, diabetes, drug addiction, poisoning cases,
consequences of falls, and Alzheimer’s disease (AD) as one of the
leading pathologies, which is also first among dementias in terms
of prevalence (Brookmeyer et al., 2007). According to Harvey
et al. (2003), there are two forms of AD, namely: familial AD of
hereditary nature (~4% of the total number of cases; probability
varies from 40 to 70% from family to family) and sporadic AD
of unclear etiology (remaining ~96% of cases; i.e., non-familial
AD). Therefore, sporadic AD is no longer a purely medical
problem and has already become a social challenge where many
people ask themselves: “What can I do in my own adulthood
to save the years of my lifespan from the destruction caused by
sporadic AD at my old age?” This desire of the general population
to actively maintain their own health is one of the main reasons
behind postgenomic predictive preventive personalized medicine
(Trovato, 2014). This new branch of medicine uses biomedical
SNP markers, which enable discrimination of individual genomes
of patients with a given pathology from the reference human
genome as the norm.

Identification of SNPs on the whole-genome scale is one of the
biggest modern scientific projects: “1,000 Genomes” (Colonna
et al., 2014). The current results of this project can be found
in the dbSNP database (Sherry et al., 2001). This database is
an inherent part of the reference human genome and contains
the ancestral alleles of all SNPs, whereas the human variome
represents their minor alleles. These data are publicly available
due to the Web service UCSC Genome Browser (Haeussler et al.,
2015). Clinical comparison between a cohort of patients with
a given disease and healthy volunteers (as a control) enables
identification of SNPs whose alleles significantly discriminate
them from one another and became SNP markers of this disease;
this result, however, is very costly and labor-intensive (Yoo et al.,
2015). Computer-based analysis of 8.58 billion possible human
whole-genome SNPs, predictions, experimental data, and the
related clinical observations that are accumulated in database
dbWGFP (Wu et al., 2016) may accelerate and direct the clinical
search for biomedical SNP markers (Ponomarenko et al., 2001).
Many public Web services (for review, see Deplancke et al,
2016) facilitate this computer-based search for candidate SNP

markers by a variety of methods and approaches, which yield
better results for some types of SNP and diseases and worse
results for others; thus, a combination of different services should
improve the overall quality of results. Currently, SNPs located
in protein-coding gene regions are studied most thoroughly
because of the invariant types of disruption in both structure and
function of the altered protein (Amberger et al., 2015), and these
aberrations are often fatal and uncorrectable by medication. In
contrast, the disruptions caused by another sort of SNPs, those
located in regulatory gene regions, are correctable by medication
because only amounts of the protein product of these genes vary,
whereas both structure and function of these proteins remain
normal. These regulatory SNPs are studied the least because their
manifestations vary from cell to cell, from tissue to tissue, from
individual to individual, from subpopulation to subpopulation
(Amberger et al., 2015). The majority of the known regulatory
SNP markers alter the binding sites for TATA-binding protein
(TBP) because of their fixed locations within the narrow region
[—70; —20] upstream of the transcription start site of a protein-
coding transcript (Ponomarenko et al., 2013). This sort of the
SNP markers has been easier to detect due to the positive
correlation between the expression level of the human gene
containing them and the affinity of TBP for the promoter of this
gene (Mogno et al.,, 2010). This especially high importance of
the TBP binding to the promoter can be attributed to the fact
that this is the very first obligatory molecular event in the course
of the transcription initiation in eukaryotes (Muller et al., 2001;
Martianov et al., 2002; Ponomarenko et al., 2013).

In our previous works, we created the public Web
service SNP_TATA_Comparator! for estimation of statistical
significance of the SNP-caused alterations of a given TBP-binding
site in the binary terms of either under- or overexpression of
the gene being studied (Ponomarenko et al, 2015). Next,
we verified our predictions on this subject by our own
experiments in vitro under either real-time (Arkova et al,
2014), equilibrium (Savinkova et al., 2013), and non-equilibrium
(Drachkova et al., 2014) conditions as well as using independent
data from over 60 experiments by others (for review, see
Ponomarenko et al., 2010). Accordingly, we have already applied
our Web service (Ponomarenko et al., 2015) to prediction of
candidate SNP markers of the following medical conditions:
complications of hereditary diseases in obesity (Arkova et al.,
2015), autoimmune comorbidities of these hereditary diseases
(Ponomarenko M. et al, 2016), circadian rhythm disorders
(Ponomarenko V. et al., 2016), aggressiveness as a complication
of human diseases (Chadaeva etal., 2016), and resistance to

Uhttp://beehive.bionet.nsc.ru/cgi-bin/mgs/tatascan/start.pl
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antitumor chemotherapy (Turnaev et al., 2016) (for review, see
Ponomarenko et al., 2017).

In this work, we extended the use of our Web service to
unannotated SNPs near known biomedical SNP markers in
TBP-binding sites of promoters in human genes, associated
with hereditary diseases, which were taken from our previous
review (Ponomarenko et al., 2015). Our purpose was to try to
find answers to the question: “What can be done in adulthood
to reduce the risk of sporadic AD in old age to prevent
the lifespan reduction caused by it?” within the framework
of postgenomic predictive preventive personalized medicine
(Trovato, 2014). We also analyzed unannotated SNPs located
within the core promoters of a human gene associated with
familial AD. Among the numerous candidates, we selected 89
candidate SNP markers of familial and sporadic AD. Validation
of these candidate markers by clinical protocols can make
these SNPs interesting to the general population [e.g., may
help to choose a lifestyle (in childhood, adolescence, and
adulthood) that can reduce the risks of sporadic AD, its
comorbidities, and complications in the elderly] within the
framework of postgenomic predictive preventive personalized
medicine (Trovato, 2014).

MATERIALS AND METHODS

DNA Sequences

We analyzed 626 SNPs retrieved from the dbSNP database, v.147
(Sherry et al., 2001), within [—-70; —20] promoter regions of
either 34 human genes containing SNP markers of hereditary
diseases whose effects on TBP’s binding to these promoters are
clinically identified as described in our review (Ponomarenko
et al,, 2015), or five human genes—MAPT, APE, PSEN1, PSEN2,
and APOE—associated with familial AD, which were taken from
another article (Iwata et al., 2014). Figure 1A illustrates how
we selected SNPs using the public Web service “UCSC Genome
Browser” (Haeussler et al., 2015).

Synthetic Double-Helical
Deoxyoligonucleotides (ODNs)

The ODNSs identical to ancestral and minor alleles of the selected
SNPs—rs563763767, 1s33980857, 1rs34598529, rs33931746,
rs33981098, rs35518301, rsl1143627, rs72661131, rs7277748,
and rs1800202—were synthesized and purified (BIOSYN,
Novosibirsk, Russia).

Preparation and Purification of
Recombinant Full-Length Human TBP

Recombinant full-length human TBP (native amino acid
sequence) was expressed in Escherichia coli BL21 (DE3) cells
transformed with the pAR3038-TBP plasmid (a generous gift
from Prof. B. Pugh, Pennsylvania State University) as described
by Pugh (1995) with two modifications: the IPTG concentration
was 1.0 instead of 0.1 mM, and the induction time was
3 instead of 1.5h (for more details, see Savinkova et al,
2013).

Electrophoretic Mobility Shift Assay
(EMSA) under Equilibrium Conditions In

vitro

The above ODNs were prepared by 2P labeling of both
strands by means of T4 polynucleotide kinase (SibEnzyme,
Novosibirsk) with subsequent annealing by heating to 95°C (at
equimolar concentrations) and slow cooling (no less than 3 h)
to room temperature. Equilibrium dissociation constants (Kp)
for the TBP-ODN complex were measured using a conventional
protocol (Savinkova et al, 2013). It includes titration of a
fixed amount of the above-mentioned TBP, 0.3 nM, with the
increasing concentrations of the ODN to reach equilibrium,
whose time was determined independently for each ODN in
advance. The binding experiments were conducted at 25°C in a
buffer consisting of 20 mM HEPES-KOH pH 7.6, 5 mM MgCl,,
70 mM KCI, 1 mM EDTA, 100 pg/ml BSA, 0.0.1% of NP-40, and
5% of glycerol. The TBP-ODN complexes were separated from
the unbound ODN using an EMSA, and their concentrations
were measured. These experimental data were input into the
conventional software OriginPro 8, whose output was a Kp value
expressed in nanomoles per liter, nM.

Stopped-Flow Fluorescence

Measurements /n vitro in Real-Time Mode
The above ODNs identical to both ancestral 5'-cgcggegcetcTA
TATAAgtgggcagt-3’ and minor 5'-cgcggegctcTATAgA Agtgggca
gt-3' alleles of the selected SNP rs1800202 were labeled at 5’
termini with fluorescent dyes TAMRA and FAM (BIOSYN,
Novosibirsk, Russia). Combining a fixed concentration (0.1
pM) of ODNs with various concentrations (0.1, 0.2, 0.4, 0.6,
0.8, or 1.0 wM) of the above TBP, we analyzed six time-
series of the fluorescence expressed in conventional units using
high-resolution spectrometer SX.20 (Applied Photophysics, UK).
These experimental data were input into the Dynafit software
(Biokin, USA) whose output was the above Kp values (for more
details, see Arkova et al., 2016).

Cell Culture, Transfection, and Reporter

Assays Ex vivo

Cell line hTERT-BJ1 (human fibroblasts) was cultivated in a
complete medium consisting of Dulbecco’s modified Eagle’s
medium/Nutrient mixture F-12 Ham, supplemented with 10%
(v/v) of fetal bovine serum (Sigma), penicillin (100 U/mL),
and streptomycin (100 pg/mL; BioloT). The culture was
maintained at 37°C in a humidified atmosphere containing
5% of CO, until the desired level of confluence. The
proximal core promoter 177 bp long containing either the
ancestral allele or minor allele of the selected candidate SNP
marker rs201381696 (5'-atcgggccgcTATAAGAggggcggge-3' or
5'-atcgggccgc TgTAAGAggggceggge-3', respectively) was cloned
into the pGL 4.10 vector (Promega, USA) and cotransfected
with pRL-TK using Screen Fect A (InCella) as described
by Wolfe et al. (2002). Next, the cells were cultured in 6-
well plates for 24 h. Luciferase activity was determined using
the Dual-Luciferase Reporter Assay Kit (Promega). All the
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FIGURE 1 | Known and candidate SNP markers of Alzheimer’s disease (AD) near TBP-binding sites of the human GSTM3 gene promoter. (A) Unannotated SNPs
(analyzed in this study) in the region [—70; —20] (where all proven TBP-binding sites (boxed) are located; double-headed arrow, <») of the human GSTM3 gene

promoter taken from dbSNP (Sherry et al., 2001) using the UCSC Genome Browser (Haeussler et al.,
markers of sporadic AD are predicted by a significant change in the affinity of TBP for the human GSTM3 gene promoter. (B,C) The results from our Web service
(Ponomarenko et al., 2015) for the two SNP markers of sporadic AD: known rs1332018 (Hong et al.,
the known TBP-binding site (boxed) of the human GSTM3 gene promoter. Solid, dotted, and dashed arrows indicate queries for the gene list, list of transcripts of a
certain gene, and DNA sequence of the promoter corresponding to the specified transcript by means of the BioPerl library (Stajich et al.
genome (Colonna et al., 2014), respectively. Dash-and-dot arrows: estimates of significance of the alteration of gene product abundance in patients with the minor
allele (mut) relative to the norm (ancestral allele, wt) expressed as a Z-score using package R (Waardenberg et al., 2015). Circles indicate the ancestral (wt

s ———————

SNP iATA Comparator

Enter a GeneName [e.g BRCA2 or BRCA%] or
Ensembl Gene ID [e.g. ENSG00000139618]:

SNP ; | A;TA./ Comparator
Enter a GeneName [e.g BRCA2 or BRCA%] or
Ensembl Gene ID [e.g. ENSG00000139618]:

2015).

(mut) alleles of the SNP marker labeled by its doSNP ID (Sherry et al., 2001).

2009; Tan et al., 2013) and candidate marker rs750789679 near

Dash-and-double-dot arrows: known and candidate SNP

, 2002) of the reference human

) and minor

Frontiers in Aging Neuroscience | www.frontiersin.org

July 2017 | Volume 9 | Article 231


http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive

Ponomarenko et al.

Candidate SNP Markers of Alzheimer’s Disease

experiments were conducted in 11 independent replicates at
80-85% confluence.

DNA Sequence Analysis

Figures 1B,C illustrates how we retrieved the promoter
sequences containing these SNPs from the reference human
genome (Colonna et al., 2014) using the BioPerl library (Stajich
etal., 2002) via our publicly available Web service (Ponomarenko
et al,, 2015). Here, the “Base sequence” textbox contains the
ancestral allele of a given promoter under study. Similarly,
the “Editable sequence” textbox contains the minor allele of
the analyzed SNP of this promoter handmade according to its
description taken from the dbSNP database, v.147 (Sherry et al.,
2001). These two DNA sequences constitute the input of the
DNA sequence analysis algorithm whose detailed description
and comprehensive formulae are in Supplementary File 1
“Supplementary Method.” Clicking on the “Calculate” button
(Figures 1B,C) starts this algorithm’s execution, whose output
data will appear within the “Result” textbox.

This algorithm takes into account three steps of the
TBP-promoter binding according to both prediction in silico
(Ponomarenko et al., 2008) and detection in vitro (Delgadillo
et al., 2009). These steps are (i) TBP slides along DNA (Coleman
and Pugh, 1995; Karas et al., 1996; Ponomarenko et al., 1999)
<> (ii) TBP stops at a TBP-binding site (Berg and von Hippel,
1987; Bucher, 1990) <> (iii) the TBP-promoter complex is fixed
by DNA helix’s bending to the 90° angle (Ponomarenko et al.,
1997; Flatters and Lavery, 1998; Powell et al., 2002).

On this basis, we estimated statistically whether the alteration
of the TBP binding affinity for the minor alleles of these
promoters is insignificant (Figure 1B) or significant (Figure 1C)
in comparison with the ancestral ones. To this end, we applied
only one Fisher’s Z-score (i.e., the ratio of the difference to the
root of the sum of the squares of the standard deviations) using
the standard statistical package R (Waardenberg et al., 2015). Our
heuristic interpretation of our predictions of either significant
over- or underexpression of the human genes is shown in italics
in the second rightmost column of the tables in this paper with
the word “hypothetically” in front of these interpretations.

Keyword Search in the PubMed Database

After that, we discarded SNPs whose effects were insignificant;
otherwise, we handmade a two-step keyword search in the
PubMed database (NCBI Resource Coordinators, 2015). Figure
S1 (hereinafter: see Supplementary File 2) depicts how we
found sporadic AD as a comorbidity of the hereditary diseases
associated clinically with the human genes containing the
analyzed SNP near the TBP-binding sites of promoters of these

genes.
In Figure S1, two boxes (dashed lines) depict the primary
keyword search for these comorbidities whose known

biochemical markers match the predicted significant alterations
of the gene expression caused by the SNP under study.
Additionally, we did a secondary manual keyword search for co-
occurrence of sporadic AD and the hereditary disease clinically
associated with the gene containing the SNP being considered
(a box outlined with a dotted line). According to the positive or

negative outcome of this additional keyword search, we either
predicted the SNP being tested as a candidate SNP marker of
sporadic AD as a comorbidity or discarded them. These are
clinical data found during our manual keyword search, with the
corresponding references in the rightmost column of the tables
in this paper that are also shown in italics and marked with the
phrase “(this work)” in front of these references found.

Statistical Comparison between the
Human Genes Associated with the Familial
AD and the Entire Human Genome as a

Whole

Finally, we analyzed five human genes—MAPT, APP, PSENI,
PSEN2, and APOE—Dby the same method because these genes
have been clinically most reliably implicated in familial AD
(Iwata et al., 2014). Instead of the non-statistical secondary
keyword search described above, we statistically compared these
AD-associated genes and the entire human genome as a whole
in terms of the ratio of SNP-caused over- or underexpression of
the human genes in this comparison using the standard package
Statistica (Statsoft™, Tulsa, USA). For this purpose, we used the
conventional approach to estimation of natural selection pressure
on these genes using analogies with the evolution speed rated by
the ratio of frequencies of transitions and transversions (Kimura,
1980) and an adaptive evolution mode detected by the ratio of
frequencies of synonymous and non-synonymous substitutions
within the protein-coding DNA regions (Li et al., 1985).

RESULTS AND DISCUSSION

Candidate SNP Markers of Sporadic AD
near TBP-Binding Sites of the Human Gene
Promoter Associated with Hereditary

Susceptibility to Cancers

We employed our experimentally completely verified publicly
available Web service (Ponomarenko et al., 2015) to analyze all
SNPs in [—70; —20] proximal promoter regions of the human
genes containing the known SNP markers (of hereditary diseases)
that alter TBP’s binding to promoters of these genes. Let us review
in detail only one gene whose SNP marker is clinically associated
with sporadic AD and, on this basis, we will do the same briefly
for all the other uncovered genes.

The human GSTM3 gene codes glutathione S-transferase 3
and contains a clinically proven SNP marker (rs1332018) of
sporadic AD (Hong et al., 2009) and renal cell carcinomas (Tan
et al., 2013). According to the empirical data from a western
blot (Wb) (Tan et al., 2013), this SNP reduces the GSTM3
gene expression because it damages the binding site for an
unknown tissue-specific transcription factor (rather than the
binding site for the ubiquitous TBP) (Table 1). As one can see
in Figure 1B, line “Decision” of the text box “Results” contains
the label “insignificant,” which means that the prediction of
our Web service (Ponomarenko et al., 2015) is consistent with
the independent empirical data mentioned above (Tan et al,
2013). Near this known biomedical SNP marker, we found
two unannotated SNPs (rs200209906 and rs750789679), which

Frontiers in Aging Neuroscience | www.frontiersin.org

July 2017 | Volume 9 | Article 231


http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive

Candidate SNP Markers of Alzheimer’s Disease

Ponomarenko et al.

10/q UleISeMm :qp) ‘sejeqelp | 8dA] ‘g ojoe) uonauosuel) Y ‘Aesse sariodel eseialon] ‘ON7
‘Lojid 1e10eqooleH ‘dH ‘suiqojbowsy ‘qH ‘Aesse Yiys Ajiqow oneioydoosie ‘YSNT ‘snijjlew sejeqeip ‘NQ [SIS0I8j0soleyie ‘SY [SIS0I8)oS [eiejel OIydosj0Awe ‘ST [esessip S.Jewisyzly ‘qy plojAwe-¢g ‘dy (eueb |NIFSH uewny ayj)
66-066603106660101316000660€9~6 uoisiep dg-Gz 8y} ‘dq Gz (ueb 4130 uewny ayj) ¥S—oejejeorieoebbobbel~6 uonejep dg-gL 8yl ‘dq 81 ‘(3) .1siom, 8y 0} (v) .1Seq, eyl wo.y Jsp.o [eaneqeyde ur Buifies siexiew 4NS 81epipued Jo
Syues onsunay “d {1 aanbi4 ur umoys S| enfea d eisym} eoueoyiubls ‘d—p= o (=) wuou (1) yoyep ‘(1) sseoxe :ebueyo e ‘v (g10Z ‘e 10 BAOYUINES) WYNO-dG.L JO 1UBISUOD UONEID0SSID ‘Y ‘Sejgjfe (1) Joul pue (IM) [e/iSeoue “ieyeulelsH

sz 6
-0k 6 1 Gl  oebbbbieee 2 eob100b6010 12622 17G/S)
28 -
o-0L /I 1 Gl  Beboebbbn) €  eeeoeoh)o 980519/ S/
uaipliyo Ui eluusxne|
10y AdeIdy) paseq-o1exaijoyjoul JO SSBUBNIO8YO 61 6
J8388.16 pUB Y 4O YSH J8ybiy (Aeonay0dAy) o0l s 1 Gl  Beboebbbn) e leeeoeohio 80066.99/s/
910C "B JwisxNa| JO JusWBal] 8exaljoyiswl ol 1
ASBUIN| {| LOZ “'[e 10 Bxueg (Hom Siyj) 0] 8oUB}SISB. PUB Y/ JO YSI JoMO] (AlledneyiodAy) 7-0l e GL ©Bbb6beboebtb B  Bleeeoeoh) 162£6/,0G/84
@y 40 Xsu 4emof (A|[eonsyiodAy) ‘osfe ‘pue 6 e
6002 ‘e 10 BpeUS-IvY BIWSYN3| JO JUSLLIESI] S1BXSI10UIdW O} 9OUB)SISeY 9-OF 6 Gl ©bbBeboebon 6 1eeeoeohd 89101sI (090921) 44Ha
ay ur ebewep Jsliieq urig-poo|q Jojfews / 1
pue 8oueIBsj0 onbed-¢y 1emoy (Aeaney1odAy) 9-OF g 1 G ebobeoeeee e 1eoobeeel) 08/8G861GS/
Qay ul ebewep
Jalieq ueig-poojq pue soukses|o enbejd-gdy
Je188.6 (AjIPonsyiodAy) ey Apoq Jeyeasb ‘uoissaidap
7102 Jofew Jualinoal ‘aseas|p SoAelL) Jooued
“Ie 10 BuBA ‘7102 ‘e 10 eioeos3-eiony Bun| |j90 [lews-uou ‘uoiosjul-dH Ui siiseb o1uoIyo z ]
(r1om siyp) ‘G0z “[e 1 O¥ualewouod pue Y489|n oused Jeoued dUSED L1eoued oA 9-OF GI ¢ S Beoeeeeeie E) obeeebnn /29€y ) 1S (0zz2v1) gLl
6'¢c 1
0L & 9t 1060001000 o DBeeejeibbo 991658£9/8!
SBUIOUIOIBO oe 10
/190 [euB. pue Y 4O SYSU Jomo] (A][edieyiodAy) S0'0 s 9’ obeeereidhb 6 0161000 cevieesy /s
Sy o
7-0l e 1 9'¢  00000}0000 6  eeer)bb60 6.968.0G/81
BwoUI0IBO (574 el
(riom siy)) [190 [eUB pUB @Y JO SYSU JoyblY (AjeoneyiodAy) z 71 9'c  ©0b00010 9 oobeeejeib 906602002s!
(ous
Buipuig-dg 1 1ou ‘pebewep sys Buipuig-41 :qm) € 3
€10z e 10 Uel :600z “[e 1o BuoH SBWIOUIDJED (|90 [eusl pue QY Yim pejeloosse 9, ¢ = v Beeeyeif66 3 1618110000 gLozeelts!  (06€8€1) ENLSD
Inw
n Z Vv m
(s4axyp1W NS 21EPIPUERD) BseasIp [ednaylodAy nw (Joy) @os
(110m s1yj) 10 (3oH) 10 (sJ93ieW NS UMOUY|) SaseasIp umouy| Wu ‘ay quey g m juelp 5 1o Lyl '[9A ANSAP  (al WINO) ausn

'SJe0UeD 0} AYIgNdeosns Yum paleioosse seusb Uewuny ey} Jo Jajowoid ey} Ul sels Buipuig-dg ] Jesu gy OIpelods JO siediew NS e1epipued pue umous] | | 31av.L

July 2017 | Volume 9 | Article 231

Frontiers in Aging Neuroscience | www.frontiersin.org


http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive

Ponomarenko et al.

Candidate SNP Markers of Alzheimer’s Disease

can also reduce the GSTM3 gene expression by damaging the
TBP-binding site (hereinafter: according to our predictions, see
Figure 1 and Table 1). That is why, we propose them as two
candidate SNP markers of sporadic AD (Hong et al,, 2009)
and renal cell carcinomas too (Table 1). In addition, we found
two unannotated SNPs (rs748231432 and rs763859166), which,
on the contrary, can increase the TBP-promoter affinity as
two candidate SNP markers reducing the risk of sporadic AD
(Table 1). Table S1 (hereinafter: see Supplementary File 3) shows
the results of our non-statistical cross-validation of the candidate
SNP markers of sporadic AD and renal cell carcinomas using
the keyword search on the Web regarding co-occurrence of
these diseases. Deficiency in Wilms’ tumor suppressor is clinically
associated with both (Lovell et al., 2003). In addition, we found
a review on the state of US health between 1990 and 2010
(Murray et al., 2013), which lists both sporadic AD and renal
cell carcinomas among the eight diseases whose age-standardized
number of years of life lost to premature mortality increases
year after year. These clinical cases and retrospective review
show evidence supporting the known SNP markers of renal cell
carcinomas as candidate SNP markers for sporadic AD (Table 1).

The human IL1B gene (interleukin 1) promoter has an SNP
marker (rs1143627) causing overexpression, which is clinically
associated with virus-induced cancers in the liver and in the
stomach as well as with non-small cell lung cancer, with Graves’
disease, major recurrent depression, obesity, gastric ulcer, and
chronic gastritis (for review, see Ponomarenko et al, 2015)
(Table 1). According to our primary keyword search (hereinafter:
Figure S1: Supplementary File 2), Rivera-Escalera et al. (2014)
detected the interleukin-1B-mediated amyloid plaque clearance
in both familial and sporadic AD, and Wang et al. (2014)
observed interleukin-1B-induced blood-brain barrier disruption
complicating both familial and sporadic AD (Table 1). As for
the secondary keyword search results (hereinafter: Figure S1:
Supplementary File 2), we found three works on negative
correlations between sporadic AD and both non-small cell lung
cancer (Grinberg-Rashi et al., 2009; Akushevich et al., 2013) and
Graves disease (Yoshimasu et al., 1991), whereas seven studies
(Ades and Lejoyeux, 1994; Reynolds et al., 1995; Bopp-Kistler
et al., 1999; Wang et al,, 2003; Kountouras et al., 2007; Ge and
Sun, 2011; Kim and Choi, 2015) are in favor of co-occurrence
between this disease and the remaining pathologies associated
with rs1143627 (Table S1). Thus, the known clinical SNP marker
rs1143627 may also be a candidate SNP marker of both the
interleukin-1B-mediated amyloid plaque clearance and induced
blood-brain barrier damage in both familial and sporadic AD
as a complication of major recurrent depression, greater body
fat, gastritis, gastric ulcer, and gastric, and liver cancers rather
than lung cancer or Graves’ disease (Table S1). Finally, we found
an annotated SNP (rs549858786) near a known clinical SNP
marker, rs1143627, and predicted by means of our Web service
(Ponomarenko et al., 2015) that this SNP can cause a deficiency
of interleukin-1p (Table 1). For the reasons above, we propose
rs549858786 as a candidate SNP marker of both low clearance
of amyloid plaques and smaller blood-brain barrier damages
in both familial and sporadic AD with respect to the norm
(Table 1).

The human DHFR gene (dihydrofolate reductase) contains
a known clinical SNP marker (rs10168; within a promoter),
which can cause overexpression of this gene associated with
resistance to methotrexate treatment in children with acute
lymphoblastic leukemia (Al-Shakfa et al., 2009) as one can see in
Table 1. Our primary keyword search produced a retrospective
clinical review (Banka et al, 2011), which is associating both
DHFR deficiency and poor cognitive function and dementia
in the elderly (e.g., sporadic AD) with one another. In
addition, phosphatidylinositol-binding clathrin assembly protein
(PICALM) contributes to both leukemia and sporadic AD
pathogenesis (Xiao et al., 2012), whereas methotrexate can cause
long-term changes in astrocytes (Gregorios et al., 1989) and
increase amyloid toxicity (Kruman et al., 2002) in sporadic AD
according to our secondary keyword search results. Accordingly,
we predicted that the known clinical SNP marker rs10168 can
also be a candidate SNP marker of a lower risk of sporadic
AD. Finally, we found four unannotated SNPs, rs750793297,
rs766799008, and rs764508464, and rs754122321, which, on the
contrary, can cause DHFR deficiency and, thus, may serve as
candidate SNP markers of a high risk of sporadic AD (Banka
etal.,, 2011) (Table 1).

Table 1 and Table S1 together indicate that the regulatory
SNP markers of both Graves disease and lung cancer may
be candidate SNP markers of a lower risk of sporadic AD
because the etiologies are equally unrelated to that of sporadic
AD. In addition, the high risk is predictable by regulatory
SNP markers of at least renal, blood, liver, and gastric cancers
because of common players in their pathogenesis, such as:
Wilms™ tumor suppressor, phosphatidylinositol-binding clathrin
assembly protein, and antibodies against proteins of Helicobacter
pylori and hepatitis C virus, which are mimics B-amyloid
peptides, respectively. Thus, if someone carrying a minor allele of
SNPs listed in Tables 1 and S1 has a reduced risk of renal, blood,
liver, and gastric cancers (rather than lung cancer) in his/her
childhood, adolescence and adulthood, then he/she additionally
is at a lower risk of sporadic AD in his/her old age.

Candidate SNP Markers of Sporadic AD
Near TBP-Binding Sites of the Human
Gene Promoter Associated with Hereditary

Immune Diseases

The human CETP gene codes for cholesterol ester transfer
protein; in its promoter, there is a known SNP marker of a
lower risk of atherosclerosis due to hyperalphalipoproteinemia
following CETP deficiency caused by 18-bp deletion G_7,GGC
GGACATACATATAC_s54 upstream of the transcription start site
(Plengpanich et al., 2011). According to our keyword search
results (Table 2), this gene contains another known SNP marker
(rs1800775) of CETP deficiency increasing three-fold the risk
of sporadic AD (Rodriguez et al, 2006). Within the same
core-promoter, we found three unannotated SNPs (rs17231520,
rs757176551, and rs569033466), which can, on the contrary,
cause overexpression of CETP (Table 2) and thereby reduce the
risk of sporadic AD. As for our secondary keyword search, it
resulted in the article (Birkenhager and Staessen, 2004) showing
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that AS and sporadic AD coexist, correlate, enhance each other
clinically and that both AS and sporadic AD can be caused by a
fast response to acute infection as a replacement of deadly stress
with long-term near-norm complications progressing slowly
(Lathe et al., 2014), e.g., f-amyloid plaques (Table S1). Within
the limitations of the pathogenesis of both AS and sporadic AD
when they can be caused by acute infection as it was suggested by
the article (Lathe et al., 2014), we predicted that all four above-
mentioned SNPs of the human CETP gene core promoter are the
candidate SNP markers of sporadic AD (Table 2).

The human MMPI2 gene codes for matrix metallopeptidase
12 and carries a known SNP marker (rs2276109) that reduces this
gene’s expression and, thus, lowers the risks of psoriasis, systemic
sclerosis, and chronic asthma in children and in smokers (for
review, see Ponomarenko et al., 2015) as one can see in Table 2.
In this table, we show an unannotated SNP (rs572527200) located
near this known biomedical SNP marker, which can also reduce
this gene’s expression and, hence, be a candidate SNP marker for
the same diseases. Our primary keyword search yielded empirical
data (Walker et al,, 2006; Ito et al., 2007) showing that in
contrast, the MMP12 excess provokes an inflammatory response
whose consequence can be neuronal cell loss in both familial
and sporadic AD. In addition (Table S1), our secondary keyword
search showed several lines of evidence cross-validating that
psoriasis, systemic sclerosis, and asthma coexist with sporadic
AD in terms of the common drugs against them (e.g., Hori et al.,
2015) as well as their common biomarkers (e.g., Wei et al., 2010;
Yokoyama et al., 2016). Within limitations of the assumption that
the effectiveness of common drugs and biomarkers in different
diseases may be evidence of some relation between them, we
propose rs2276109 and rs572527200 as candidate SNP markers
of a reduced risk of sporadic AD (Table 2).

The human MBL2 gene (soluble mannose-binding lectin 2)
contains a known SNP marker (rs72661131) of variable
immunodeficiency, preeclampsia, and stroke as one can see
in our review (Ponomarenko et al., 2015). This SNP reduces
expression of this gene according to our Web service’s prediction
(Ponomarenko etal., 2015). Our primary keyword search pointed
to the clinical data (Sjolander et al., 2013) on the MBL2 deficiency
as a significant biochemical marker of sporadic AD. Near this
SNP rs72661131, we found two unannotated SNPs (rs562962093
and rs567653539) that can respectively reduce and elevate the
MBL?2 expression as well as increase and decrease risks of
this disease (Table 2). Our secondary keyword search revealed
that there are drugs against both variable immunodeficiency
and sporadic AD (Puli et al., 2012); the search also showed
that human genome region 10q22 is associated with both
preeclampsia and sporadic AD (van Dijk et al., 2010), whereas a
natural marine product diet reduces the risks of both stroke and
sporadic AD (Choi and Choi, 2015), as one can see in Table S1.
This supporting information allows us to suggest three candidate
SNP markers (rs72661131, rs562962093, and rs567653539) of
sporadic AD (Table 2).

The human SODI gene (soluble superoxide dismutase 1): its
promoter contains a known SNP marker (rs7277748) of familial
amyotrophic lateral sclerosis (ALS) because this SNP causes
SODI excess (Niemann et al., 2007). Using a primary keyword

search, we learned that this SODI excess is a biochemical marker
of both B-amyloid oligomerization and memory loss in sporadic
AD (Murakami et al., 2011) (Table 2). As for the co-occurrence of
sporadic AD and ALS, our secondary keyword search identified
two works (Hamilton and Bowser, 2004; Rusina et al., 2007) and,
additionally, one more article (Di Matteo and Esposito, 2003)
showing that a diet enriched in antioxidants reduces the risks of
both diseases (Table S1). For all these reasons, the known SNP
marker (rs7277748) of ALS can additionally be a candidate SNP
marker of sporadic AD (Table 2).

Bringing the above findings together, we can suppose that
some SNP markers of the immune-system-related diseases in
adulthood can additionally be candidate SNP markers of sporadic
AD in the elderly (Table 2 and Table S1). Consequently, when
someone carrying minor alleles of SNPs shown in Table 2 and
Table S1 is at a lower risk of the corresponding autoimmune
diseases in his/her childhood, adolescence and adulthood, then
he/she furthermore is at a lower risk of sporadic AD in his/her
old age.

Candidate SNP Markers of Sporadic AD
near TBP-Binding Sites of the Human Gene
Promoter Associated with Hereditary

Blood Diseases
The human HBB and HBD genes (B- and 8-hemoglobin,
respectively) are the most thoroughly characterized in terms
of clinical regulatory SNP markers, seven of which (Table 3:
rs34500389, rs33981098, rs33980857, rs34598529, rs33931746,
rs397509430, and rs35518301) reduce the affinity of the TBP
for promoters of these genes and cause both thalassemia and
malaria resistance (Martiney et al., 1996). Near these SNPs, we
found three unannotated SNPs (rs63750953, rs281864525, and
rs34166473) that can also cause hemoglobin deficiency with
the same manifestation (Table 3). Using a primary keyword
search, we found that both the homozygote-related deficiency
and excess of hemoglobin are associated with sporadic AD and
cognitive decline (Ferrer et al., 2011; Shah et al., 2011) because
hypoxia is a biomarker of these diseases (Shang et al., 2015) and
hemoglobin and B-amyloid peptides aggregate with one another
in plaques (Chuang et al, 2012). In contrast, a retrospective
review (Fallahzadeh et al., 2009) indicates that the corresponding
heterozygotes protect humans against sporadic AD. In addition,
our secondary keyword search showed (Table S1) that there are
both common diets (Aruoma et al., 2010) and drugs (Dwyer
et al., 2009) against both thalassemia and sporadic AD and
that manzamine-type alkaloids are drugs against both malaria
and sporadic AD (Rao et al, 2006). Finally, the race-biased
susceptibility to sporadic AD is associated with the APOE gene
(apolipoprotein E) whose SNPs can prevent malaria (Fujioka
et al,, 2013). Accordingly, we predict homozygotes of the above-
mentioned SNPs (which can cause hemoglobin deficiency) to be
candidate SNP markers of a higher risk of sporadic AD, whereas
the corresponding heterozygotes are candidate SNP markers of
the lower risk of this disease.

The human TPI1 gene encodes triosephosphate isomerase
1 and carries a known SNP marker (rs1800202) of hemolytic
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anemia and neuromuscular diseases manifesting themselves as
a deficiency of this enzyme (for review, see Ponomarenko
et al.,, 2015) (Table 3). Near this known biomedical SNP marker
(rs1800202), we found an unannotated SNP (rs781835924),
which can also reduce this gene’s expression and thus manifest
itself in the same manner. According to our primary keyword
search results (Table 3), lower neuron viability and more severe
learning and memory deterioration are the other manifestations
of the TPI1 deficiency, which elevates the risk of sporadic AD
(Tajes et al., 2014). In addition (Table S1), our secondary keyword
search produced a retrospective review of 120 clinical cases
suggesting that hemolytic anemia elevates the risk of death in
both familial and sporadic AD, which cause not only intellectual
impairment but also deteriorated physical conditions, motor
dysfunction, and malnutrition (Ueki et al., 1995). We also found
the article (Calne and Eisen, 1990) on the common etiological
mechanism underlying both sporadic AD and neuromuscular
diseases. Therefore, we predict that two candidate SNP markers
(rs1800202 and rs781835924) increase the risk of sporadic AD in
the elderly.

The human APOAI gene (apolipoprotein A-I) contains the
—35A—C substitution reducing the expression of this gene,
which is a known SNP marker of fatty liver in childhood
(Matsunaga et al., 1999). Our primary keyword search revealed
another known SNP marker (rs670) increasing the APOAI
expression that elevates the risk of sporadic AD and cognitive
decline (Vollbach et al, 2005). Next, our cross-validating
secondary keyword search yielded an article (Tong et al., 2009)
on nitrosamine as a common biochemical marker of both non-
alcoholic fatty liver and sporadic AD, whereas the human APOA1
gene is a homolog of the human APOE gene (Calandra and
Tarugi, 1989), which is a key player in sporadic AD pathogenesis.
Hence, we predicted this known SNP marker of fatty liver as a
candidate SNP marker of the lower risk of sporadic AD except in
the case of fatty liver (Table 3).

Summarizing all the above, we can conclude that many
of known and candidate SNP markers of hereditary blood
diseases may also be candidate SNP markers of sporadic
AD in the elderly (Table3 and Table S1). Therefore,
someone who has a lower risk of hereditary blood
diseases in his/her childhood, adolescence and adulthood,
is also at a lower risk of sporadic AD in his/her old
age.

Candidate SNP Markers of Sporadic AD
Near TBP-Binding Sites of the Human
Gene Promoter Associated with Hereditary

Cardiovascular Diseases

The human THBD gene (thrombomodulin) carries a known
SNP marker (rs13306848) of thrombosis (Le Flem et al., 1999).
This SNP damages a tissue-specific transcription factor (TF)-
binding site near the known ubiquitous TBP-binding site (rather
than this TBP-binding site itself) according to the results of a
luciferase (LUC) reporter assay (Le Flem et al., 1999) (Table 4).
Nevertheless, we found an unannotated SNP (rs568801899) able
to cause thrombomodulin deficiency and, on the contrary, a

review (Borroni et al., 2002) stating that the TBHD excess is
a biochemical marker of sporadic AD (Table4). In addition,
the secondary search revealed (Table S1) that fibrinogen excess
(Cortes-Canteli et al., 2010) contributes to both thrombosis and
sporadic AD, whereas RU-505 is a drug effective against both
(Ahn etal., 2014). This information allows us to assume that both
rs13306848 and rs568801899 can be candidate SNP markers of a
low risk of sporadic AD (Table 4).

The human F3 gene encodes thromboplastin (synonyms:
tissue factor, coagulation factor III) and contains a known
SNP marker (rs563763767) of myocardial infarction and
thromboembolism caused by F3 excess (Arnaud et al., 2000). Our
primary keyword search revealed (Table 4) that thromboplastin
is present within B-amyloid plaques in both familial and sporadic
AD (McComb et al., 1991). In addition to the above associations
between this disease and thrombosis shown in Table S1, our
secondary keyword search revealed donepezil to be a drug
effective against both myocardial infarction and sporadic AD
(Arikawa et al, 2011) as well as common pathways of their
pathogenesis (Licastro et al., 2011). With this in mind, we propose
SNP marker rs563763767 of blood diseases as a candidate SNP
marker of sporadic AD.

The human F7 gene encodes proconvertin (synonym:
coagulation factor VII), where an undocumented SNP (the a—c
substitution at position -35 upstream of the transcription start
site of this gene) has been clinically implicated in moderate
bleeding caused by proconvertin deficiency (Kavlie et al., 2003).
As one can see in Table 4, the unannotated SNP rs749691733
can also cause an F7 deficiency. Five other unannotated
SNPs (rs367732974, rs549591993, rs777947114, rs770113559,
and rs754814507) can elevate this genes expression. Using
our primary keyword search, we learned that another SNP
(rs6046) is associated with both F7 deficiency and sporadic AD,
whereas the F7 excess negatively correlates with this disease
(Barber et al., 2015). Finally, our secondary keyword search
produced the article (Nagasawa et al., 2014) on co-occurrence of
sporadic AD and microbleed, as well as a retrospective review
(Cordonnier and van der Flier, 2011) suggesting that brain
microbleeds are intimately involved in the pathogenesis of both
familial and sporadic AD (Table S1). Thus, we predicted two
candidate SNP markers (-35a—c and rs749691733) in favor
and five candidate SNP markers (rs367732974, rs549591993,
rs777947114, rs770113559, and rs754814507) against sporadic
AD (Table 4).

The human GJA5 gene (connexin 40; synonym: gap junction
protein a5) contains two biomedical SNP markers (rs10465885
and rs35594137) of arrhythmia and cardiovascular events
(Firouzi et al., 2004; Wirka et al., 2011), which reduce this gene’s
expression via disruption of the binding site for an unknown
transcription factor rather than the TBP-binding site according
to a luciferase reporter assay, LUC (Table 4). Near these known
SNP markers, we found an unannotated SNP (rs587745372),
which can also reduce this gene’s expression and, thus, points
to the same diseases (Table 4). Using a primary keyword search,
we found an original work on the connexin 40 deficiency as
a biochemical marker of sporadic AD development after stress
(Mo et al.,, 2014). In addition, our secondary keyword search
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yielded the article (Zulli et al., 2008) on co-occurrence of
arrhythmia and sporadic AD, as well as retrospective reviews on
the very close relation between sporadic AD, arrhythmia, and
cardiovascular events in terms of their common medications
(Winslow et al., 2011) and risk factors (Stone, 2008) in the elderly.
For these reasons, we predict that three candidate SNP markers
(rs10465885, rs35594137, and rs587745372) are associated with a
higher risk of sporadic AD.

Overall, considering all the above results, we propose that
several SNP markers of hereditary cardiovascular diseases may
also be candidate SNP markers of sporadic AD in the elderly
(Table 4 and Table S1). Thus, the reduced risks of cardiovascular
disease in childhood, adolescence, and adulthood can reduce the
risk of sporadic AD in the elderly.

Candidate SNP Markers of Sporadic AD
Near TBP-Binding Sites of the Human
Gene Promoter Associated with Hereditary

Hormone-Related Diseases

The human GHI1 gene for somatotropin (synonym: growth
hormone 1) contains a biomedical SNP marker (rs11568827)
of short stature (Horan et al., 2003) caused by underexpression
of this gene because this SNP damages the binding site for an
unknown transcription factor rather than the TBP-binding site
according to results of an electrophoretic mobility shift assay
(EMSA) stature (Horan et al, 2003) (Table5). Our primary
keyword search produced the article (Malek et al., 2009) on the
somatotropin-based treatment of some complications of sporadic
AD (Turnaev et al.,, 2016). In addition, our secondary keyword
search yielded a lot of articles on the negative correlation between
this disease and the human stature, the most interesting of
which (in our opinion) states that stature maximization in both
childhood and adolescence as the integral indicator of health can
minimize (or even delay) dementia in the elderly (1892 cases)
(Beeri et al., 2005) (Table S1). Therefore, we predict that this
known SNP marker (rs11568827) of short stature can also be a
candidate SNP marker of the higher risk of sporadic AD.

Two base pairs away from this known SNP marker
(rs11568827), we found an unannotated SNP (rs796237787),
which also represents a deletion of G with the same effect
on the same gene expression (Table5). That is why, we also
propose 1rs796237787 as a candidate SNP marker of the higher
risk of sporadic AD. In addition, we found two unannotated
SNPs (rs768454929 and rs761695685) reducing the GHI gene
expression as is the case for the known SNP marker rs11568827
described above. Thus, we nominate them as candidate SNP
markers of the higher risk of sporadic AD too. Finally, near
the known SNP marker rs11568827, we detected the other two
unannotated SNPs (rs777003420 and rs774326004), which can
cause the somatotropin excess and hence serve as candidate SNP
markers of the lower risk of sporadic AD (Table S1).

The human INS gene encodes insulin, and its promoter
contains a known SNP marker (rs5505) of type 1 diabetes (T1D)
after neonatal diabetes mellitus (Landrum et al., 2014) caused
by this gene overexpression (Table5). Our primary keyword
search revealed that an insulin excess reduces the B-amyloid

abundance (Picone et al., 2015), which can reduce the risk of
sporadic AD (Table 5). Near this known SNP marker, we found
unannotated rs563207167 and rs11557611, which can cause
hyper- and hypoinsulinemia, respectively, as well as a lower and
higher risk of sporadic AD, respectively (Table 5). In addition,
our secondary keyword search produced the article (Barrou
et al., 2008) on the co-occurrence of diabetes and sporadic AD
(Table S1), as well as two more interesting works (in our opinion),
which are classifying both familial and sporadic AD as either type
3 diabetes or brain diabetes (Narasimhan et al., 2014; Kandimalla
et al., 2016). That is why we propose these three candidate SNP
markers of sporadic AD (Table 5).

The human genes GCG and LEP encode glucagon and
leptin (hunger hormone and obesity hormone, respectively), in
whose promoters none of biomedical SNP markers have been
found yet. In our previous work (Chadaeva et al., 2016), we
made a computer-based prediction: we proposed three obesity-
related candidate SNP markers (rs183433761, rs757035851, and
rs201381696) of the significant deficiency of these hormones
as well as the other two candidate SNP markers (rs200487063
and rs34104384) of significant overexpression of the LEP gene.
In addition, we selectively verified this prediction in our
experiments in vitro using EMSA (Chadaeva et al,, 2016) and,
independently, in cultures of the human cells transfected with
the pGL 4.10 vector (Promega, USA) containing the reporter
gene LUC (luciferase) (Chadaeva et al., 2016). In this work, our
primary keyword search revealed that both glucagon deficiency
and hyperleptinemia in urban children elevate the risk of
sporadic AD in the elderly (Calderon-Garciduenas et al., 2015)
and there is a leptin-based treatment of this disease (Tezapsidis
et al., 2009) (Table 5). Finally, our cross-validating secondary
keyword search showed a significant positive correlation between
obesity in childhood, adolescence, or adulthood on the one hand
and sporadic AD on the other hand (Renvall et al., 1993), whereas
both body weight and fat loss regardless of diets and lifestyles
are biomarkers of progression of this disease (Pedditizi et al.,
2016) (Table S1). Thus, we predict five additional candidate SNP
markers (rs183433761, rs757035851, rs200487063, rs34104384,
and rs201381696) of sporadic AD, as shown in Table 5.

Looking through Table 5 and Table S1, we can expect that one
can find candidate SNP markers of AD in the elderly among
SNP markers of the hormone-related diseases of childhood,
adolescence, and adulthood. Generally, one can see in Tables 1-5
and Table S1 taken all together that sporadic AD in the elderly
seems to be a comorbidity of many hereditary blood, immune,
hormone, and cardiovascular diseases. Hence, a healthy lifestyle,
with a reduced risk of such diseases in childhood, adolescence,
and adulthood can reduce the risk of sporadic AD in old age.

Candidate SNP Markers Near TBP-Binding
Sites within Promoters of the Human
Genes Associated with the Familial AD

The human MAPT gene (microtubule-associated protein tau;
synonyms: neurofibrillary tangle protein, protein phosphatase 1)

has no known biomedical SNP markers within its promoters,
but we first found two candidate SNP markers (rs553179073
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and rs11872014) of deficient expression of this gene and another
marker (rs374878846) of its overexpression (Table 6). Using a
primary keyword search, we learned that a MAPT excess may
shift cellular gene networks toward AD-related cytopathogenesis
(Saman et al., 2014) and enhance neuroinflammation (Wes et al.,
2014) and neuronal loss (Wirths and Bayer, 2010). In contrast,
a MAPT deficiency can increase survival in both familial and
sporadic AD (Ittner et al., 2010), prevent memory deficits, and
have a neuroprotective effect (Maphis et al., 2015) although it
is also a biochemical marker of long-term depression (Kimura
et al., 2013) and frontotemporal degeneration (Papegaey et al.,
2016). Within these limits, we can predict three candidate SNP
markers (rs553179073, rs11872014, and rs374878846) of familial
AD.

The human APP gene encodes B-amyloid precursor protein.
Promoters of this gene contain no known biomedical SNP
markers yet, but we for the first time identified four candidate
SNP markers (rs200621906, rs536423638, rs558863815, and
rs759517529) of the significant overexpression of this gene and
two candidate SNP markers (rs756747509 and rs561135968)
of the significant deficiency of B-amyloid peptides (Table 6).
Our primary keyword search showed (Table 6) that both over-
(Sturchler-Pierrat et al, 1997) and underexpression (Zhang
et al, 2016) of the APP gene increase the familial AD risk
because of B-amyloid aggregation (Sturchler-Pierrat et al., 1997)
and cognitive deficits without AD-like anatomical changes in
the brain (Zhang et al, 2016), respectively. Accordingly, we
propose six candidate SNP markers (rs200621906, rs536423638,
rs558863815, rs759517529, rs756747509, and rs561135968) of the
higher risk of familial AD.

The human APOE gene (apolipoprotein E) contains no
known biomedical SNP markers supported by clinical data
within its promoters. Nevertheless, for the first time, we
found three candidate SNP markers (rs762555354, rs758661090,
and rs769448) of the significant APOE overexpression and
another one (rs758379972) of significant APOE underexpression
(Table 6). According to our primary keyword search results, the
APOE excess reduces the risk of this disease (Ohman et al., 1996)
and vice versa (Bien-Ly et al., 2012) (Table 6). Accordingly, we
suggest four candidate SNP markers (rs762555354, rs758661090,
rs769448, and rs758379972) of familial AD, its complications,
and comorbidities (Table 6).

Human genes PSENI and PSEN2 encode presenilins 1 and
2, respectively, in whose promoters there are no biomedical SNP
markers, but we for the first time uncovered eight candidate SNP
markers (rs201362083, rs202209472, rs1800839, rs199959804,
rs563558461, 15761796296, rs556146702, and rs544497401)
of a significant excess of presenilins and seven candidate
markers (rs752158054, rs530970418, rs772984560, rs796710298,
rs758016212, rs564994558, and rs201944966) of a significant
presenilin deficiency (Table 6). Our primary keyword search
revealed (Table 6) that both a presenilin excess (Vezina et al.,
1999; Gamliel et al., 2002; Prat et al., 2002) and deficiency
(Herreman et al., 1999; Dewachter et al., 2002; Chen et al., 2008;
Aoki et al., 2009; Yun et al.,, 2014) elevate the risk of familial
AD, whereas PSEN1 underexpression can also reduce the risk of
some complications of this disease. On the basis of these data,

we propose 15 aforementioned SNPs as candidate markers of
familial AD (Table 6).

In a final cross-validation test, we unexpectedly noticed that
only a minority (12 of 28) of candidate SNP markers predicted
here decrease expression of five genes associated with familial
AD (Table 6) whereas the majority (35 of 56) of the candidate
SNP markers can downregulate the human genes associated
with other hereditary diseases (Tables 1-5 and Table S1). This
difference is statistically significant (o < 0.05 according to
binomial distribution). Moreover, we compared this minority
of candidate SNP markers of underexpression of the human
genes (associated with familial AD) with the commonly accepted
whole-genome ratio 2:1 of the regulatory SNPs reducing vs. SNPs
increasing affinity of the transcription factors for the human gene
promoters; this ratio was identified by two independent groups
of investigators (Kasowski et al., 2010; 1000 Genomes Project
Consortium et al., 2012). This difference is statistically significant
too (a < 0.01). This phenomenon may reflect the pressure of
natural selection against the deficient expression of five genes
MAPT, APB, PSENI, PSEN2, and APOE associated with familial
AD relative to both the whole genome and the genes associated
with other hereditary diseases in humans. This finding indicates
the higher robustness of these five genes on a genomewide scale.

This extraordinary robustness of genes MAPT, APP, PSENI,
PSEN2, and APOE is well-consistent with the manifestation of
damage to these genes as familial AD only at the age of over 65.
This is when the humans accumulate a number of pathologies
that may not be associated with AD and whose interactions
with these damaged genes allow these pathologies to manifest
themselves as AD. Moreover, due to this robustness of these
genes in childhood, adolescence, and adulthood, the human body
can respond to deadly stressors (e.g., microbleeds, brain injury,
or acute infection) by borderline slowly progressing pathologies
(e.g., p-amyloid plagues) that develop only in the elderly as
sporadic AD or other diseases of aging as noted previously (Lathe
et al., 2014). In both above-mentioned cases, lowering the risk
of the accumulated pathologies in childhood, adolescence, and
adulthood corresponds to a lower risk of AD in old age. These
matches between our predictions and the current knowledge
about familial and sporadic AD support the candidate SNP
markers predicted here.

Verification Procedures for the Selected
Candidate SNP Markers Predicted Here

Because different computational methods have their own
advantages and disadvantages in predicting functional SNPs, to
gain good-quality knowledge, a comparison between computer-
based predictions and experimental data as an independent
commonly accepted uniform platform is still needed in
familial and sporadic ADs. That is why we selected some of
the 89 candidate SNP markers predicted here—rs563763767,
rs33980857, rs34598529, rs33931746, rs33981098, rs35518301,
rs1143627, rs72661131, 1s7277748, and 1s1800202—and
measured equilibrium dissociation constant Kp for the binding
of human TBP to each of them using the conventional protocol
of the EMSA in vitro (see section “Materials and Methods”).
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FIGURE 2 | Experimental verification of the selected candidate SNP markers by an electrophoretic mobility shift assay (EMSA) in vitro. An example of

electropherograms in the case of ancestral (A: norm, wild-type, wt) and minor (B: minor) alleles of the candidate SNP marker rs1800202 within the human TPI7 gene
promoter, which are accompanied by diagrams of experimentally measured values. (C) The significant correlations between the in silico predicted (X-axis) and in vitro
measured (Y-axis) Kp values of the equilibrium dissociation constant of the [TBP-ODN] complex. Solid and dashed lines or curves denote the linear regression and
boundaries of its 95% confidence interval, calculated using software STATISTICA (StatsoftTM USA). Circles denote the ancestral and minor alleles of the candidate
SNP markers rs563763767, rs33980857, rs34598529, rs33931746, rs33981098, rs35518301, rs1143627, rs72661131, rs7277748, and rs1800202 being verified;
LR Ty, Xz, and a are linear correlation, Spearman’s rank correlation, Kendall’s rank correlation, Goodman-Kruskal generalized correlation, XQ test, and their
significance, respectively; p is Fisher’s exact test two marks (A) and (B) indicate by arrows two experimental magnitudes whose measurement procedures are shown

in panels A and B, respectively.
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FIGURE 3 | The kinetics of binding to and bending of the ODN identical to the selected SNP marker rs1800202. (A) The ancestral allele, ODN 5’-cgcggcgctcTATAT
AAgtgggcagt-3'. (B) The minor allele, ODN 5’-cgcggegcetc TATAgAAgtgggeagt-3’. ODN concentration was 0.1 WM. TBP concentration was varied between 0.1 and
1.0 uM as indicated near the corresponding curve of the time series. Kp values, (A) 1 nM and (B) 19 nM, were obtained as the output of the Dynafit software (Biokin,

USA) after the corresponding time-series data were inputted into this software.

Figure 2 shows the results, namely: Figures2A,B exemplify
electropherograms and their graphical representations in the
case of ancestral and minor alleles, respectively, of the candidate
SNP marker rs1800202 within the human TPII gene promoter.
As one can see in Figure 2C, the predicted (axis X) and measured
(axis Y) Kp values significantly correlate according to a number
of statistical tests such as linear correlation (r), Spearman’s
rank correlation (R), Kendall’s rank correlation (t), Goodman-
Kruskal generalized correlation (y), and %2 and Fisher’s exact
(p) tests. These robust correlations between our predictions and
experimental data also support the candidate SNP markers (of
familial and sporadic AD) predicted here.

In addition to the above-mentioned widely used conventional
EMSA, we applied two modern high-performance methods.
Figure 3 shows the results of the stopped-flow fluorescence assay
in vitro in real time on a high-resolution spectrometer SX.20
(Applied Photophysics, UK) in the case of the selected candidate
SNP-marker rs1800202. As one can see, our prediction in silico
that this SNP is manifested as reduced affinity of TBP binding to
the human TPII gene promoter (Table 3) is consistent with the
presented experimental data. Finally, in the case of the selected
candidate SNP-marker rs201381696 predicted in this work,
Figure 4 shows the results obtained by ex vivo verification using
the human cell line hTERT-BJ1 (human fibroblasts) cultured and
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FIGURE 4 | Cell culture verification of the selected candidate SNP marker
rs201381696 in cell line hTERT-BJ1 (human fibroblasts) transfected with the
pGL 4.10 vector carrying a reporter LUC gene. Experimental data: open bars,
ancestral allele (wild type, WT); two gray bars shown to the right and left of the
open bar, namely, minor allele (rs201381696) and the original vector pGL 4.10
(Promega, USA) without any insertions, respectively, served as an independent
control and minor allele, respectively. The height of the bars and their error
bars correspond to the mean estimates and boundaries of their 95%
confidence intervals calculated from 11 independent replicates of
measurements. Asterisks indicate a statistically significant difference at the
confidence level of a < 0.05.

transfected with the pGL 4.10 vector carrying a reporter LUC
gene (Table 5). As the table shows, the reduced affinity of TBP
binding to the minor allele of this SNP (relative to the ancestral
allele), which was predicted by us (Table5), fits the ex vivo
manifestation of this SNP within the pGL 4.10 vector carrying
a reporter LUC gene. These two experiments once again lend
support to the candidate SNP markers (of familial and sporadic
AD) predicted here.

This comparison between the computer-based predictions of
the candidate biomedical SNP markers and proper experimental
measurements as an independent commonly accepted uniform
platform are the novelty of this work relative to other computer-
based methods and tools in this active field of research.

How to Use Candidate SNP Markers (of

Familial and Sporadic AD) Predicted Here

Currently, the OMIM database (Amberger et al., 2015) describes
more than a hundred well-known SNP markers associated with
either familial or sporadic AD, the majority of which are located
within the protein-coding regions of the genes and, thus, fatally
disrupt either structures or functions of the proteins encoded
by these genes. That is why medications, diets, or lifestyles
cannot correct the resulting molecular aberrations because these
interventions can relieve only the symptoms of AD. In addition
to these valuable biomedical genome-wide data, we predicted
89 candidate regulatory SNP markers of familial (Table 6) and
sporadic (Tables 1-5) AD, whose pathogenic effects are limited
only to under- and overexpression of the corresponding genes
without changes in protein structure or function (Tables 1-
6 and Table S1). Because the structures and functions of

the affected proteins remain native, and only amounts of the
proteins are altered, this aberration of protein concentrations
may be correctable by medications, diets, and lifestyle changes
that reduce the risk of both familial and sporadic AD, their
complications, and comorbidities.

Because the TBP-binding site is the best-studied regulatory
sequence within the human genome (Amberger et al., 2015), we
focused our research attention on SNPs altering TBP’s affinity for
human gene promoters. Using our Web service (Ponomarenko
et al., 2015), we analyzed 629 SNPs located within [—70; —20]
proximal promoter regions of 39 human genes and found 89
candidate SNP markers of familial and sporadic AD (Tables 1-6).
This finding does not mean that the remaining 533 SNPs
cannot be candidate SNP markers of the same pathology because
these SNPs may alter transcription factor-binding sites (e.g.,
rs1332018, rs13306848, rs10465885, rs35594137, rs11568827, and
rs796237787). To analyze any of them, there are a number
of publicly available Web services (for review, see Deplancke
et al., 2016) whose research capabilities can be enhanced when
they are used together with others, including our Web service
(Ponomarenko et al., 2015).

The gist of this paper is that 25 candidate SNP markers
located within promoters of the human genes associated with
familial AD (Table 6) may cause this disease. By contrast, 56
candidate SNP markers of other hereditary diseases (Tables 1-5
and Table S1) can only be genomewide informative landmarks
that can facilitate the choice of physicians regarding appropriate
treatment (based on the genomic data from their patients).
These 56 candidate biomarkers may also help a random
person to choose his/her lifestyle in childhood, adolescence, or
adulthood to minimize the risk of sporadic AD later in life.
For example, here we predicted candidate SNP markers of a
higher risk of sporadic AD in the elderly as a complication of
stroke (rs72661131 and rs562962093), which can help someone
with minor alleles of these SNPs to include some natural
marine products into his/her diet minimizing the risks of both
diseases (Choi and Choi, 2015). Similarly, due to the candidate
SNP marker rs7277748 of sporadic AD as a comorbidity of
amyotrophic lateral sclerosis (Table S1), someone with minor
alleles of this SNP can reduce the risks of these diseases
by switching to a diet enriched in antioxidants (Di Matteo
and Esposito, 2003). (Of course, this is oversimplification: if
amyotrophic lateral sclerosis could be prevented by increased
consumption of antioxidants alone, the lives of numerous
patients would be very easy.) In addition, using our predicted
candidate SNP markers of sporadic AD as a comorbidity
of short stature (rs11568827, rs796237787, rs768454929, and
rs761695685), parents of children carrying minor alleles of these
SNPs can choose a lifestyle maximizing their stature in childhood
and adolescence as an integral indicator of their health. This
approach may then minimize (or even eliminate) the risk of
dementia at their old age (Beeri et al., 2005).

Finally, each candidate SNP marker of either familial or
sporadic AD proposed here should be first verified using clinical
protocols, including representative cohorts of the relevant groups
of patients and healthy volunteers (as a control). After that, such
SNP markers may be applicable to clinical practice. To help
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with this validation, we accompanied each predicted candidate
SNP marker by our prediction of the equilibrium dissociation
constant (Kp) for the binding of human TBP to a 26-bp synthetic
duplex DNA identical to the SNP in question; the constant is
expressed in nanomoles per liter, nM (Tables 1-6).

Finally, according to a huge number of publications, it seems
inevitable that many of these SNPs will not help to identify
the candidate SNP marker worth pursuing for subsequent
experimental research (e.g., verification using either clinical
protocols or animal models of human diseases created using
CRISPR/Cas9 protocols of animal genome editing in vivo,
Holm et al,, 2016). With this in mind, we set up heuristic
prioritization of the candidate SNP markers predicted here
using the statistical significance rates of Fisher’s Z-tests in
terms of heuristic rank p-values, which vary in alphabetical
order from the “best” (A) to the “worst” (E) as shown
in Tables 1-6. We hope that this prioritization will make
it possible to more successfully select the most promising
candidate SNP markers of AD for their verification using clinical
protocols or CRISPR/Cas9 protocols of animal genome editing in
vivo.

CONCLUDING REMARKS

As soon as the proposed 89 candidate SNP markers of familial
and sporadic AD are validated by clinical protocols, these
whole-genome landmarks may become interesting to the general
population (may help to choose a lifestyle in childhood,
adolescence, or adulthood reducing the risks of sporadic AD, its
comorbidities, or complications in the elderly).
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