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Reserve refers to the phenomenon of relatively preserved cognition in disproportion
to the extent of neuropathology, e.g., in Alzheimer’s disease. A putative functional
neural substrate underlying reserve is global functional connectivity of the left lateral
frontal cortex (LFC, Brodmann Area 6/44). Resting-state fMRI-assessed global LFC-
connectivity is associated with protective factors (education) and better maintenance
of memory in mild cognitive impairment (MCI). Since the LFC is a hub of the fronto-
parietal control network that regulates the activity of other networks, the question
arises whether LFC-connectivity to specific networks rather than the whole-brain
may underlie reserve. We assessed resting-state fMRI in 24 MCI and 16 healthy
controls (HC) and in an independent validation sample (23 MCI/32 HC). Seed-based
LFC-connectivity to seven major resting-state networks (i.e., fronto-parietal, limbic,
dorsal-attention, somatomotor, default-mode, ventral-attention, visual) was computed,
reserve was quantified as residualized memory performance after accounting for age
and hippocampal atrophy. In both samples of MCI, LFC-activity was anti-correlated
with the default-mode network (DMN), but positively correlated with the dorsal-attention
network (DAN). Greater education predicted stronger LFC-DMN-connectivity (anti-
correlation) and LFC-DAN-connectivity. Stronger LFC-DMN and LFC-DAN-connectivity
each predicted higher reserve, consistently in both MCI samples. No associations
were detected for LFC-connectivity to other networks. These novel results extend
our previous findings on global functional connectivity of the LFC, showing that LFC-
connectivity specifically to the DAN and DMN, two core memory networks, enhances
reserve in the memory domain in MCI.

Keywords: cognitive reserve, mild cognitive impairment, frontoparietal control network, memory, functional
connectivity
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INTRODUCTION

The reserve theory proposes that individuals with favorable
cognitive and lifestyle factors such as education, IQ and
occupational complexity can transiently maintain relatively high
cognitive performance when developing Alzheimer’s disease
(AD), the most common cause of dementia in elderly people
(Stern, 2012). While results from epidemiological studies have
revealed protective factors in aging (Valenzuela and Sachdev,
2006), the neural underpinnings of reserve are still poorly
understood. Recently, it was suggested that the fronto-parietal
control network plays a crucial role in maintaining mental health
and cognition in psychiatric and neurodegenerative diseases
(Cole et al., 2014b). Supporting this, we recently found in patients
with mild cognitive impairment (MCI) that higher resting-
state global functional connectivity of the fronto-parietal control
network (Franzmeier et al., 2016a), in particular a hub in the left
lateral frontal cortex (LFC, Brodmann Area 6/44, also referred
to as inferior frontal junction), is associated with more years
of education. Furthermore, higher global LFC-connectivity was
associated with a less severe reduction in memory performance
at a given level of AD-induced FDG-PET hypometabolism
(Franzmeier et al., 2017b), suggesting that LFC-connectivity
may underlie previously observed protective effects of education
in elderly people with emerging AD pathology (Ewers et al.,
2013; Soldan et al., 2013). The fronto-parietal control network
is task-invariantly involved in cognition (Duncan, 2010), and
shows high connectivity to other networks that are engaged
during a particular task (Cole et al., 2013; Helfrich and Knight,
2016). The LFC hub shows strong positive connectivity to
fronto-parietal and dorsal attention subnetworks of the control
network among other networks, but negative connectivity (anti-
correlated) to the default mode network (DMN) (Cole et al.,
2012). Since these networks have previously been implicated
in episodic memory (Chai et al., 2014; Franzmeier et al.,
2017a), it is possible that the global LFC connectivity to those
networks is of particular importance for supporting reserve
of memory abilities in AD. Thus, rather than assessing global
LFC-connectivity at the whole-brain level as done previously
(Cole et al., 2012; Franzmeier et al., 2017b), we assessed
here systematically the global connectivity of LFC to other
resting-state networks as a predictor of higher memory reserve
in MCI.

The major aim of the current resting-state fMRI study was to
test our hypotheses that (1) higher education is associated with
higher LFC-connectivity to other major resting-state functional
networks, and (2) higher connectivity between the LFC and other
networks is associated with higher memory-related reserve. To
address the questions set out by the current study, we computed
the global LFC-connectivity to seven major brain networks (i.e.,
fronto-parietal, limbic, dorsal-attention, somatomotor, default-
mode, ventral-attention, visual) (Yeo et al., 2011). Estimation
of centrality measures such as resting-state global connectivity
shows a relatively high reliability especially among heteromodal
brain regions such as the LFC and may thus constitute a feasible
measure to study neural mechanisms of reserve (Liao et al.,
2013; Zuo and Xing, 2014). Since addressing these hypotheses

on LFC to network connectivity required multiple testing, we
examined all hypotheses in two independent sets of HC and
MCI patients to independently validate our findings. To estimate
memory-related reserve, we used a recently developed approach
that captures the core of the reserve concept, i.e., how well-
preserved memory performance is when accounting for the
underlying level of brain pathology (Reed et al., 2010; Zahodne
et al., 2013). In brief, we computed the difference between
memory performance predicted by the level of age and brain
pathology (i.e., hippocampal atrophy) and the actual level of
memory performance, which is indicative of an individual’s
reserve in the memory domain. We then tested whether higher
LFC-connectivity to other networks predicted greater memory-
related reserve in MCI. The results of the current study
may help further our understanding on whether interactions
between the LFC and specific functional networks support
reserve in AD.

MATERIALS AND METHODS

Subjects
For the current study we included two independent samples,
each comprising both amnestic MCI subjects and healthy
controls (HC). The first sample was recruited at the Technische
Universität München (TUM) in Munich Germany (henceforth
referred to as TUM sample) and encompassed 24 MCI
patients and 16 HC. Here, MCI was diagnosed following
the recommendations of the National Institute on Aging
and the Alzheimer’s Association (Albert et al., 2011). All
MCI patients included in the TUM sample met research
criteria for prodromal AD, i.e., elevated levels of Amyloid-
beta deposition (Aβ) as assessed via PiB-PET (Albert
et al., 2011). Detailed descriptions of diagnostic and PET
procedures have been reported previously (Koch et al.,
2015). HC subjects showed no elevated Aβ levels and normal
cognitive performance (i.e., CDR = 0; all CERAD-Plus
scores not more than 1 SD below age- and gender-adjusted
norms).

The second sample comprised 23 MCI and 32 HC recruited
at the Institute for Stroke and Dementia Research (ISD sample),
Ludwig-Maximilian University of Munich. Here, MCI was
diagnosed according to the Petersen criteria (Petersen, 2004;
Petersen et al., 2014), i.e., scoring 1.5 standard deviations below
the age and gender-adjusted norms on at least one of the memory
subtests of the CERAD-Plus battery (Schmid et al., 2014). HC
subjects showed no cognitive symptoms (all CERAD-Plus scores
not more than 1.5 SD below age-, gender- and education adjusted
norms). Details on inclusion criteria and diagnostic procedures
in this sample have been reported previously (Franzmeier et al.,
2016a). Patients of both samples underwent structural MRI,
resting-state fMRI as well as neuropsychological testing using the
CERAD-Plus battery (Schmid et al., 2014).

Both studies were approved by the ethics committees of the
respective institutions and conducted in accordance with the
1964 Helsinki declaration and its later amendments. Written
informed consent was obtained from all subjects.
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MRI Acquisition
TUM Sample
Scanning was performed on a Philips 3T MRI scanner system
using an 8-channel phased-array head coil. A structural
high-resolution T1-weighted MPRAGE image was recorded
with an isotropic voxel resolution of 1mm. fMRI data
were recorded using a gradient EPI sequence with a
TR/TE = 2000/35 ms, a flip angle of 82◦, with an in-plane
resolution of 2.75 mm and a slice thickness of 4 mm
without an interslice gap. The resting-state fMRI scan
comprised a total of 300 volumes, during which subjects
were instructed to keep their eyes closed and not to fall
asleep.

ISD Sample
All scans were acquired on a Siemens Verio 3T MRI scanner
using a 32-channel head coil. Initially, a structural image
was obtained using a high-resolution T1-weighted MPRAGE
sequence with 1mm isotropic voxels. Resting-state fMRI
data were recorded using a EPI pulse sequence with a
TR/TE = 2580/30 ms, a flip angle of 80◦ and 3.5 mm isotropic
voxel resolution without an interslice gap. The overall scan
comprised 180 volumes prior to which subjects were instructed
to keep their eyes closed.

Spatial Normalization of MRI Images
Preprocessing of MRI data was conducted separately for both
samples but using the same SPM12-based protocol (Wellcome
Trust Centre for Neuroimaging, University College London,
United Kingdom1). For each subject, high resolution T1-
weighted structural images were segmented into probabilistic
grey matter (GM), white matter (WM) and cerebrospinal fluid
(CSF) maps via the new-segment approach implemented in
SPM12 (Ashburner and Friston, 2005). For spatial normalization,
we used DARTEL, a non-linear high-dimensional diffeomorphic
registration algorithm that defines a group-specific template
by warping each subject’s probabilistic tissue maps to a
template space that is defined in an iterative procedure
(Ashburner, 2007). This group-specific template was then
affine-registered to an MNI template that is implemented in
the DARTEL toolbox. Next, the non-linear and the affine
transformation parameters were combined and applied to
each subjects’ segmented tissue probability maps to achieve
spatial normalization to MNI space. To define a group specific
GM mask for each sample, the subject-specific spatially-
normalized GM maps were averaged and binarized at a
voxel value >0.3. In an equivalent step, we averaged and
binarized the spatially-normalized WM (binarized at a voxel
value >0.9) and CSF (binarized at a voxel value >0.7) maps
that were required for denoising of the resting-state fMRI
data.

Hippocampal Volume Assessment
As a surrogate for neuronal loss that is highly related to AD
pathology and to memory impairment in MCI (Petersen et al.,

1www.fil.ion.ucl.ac.uk/spm

2000) we assessed the volume of the bilateral hippocampi using
a previously described approach that yields highly similar results
as manual hippocampal segmentation but has the advantage of
being fully automated (Mak et al., 2011). Using the DARTEL
flow-fields that were estimated during spatial normalization,
we normalized the subject specific GM maps to MNI space
and applied an 8 mm full width at half maximum (FWHM)
Gaussian smoothing kernel. During the normalization step,
modulation was applied to each image, to preserve local GM
concentrations while warping the image to MNI space (Good
et al., 2001). Each subjects’ normalized and modulated GM map
was subsequently masked with a bilateral hippocampus mask
selected from the widely used Automatic Anatomic Labeling atlas
(Tzourio-Mazoyer et al., 2002). From these masked images we
then extracted the bilateral hippocampal volume (Jack et al., 2000;
Petersen et al., 2000).

Preprocessing of Resting-State fMRI
Data
Preprocessing was conducted using SPM12 again separately
for both samples but following the same protocol. In a first
step, we discarded the first 10 volumes from each resting-
state session due to known stabilization effects of the magnetic
field. All remaining EPI volumes were realigned to the first
volume and subsequently coregistered to the high-resolution
T1-weighted images in native space. None of the scanned
subjects showed excessive head motion (translation: >3 mm;
rotation: >3◦). We further tested whether diagnostic groups
(HC vs. MCI) showed differences in head motion. To this end
we computed the average frame-wise displacement for each
individual following a previously described protocol (Power et al.,
2014). When comparing the average frame-wise displacement
across diagnostic groups using a two-sample t-test, we found no
group differences between HC and MCI [ISD: t(54) = −0.790,
p = 0.433; TUM: t(39) = −1.664, p = 0.104]. For spatial
normalization to MNI space, the non-linear DARTEL and affine
registration parameters that were estimated during preprocessing
of the T1-weighted images were combined and applied to the
coregistered EPI volumes. All EPI images were subsequently
smoothed using an 8 mm FWHM Gaussian kernel, detrended
and band-pass filtered, using a frequency band of 0.01–0.08 Hz.
We further regressed out the 6 motion parameters (3 translations,
3 rotations) and the BOLD signal averaged across the WM
and CSF masks that were created during preprocessing of
the T1-weighted images. We did not apply global signal
regression since it can artificially introduce anti-correlations
in the BOLD signal (Murphy et al., 2009; Murphy and Fox,
2016).

Definition of the LFC Seed Region
Associated with Reserve
The location of the LFC ROI was based on our previous study
in patients with MCI due to AD, where we showed that greater
resting-state global LFC-connectivity was associated with more
years of education and allowed to maintain memory performance
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relatively well in the face of AD-related posterior parietal FDG-
PET hypometabolism (Franzmeier et al., 2017b). In brief, the
previous study determined the LFC seed ROI as the meta-
analytical peak coordinate of brain activation associated with
cognitive control (Yarkoni et al., 2011). The LFC ROI was
created as a spherical ROI with 8 mm radius centered around
that peak coordinate (Brodmann area 6/44; MNI: x = −42,
y = 6, z = 28; see Figure 1 for the ROI location), and used
as a seed region for all subsequent functional connectivity
analyses.

Resting-State Functional Connectivity
Analysis
All functional connectivity analyses were conducted for each
subject using the algorithms of the REST toolbox (Song et al.,
2011). In a first step, we aimed to explore the spatial pattern of
resting-state LFC-connectivity to confirm previous observations
that the LFC is positively connected to fronto-parietal brain
regions and negatively connected to midline regions belonging
to the DMN (Spreng et al., 2010, 2013; Cole et al., 2012;
Franzmeier et al., 2017b). To this end, we computed the Pearson-
moment correlation between the LFC ROI and each voxel falling
within the group specific GM masks. All correlations were
subsequently Fisher-z transformed and saved as a 3D functional
connectivity map. From these 3D functional connectivity maps,
we excluded voxels belonging to the binary LFC ROI to avoid
including any autocorrelations in later analyses. Next, we assessed
the average connectivity of the LFC to 7 canonical networks
that have been reported previously (Yeo et al., 2011) (i.e.,
DMN, DAN, ventral attention network, somatomotor, visual,
fronto-parietal control, limbic). To avoid sample specific bias
in network definitions, all network boundaries (see Figure 1,
left panel) were defined independent of the current study
based on a widely used brain network parcellation scheme
assessed on 1000 subjects (Yeo et al., 2011). The downloaded 3D
binary network maps were additionally masked with the group
specific gray matter mask for each sample. To assess network
specific LFC-connectivity for each subject, we then averaged
the connectivity values (i.e., Fisher z-transformed correlations)
across voxels that fell within each of the network masks.
In an additional exploratory analysis, we repeated all above
delineated steps, this time using a more fine-grained network
parcellation that divides the 7 networks into 17 sub-networks (see
Supplementary Figure S1 for network definitions) (Yeo et al.,
2011).

Assessment of Memory Reserve
As a measure of memory performance, we used the delayed
free recall subscale of the word-list learning test included in the
CERAD-Plus battery. The test includes a list of 10 unrelated
words for examining memory and is thus suitable for older
individuals and cognitively impaired patients for whom longer
lists would be too taxing. The words are shown at a rate of
2 s each and presented in a different order in three learning
trials. The tested individual is instructed to read out every
word to ensure word registration. After each learning trial,

the tested individual is asked to recall the list. After a 3 to
5 min delay, retention is tested by free recall (Schmid et al.,
2014). Using this free recall score, we assessed memory reserve
via a decomposition of episodic memory variance following
a modified approach that was introduced previously (Reed
et al., 2010; Zahodne et al., 2013). In brief, we determined to
what extent an individuals’ memory performance was better or
worse than expected based on age, gender and hippocampal
volume. To compute the memory reserve score, we applied
linear regression in each sample using the word-list delayed
free recall score as a dependent variable and regressed out
variance explained by hippocampal volume, age and gender.
Regression residuals were used as a measure of memory reserve.
Figure 2 illustrates the principle of this residualized reserve
measure.

Statistical Analysis
For each sample, group demographics, cognitive scores and
hippocampal volume were compared between MCI and HC
using two-sample t-tests for continuous measures and Chi-
square tests for categorical measures. To map the spatial pattern
of LFC-connectivity and to assess whether the LFC exhibits
connectivity predominantly to the fronto-parietal brain regions
and the DMN similar to previous reports (Spreng et al.,
2010, 2013; Cole et al., 2012), we mapped significant LFC-
connectivity for each sample (pooled across MCI and HC)
in a voxel-wise manner using one-sample t-tests against zero
with a voxel threshold of α = 0.001 and a FWE cluster
threshold of α = 0.05, to correct for multiple comparisons on
the cluster level. To assess the similarity of LFC-connectivity
between both samples (ISD vs. TUM) we computed the spatial
correlation (Wen et al., 2012) and R2 between significant LFC-
connectivity maps, and additionally the dice similarity index
(Zou et al., 2004) on binarized thresholded images (i.e., at a
voxel threshold of α = 0.001 and a FWE cluster threshold of
α = 0.05). Next, we tested our main hypotheses, that greater
LFC-connectivity to fronto-parietal networks and the DMN are
associated with greater memory reserve in MCI. This hypothesis
was assessed on all seven canonical networks to test the specificity
of effects for fronto-parietal networks and the DMN. To test
our hypotheses, we used linear regression models to assess
whether stronger LFC-connectivity to a network predicts higher
memory reserve scores, i.e., residualized memory performance
after accounting for age, gender and hippocampal volume. To
avoid model estimation bias due to multicollinearity among
predictors, we ran separate regression models for each of the 7
LFC to network connectivity measures as a predictor of memory
reserve. Since our hypotheses clearly specified a directionality
of effects (i.e., stronger LFC-connectivity is associated with
higher memory reserve), we applied a one-tailed p-threshold in
order to consider associations significant. To ensure that these
results were not driven by spurious correlations, we repeated
the above listed analyses when computing the average LFC to
network connectivity only across those voxels that surpassed
the group level t-test against 0 (as shown in Figure 1). We
further tested whether associations between LFC-connectivity
and memory reserve were specific to the stage of MCI or
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FIGURE 1 | Surface renderings of significant LFC-connectivity in the TUM sample and the ISD sample (pooled across diagnostic groups) at a voxel threshold of
α < 0.001, FWE-cluster-corrected at α < 0.05, superimposed on the functional network parcellation that was used for the current analyses. The LFC seed-ROI is
superimposed as a blue sphere on surface renderings of the left hemisphere (3rd row).

whether these associations also applied to HC. To this end,
all models were computed in an equivalent fashion in the HC
groups.

In an exploratory analysis, we repeated all above delineated
analysis steps this time using the 17-network parcellation
(Supplementary Figure S1) that divides the 7 networks into
smaller sub-networks. The rationale for including this additional
analysis was to test whether associations between memory reserve

and LFC-connectivity to the DMN or DAN were driven by
connectivity to specific sub-parcels of these networks.

In a last step, we aimed to extend previous findings [i.e.,
that higher global LFC-connectivity is associated with greater
education as the most widely used reserve proxy (Stern, 2012;
Franzmeier et al., 2017b)] to the current network-specific
hypotheses. To this end we assessed whether more years of
education were also associated with increased LFC-connectivity
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FIGURE 2 | Illustration of the principle underlying the memory reserve
measure used for the current study. The actual level of memory performance
is plotted against the memory performance as predicted by age, gender and
hippocampal volume. Individuals whose actual memory performance level is
higher than predicted (green circles) have high memory reserve, whereas
individuals whose actual memory performance is lower than predicted (red
circles) have low memory reserve.

to those networks for which we found a significant association
with memory reserve (DMN & DAN). Since education was only
available in the ISD sample, this analysis was not independently
validated. In brief, we computed linear regression models, with
LFC-connectivity (DMN or DAN) as the dependent variable and
education as the independent variable, controlling for age and
gender.

All linear regression models were computed using the
freely available statistical software package R (R Development
Core Team, 2013). Linear model assumptions (skewness,
kurtosis, heteroscedasticity) were tested using the gvlma function

implemented in R. Normal distribution of residuals was assessed
using a Shapiro–Wilk test. For all models reported, no significant
(α= 0.05) violations of linear model assumptions were found.

RESULTS

Group demographics, cognitive scores and average LFC-
connectivity measures are displayed in Table 1. In the ISD
sample, the MCI group was significantly older than the HC
group. Consistent across both samples, the MCI groups showed
significantly lower MMSE and word-list delayed recall scores as
well as lower hippocampal volume. In the TUM sample, LFC
to DAN connectivity was significantly reduced in MCI when
compared with HC (Figure 3).

Voxel-Wise Mapping of LFC-Connectivity
Figure 1 shows the pattern of significant LFC functional
connectivity, as assessed via voxel-wise one-sample t-tests pooled
across diagnostic groups in each sample. Visual inspection of
the figure reveals that the LFC exhibits significant positive
connectivity to regions belonging to the DAN, fronto-parietal
control network, VAN and somatomotor network as well as the
visual network. Negative connectivity is found predominantly
to midline regions belonging to the DMN, as well as inferior
temporal brain regions (i.e., limbic network). Overall, this pattern
of LFC connectivity is in line with previous research (Cole
et al., 2012; Franzmeier et al., 2017b). Comparing the pattern of
significant LFC-connectivity across both samples yielded a high
similarity as indicated by a high spatial correlation coefficient
(r = 0.81, p < 0.001, R2

= 0.66) and dice similarity index
of 0.72. When recomputing the spatial correlation using a less
restrictive threshold (voxel level α = 0.01, FWE cluster corrected
at α = 0.05) thereby including a higher number of voxels
showing lower connectivity, the correlation (r = 0.72, p < 0.001,
R2
= 0.52) and dice similarity index of 0.65 among both samples

remained high.

TABLE 1 | Sample characteristics.

TUM ISD

HC (n = 16) MCI (n = 24) HC (n = 32) MCI (n = 23)

Age 65.25 (5.51) 68.50 (8.28) 71.27 (5.25) 75.68 (4.22)1

Gender (m/f) 7/9 14/10 14/18 9/14

Years of education n.a. n.a. 13.94 (3.06) 13.36 (3.59)

APOE genotype (ε4
carrier/non-carrier/not available)

7/6/3 14/8/2 9/23 11/11/1

MMSE score 29.12 (0.81) 26.96 (1.60)2 29.44 (0.80) 26.32 (2.38)2

CERAD word list delayed recall
score

7.42 (1.68)3 4.08 (2.69)2 8.34 (1.43) 4.05 (2.24)2

LFC to DMN connectivity −0.16 (0.05) −0.15 (0.04) −0.18 (0.07) −0.16 (0.05)

LFC to DAN connectivity 0.32 (0.08) 0.24 (0.07)2 0.34 (0.09) 0.32 (0.09)

Hippocampal Volume (in ml) 5.85 (0.37) 5.23 (0.68)2 5.61 (0.63) 5.04 (0.76)2

1MCI > HC, 2MCI < HC (p < 0.05); 3scores were only available for 12 HC subjects of the TUM sample.
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FIGURE 3 | Significant group difference (MCI vs. HC) in LFC-connectivity to
the DAN in the TUM sample.

Higher LFC to DMN/DAN Connectivity Is
Associated with Greater Memory
Reserve in MCI
Next we tested our hypothesis that higher LFC-connectivity
to the DMN and DAN predicts greater memory reserve.
For the DMN, results of the regression analysis showed that
stronger (negative) connectivity between the LFC and the DMN
was associated with higher memory reserve in MCI. This
association was consistently detected for MCI patients of the
TUM [t(22) = −2.569, B/SE = −31.23/12.16, p = 0.0088;
Figure 4A, left panel] and ISD sample [t(21) = −2.138,
B/SE = −16.18/7.57, p = 0.0222; Figure 4A, right panel].
When computing the average LFC-connectivity only to those
voxels that surpassed the group level t-test against 0 (as shown
in Figure 1), we obtained congruent associations between
LFC-connectivity to the DMN and memory reserve [TUM
sample: t(22) = −1.875, B/SE = −18.30/9.76, p = 0.0375; ISD
sample: t(21) = −1.961, B/SE = −13.72/6.99, p = 0.0317].
In the HC groups, LFC to DMN connectivity was not
associated with memory reserve, neither in the TUM sample
[t(10) = −1.301, B/SE = −13.85/10.64, p = 0.111], nor when
tested in the ISD sample [t(30) = −0.719, B/SE = −2.71/3.53,
p= 0.239].

For the DAN, higher (positive) connectivity between the LFC
and DAN was associated with greater memory reserve in MCI
consistently across the TUM [t(22) = 1.992, B/SE = 14.69/7.38,
p= 0.0295; Figure 4B, left panel] and ISD sample [t(21)= 1.737,
B/SE = 7.44/4.28, p = 0.0489; Figure 4B, right panel]. When
assessing LFC-connectivity to the DAN based on only those
correlations that surpassed the group-level t-test against 0
(Figure 1), we obtained a similar result including significant
effects of LFC to DAN connectivity on memory reserve [TUM
sample: t(22) = 2.311, B/SE = 13.86/6.00, p = 0.0153; ISD

sample: t(21) = 2.123, B/SE = 7.51/3.54, p = 0.0229]. Again,
no associations between LFC to DAN connectivity and memory
reserve were found for HC subjects [TUM: t(10) = 0.827,
B/SE = 9.51/11.50, p = 0.2135; ISD: t(30) = −0.642,
B/SE=−1.63/2.61, p= 0.269].

When testing whether LFC-connectivity to other networks
(visual, somatomotor, fronto-parietal control, ventral attention,
limbic; see Figure 2 for network boundaries) predicted better
memory reserve in MCI or HC, no significant associations
were detected, neither for MCI nor HC of both samples
(Supplementary Table S1). This result pattern remained
unchanged when restricting the analysis to voxels that surpassed
the group-level t-test against 0. Together, these results suggesting
specificity of our findings for LFC-connectivity to the DMN
and DAN as predictors of memory reserve. This was confirmed
by our exploratory analysis, where we tested the association
between memory reserve and LFC-connectivity to sub-parcels of
the larger networks (Supplementary Figure S1). Here, we could
show that greater (negative) LFC-connectivity to large medial
and lateral parcels of the DMN (16 and 17 in Supplementary
Figure S1) and greater (positive) LFC-connectivity to all parcels
of the DAN (5 and 6 in Supplementary Figure S1) was predictive
of memory reserve in MCI across both samples. Statistical details
on these analyses can be found in Supplementary Table S2.
Again, this result pattern remained unchanged when restricting
the analysis to voxels that surpassed the group-level t-test against
0.

LFC to DMN and DAN Connectivity Is
Associated with Education in MCI
In a last step we aimed to extend previous findings, that LFC-
connectivity to those networks for which we found significant
associations between LFC-connectivity and memory reserve
is associated with years of education as a common reserve
proxy. As shown by our regression analyses, greater education
predicted higher (negative) LFC to DMN [t(19) = −1.771,
B/SE = −0.006/0.003, p = 0.046] and higher (positive) LFC
to DAN connectivity [t(19) = 2.248, B/SE = 0.011/0.005,
p = 0.018] in the ISD sample. In the HC group, no significant
associations between education and LFC-connectivity were
detected [LFC to DMN: t(28) = 0.795, B/SE = 0.005/0.005,
p = 0.217; LFC to DAN: t(28) = −1.016, B/SE = −0.007/0.007,
p= 0.159].

DISCUSSION

Our major findings were that in MCI greater LFC-connectivity
specifically to the DMN as well as the DAN was associated
with higher memory-related reserve, i.e., relatively high memory
performance when accounting for the level of brain pathology.
These findings suggest that resting-state connectivity levels of the
LFC to particular other networks contributes to memory-related
reserve in MCI.

We showed that the LFC exhibits widespread functional
connectivity to fronto-parietal and DMN networks, where higher
LFC activity was associated with higher activity within the DAN
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FIGURE 4 | Scatterplots for the independently validated associations between LFC to DMN (A) and LFC to DAN (B) connectivity and memory reserve in MCI
subjects.

regions, and lower activity within the DMN. These results are
consistent with previous findings of the LFC as a hub of the task-
positive network including the DAN, which is anti-correlated
with the DMN (Spreng et al., 2010, 2013; Cole et al., 2012).

Both the DMN as well as the DAN have been consistently
shown to be fundamentally involved in memory (Buckner
et al., 2008; Kim et al., 2010; Spreng and Grady, 2010; Kim,
2015), where higher within network connectivity and higher
DMN-DAN anti-correlation was associated with higher memory
ability in neurodegenerative diseases (Sorg et al., 2007; Mevel
et al., 2011; Finke et al., 2013; Zhang et al., 2015; Meskaldji et al.,
2016; Franzmeier et al., 2017a). A previous study assessing task-
related functional connectivity of fronto-parietal hubs including
the LFC, has reported that the fronto-parietal control network
couples with networks such as the DAN and DMN during
task-demands, which was suggested to facilitate adaptive task
performance (Cole et al., 2013). Since previous evidence shows
that task-related brain activation and task-related connectivity
are correlated with resting-state connectivity (Cole et al., 2014a;
Tavor et al., 2016), it is possible that higher resting-state LFC
connectivity to the DMN and DAN is predictive of higher LFC

coupling to these networks during memory tasks. Studies on
effective connectivity showed that the LFC is the driving force
controlling the activity of other brain networks such as the DAN
and the DMN (Gao and Lin, 2012; Wen et al., 2013). Future
studies assessing effective connectivity may thus address whether
the effective connectivity of the LFC to other networks is linked
to greater memory performance during task in AD.

For HC, we did not detect any associations between resting-
state LFC-connectivity and memory-related reserve. Possible
explanations include ceiling effects in memory performance
levels in the HC subjects or absence of AD pathology and ensuing
aggravated hippocampal atrophy. Note that the delayed recall
memory measure that was used to compute the residualized
memory reserve score is tailored for the clinical detection of
cognitive impairment and may thus be less amenable to detect
slight cognitive decline in cognitively asymptomatic controls.
Thus the absence of the detection between an association of
LFC-connectivity and residualized memory performance in the
HC groups of the current study may have been due to ceiling
effects. As an alternative explanation for the current results, in
the HC groups neurodegeneration may not be advanced to a
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level at which memory maintenance becomes reliant on high
levels of resting-state connectivity of the LFC hub. We point out,
however, that when the same HC subjects in the ISD sample
were challenged with a difficult face-name association task, task-
related LFC-connectivity was associated with higher education
and memory reserve as assessed on task performance levels
(Franzmeier et al., 2017c). Thus, we conclude that high levels
of LFC-connectivity become crucial for reserve once the brain is
challenged.

A strength of the current study is that we found an
identical pattern of associations between LFC-connectivity to
the DMN and DAN and reserve in the memory domain in
two independent samples and when using different network
parcellations, which guards against overfitting of statistical
models in a given sample and Type I error in the face of multiple
testing. However, when interpreting the results of the current
study, several caveats should be considered. Since education
was only available in one of our samples (ISD sample), the
associations between education and LFC-connectivity in MCI
could not be independently validated. However, our current
results are in line with the findings of our previous study based
on data from the Alzheimer’s disease neuroimaging initiative
(Franzmeier et al., 2017b), showing that greater education
is associated with increased LFC-connectivity in MCI-Aβ+

subjects, where greater LFC-connectivity attenuated detrimental
effects of parietal FDG-PET hypometabolism on memory. Thus,
the association between LFC-connectivity and education in MCI
in the ISD sample is unlikely to be spurious. Furthermore, we
assessed LFC-connectivity and its association with reserve at the
symptomatic stage in subjects at increased risk of AD. It remains
to be demonstrated whether LFC-connectivity supports reserve
already at the preclinical stages of AD including cognitively
normal subjects with emerging Aβ pathology or subjective
cognitive decline as well as at the more progressed AD stage
when mild dementia is visible. Future studies should assess
the role of LFC-connectivity also in those other stages of AD
ranging from preclinical to dementia, where reserve effects were
reported (Meng and D’Arcy, 2012; Ewers et al., 2013). Life-
span studies could be informative about the trajectory of LFC
connectivity changes both in normal and pathological aging.
Previous lifespan studies in HC subjects have shown age-relate
decline in the fronto-parietal control network (Geerligs et al.,
2015) and brain hubs such as the LFC (Betzel et al., 2014; Zuo
et al., 2017). Life-span studies could also address to what extent
life experiences such as education or occupational attainment,
i.e., factors associated with higher reserve, are predictive of inter-
individual differences in the trajectories of LFC-connectivity.
In the current study, no strong indication of pathological
decreases in LFC-connectivity to the DMN and DAN were found,
suggesting that LFC-connectivity is relatively spared in AD.
Thus, the understanding of the pre-morbid trajectories of LFC-
connectivity may be pivotal in order to predict reserve capacity at
an individual level in neurodegenerative diseases including AD.

In order to establish LFC-connectivity as a functional measure
of reserve, test–retest reliability of LFC-connectivity estimation

is fundamental. Previous studies have reported that test–retest
reliability of centrality measures such as global connectivity or
regional homogeneity is highest in heteromodal regions like the
LFC and in higher order networks such as the DAN and DMN
(Liao et al., 2013; Zuo and Xing, 2014). However, we encourage
future studies to specifically assess test–retest reliability of LFC-
connectivity estimation across healthy and clinical populations to
support its use as a functional measure of reserve.

Overall, our results provide novel insight in how the
LFC supports reserve in MCI via connectivity to memory-
related functional networks. These findings could act as a
starting point to assess modifiability of LFC-connectivity
via cognitive and pharmacological interventions or brain
stimulation (Dhanjal and Wise, 2014; Drumond Marra
et al., 2015; Franzmeier et al., 2016b). Previous studies
support the concept that transcranial magnetic stimulation
on the LFC can improve memory in MCI (Drumond
Marra et al., 2015) and that pharmacological treatment with
acetylcholinesterase inhibitors increases frontal resting-state
connectivity (Zaidel et al., 2012) and task-related frontal
brain activation (Dhanjal and Wise, 2014). Together, this
renders the LFC a promising target for fostering reserve
mechanisms, which holds potential for secondary prevention
of AD.
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