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Previous studies have indicated that aerobic exercise could reduce age related decline in
cognition and brain functioning. Here we investigated the effects of aerobic exercise on
intrinsic brain activity. Sixty sedentary healthy males and females (64—-78 years) were
randomized into either an aerobic exercise group or an active control group. Both
groups recieved supervised training, 3 days a week for 6 months. Multimodal brain
imaging data was acquired before and after the intervention, including 10 min of resting
state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling
(ASL). Additionally, a comprehensive battery of cognitive tasks assessing, e.g., executive
function and episodic memory was administered. Both the aerobic and the control
group improved in aerobic capacity (VO»-peak) over 6 months, but a significant group
by time interaction confirmed that the aerobic group improved more. Contrary to our
hypothesis, we did not observe any significant group by time interactions with regard to
any measure of intrinsic activity. To further probe putative relationships between fitness
and brain activity, we performed post hoc analyses disregarding group belongings. At
baseline, VOs-peak was negativly related to BOLD-signal fluctuations (BOLDgtp) in mid
temporal areas. Over 6 months, improvements in aerobic capacity were associated with
decreased connectivity between left hippocampus and contralateral precentral gyrus,
and positively to connectivity between right mid-temporal areas and frontal and parietal
regions. Independent component analysis identified a VOs-related increase in coupling
between the default mode network and left orbitofrontal cortex, as well as a decreased
connectivity between the sensorimotor network and thalamus. Extensive exploratory
data analyses of global efficiency, connectome wide multivariate pattern analysis
(connectome-MVPA), as well as ASL, did not reveal any relationships between aerobic
fitness and intrinsic brain activity. Moreover, fitness-predicted changes in functional
connectivity did not relate to changes in cognition, which is likely due to absent cross-
sectional or longitudinal relationships between VO»-peak and cognition. We conclude
that the aerobic exercise intervention had limited influence on patterns of intrinsic brain
activity, although post hoc analyses indicated that individual changes in aerobic capacity
preferentially influenced mid-temporal brain areas.
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INTRODUCTION

Given the increasing disease burden of age related cognitive
problems that comes with an aging world population
(Christensen et al., 2009), physical exercise could provide a
widely available and cost-effective approach to reduce age related
cognitive decline at a large scale (Baker et al., 2010). Prospective
studies show that low fitness in early adulthood is associated with
increased risk for early onset dementia later in life (Nyberg et al.,
2014; Wendell et al., 2014). Moreover, cross-sectional population
based studies have confirmed that individuals that stay physically
active have an improved brain-behavior relationship (Boraxbekk
et al., 2016).

Human intervention studies probing the cognitive effects of
exercise have, however, showed mixed findings. Meta-analyses
have reported a range of effect sizes on exercise induced
improvements of cognition among elderly. Smith et al. (2010)
reported modest improvements in attention, processing speed
(PS), executive function (EF), and memory. Colcombe and
Kramer (2003) report medium improvements (of particularly)
EFs, whereas a recent systematic meta-analysis concludes that
there is no evidence that aerobic exercise benefit cognition among
healthy older adults (Young et al., 2015). Thus, there is a need
for further investigations of the extent to which physical exercise
interventions among elderly could maintain, or even restore,
cognitive function and brain health. For investigations of the
neurophysiological mechanisms subserving the neuroprotective
effects of aerobic exercise, human brain imaging plays a central
role (for a review see, e.g., Stillman et al., 2016).

Evidence suggests that resting state brain activity could be
sensitive to also early-stage neuroplastic brain changes (Kelly and
Castellanos, 2014). To date, very few studies have investigated
changes in intrinsic brain activity following a structured physical
exercise intervention among healthy older adults. Voss et al.
(2010) investigated longitudinal changes in three age sensitive
brain networks, using a region of interested (ROI) based seed
correlation analysis (SCA), following 6 and 12 months supervised
cardiovascular training. Compared to an active control group,
the aerobic (walking) group increased connectivity in parts
of the default and frontal executive network after 12 months,
although no significant group differences were observed at
6 months.

Among the cross-sectional studies linking fitness to intrinsic
brain activity among elderly, a commonly reported finding
is reversal of age-related changes. Voss et al. (2016) used
network based statistics (NBS) on graphs based on hubs defined
in age-sensitive networks. These networks were identified as
the default mode- (DMN), dorsal attention-, and executive
control-, salience- and sensory related networks. Whereas older
subjects displayed enhanced between-network connectivity,
younger subjects displayed larger within-network connectivity.
They concluded that cardiorespiratory fitness among older
was positively associated with connectivity within age-sensitive
networks, primarily the DMN, whereas no associations were
observed for self-reported physical activity. However, another
large scale cross-sectional study, Boraxbekk et al. (2016) found
that current and accumulated physical activity was associated

with stronger integrity of the DMN in the anterior parts of
posterior cingulate cortex (PCC).

In the current study, we wanted to expand on the findings
relating aerobic fitness to intrinsic brain activity. In addition to
investigate resting-state functional connectivity (i.e., correlations
of BOLD-signal time series of distributed brain regions),
we also examined fluctuations of BOLD-signal time series
(BOLDstp). Resting state BOLDgtp has previously been used as
a proxy measure for vascular flexibility (Burzynska et al., 2015).
Moreover, vascular stiffness has in previous studies been linked to
aging and cognitive decline (Mitchell et al., 2011; Gauthier et al.,
2015), and there is evidence that physical activity counteracts
age related vascular stiffness. Burzynska et al. (2015) detected
a positive relationship between variability in intrinsic brain
activity and physical activity (measured with actigraphs), but not
for cardiovascular fitness (VO,-max). The authors concluded
that BOLD-signal fluctuations could provide a putative neural
correlate of brain health among elderly, and that “longitudinal
and intervention studies will shed more light on the potential
of BOLD in detecting changes in brain function as a result of
increased physical activity” (Burzynska et al., 2015). Using a more
direct MRI based measure of vascular rigidity, aortic pulse wave
velocity, Gauthier et al. (2015) reported an increase of vascular
rigidity with age, and a negative association to VO,-max (ie.,
maximum rate of oxygen consumption).

Another way to characterize vascular function (which is a
likely target for aerobic exercise) is quantification of cerebral
blood flow (CBF). Maass et al. (2015) used gadolinium-based
perfusion imaging MRI to investigate longitudinal changes
among healthy older adults that partook in a 3-months
exercise intervention, and found that improvements in aerobic
capacity correlated with increases in hippocampal blood flow.
In cross-sectional data, Boraxbekk et al. (2016) found a positive
relationship between physical activity and CBF (ASL) in PCC.

To our knowledge, the current study is the first to employ
pure resting-state functional magnetic resonance imaging (rs-
fMRI) scans before and after an actively controlled, long-term
physical exercise intervention among healthy elderly. In the
current article, we present the resting-state results of the research
project “Physical Influences on Brain in Aging” (PHIBRA), for
which the design, cognitive performance, and structural MRI-
data recently were reported (Jonasson et al.,, 2017). By using a
comprehensive set of analytical approaches of rs-fMRI data, and
additional measures of ASL-CBF, we attempted to replicate and
extend on previous research that evaluates the impact of aerobic
fitness on intrinsic brain activity. Based on previous studies we
predicted that analyses of group by time interactions would reveal
differential longitudinal changes in (1) hippocampal resting state
functional connectivity and betweenness centrality, (2) DMN
integrity (3) voxel wise BOLDstp and CBF. Additionally, we
aimed to characterize relationships between rs-fMRI and fitness
using more exploratory approaches. These included multivariate
representations of whole brain connectivity (in the following
referred to as multivariate pattern analysis, connectome-MVPA),
NBS and graph theoretical measures (global efficiency). In
order to investigate the functional significance of any observed
fitness-brain relationship stipulated above, we performed post
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hoc analyses relating neurophysiological changes to changes in 3T 08
cognition. wl | i; g g i §§§
: 3888 &3
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MATERIALS AND METHODS = S333 388
o 56
Subjects g oo She
Sixty healthy but sedentary older adults (age 64-78 years) were g o 88838 % 2 *
recruited and randomized into performing either supervised T 8598 g% g
aerobic exercise training, or stretching and toning control G g S
training, for 6 months, three times a week (30-60 min per %5 8
session). In the present analysis, 13 subjects were excluded e & %Cﬁ
due to the following reasons: one subject was excluded due to 3 $ 3 $ ‘gé (3
brain abnormalities; two subjects were unable to complete the ;'-, = % 88 § 2
intervention; one person was excluded since baseline VO,-peak e L s 1979 2 E iy
exceeded the group average by three standard deviations. 5228 3 $§
Another nine persons were excluded due to suprathreshold °e°9-° §§ g
movement during resting state scans at either pre- or post §§§
intervention sessions, see criteria below. Thus, complete data & S E % §
were obtained from 47 subjects, 22 in the aerobic intervention ! 8z é é S¢g g
arm and 25 in the active control group. The groups did not s - NN S
significantly differ with respect to age [#(45) = 0.92, p = 0.36], 5 * § g % § RS
sex [x2(1) = 0.045 p = 0.83], education [t(45) = 0.1, p = 0.36], ° “ o REISE g
or BMI [£(45) = 1.01, p = 0.32], see Table 1. 20§
For the ASL analyses, pre- and post intervention data = = Y- :“§)
was available from 55 subjects (aerobic group: 30 subjects, £ §Tg8S¢ 2 %% @
16 females; control group: 25 subjects, 14 females), age 0 | 8,8 B33 8| § ig
68.7 & 2.79 years. There were no significant group differences in e 2" F§BITEY|SSS
age, [t(53) = —1.27, p = 0.21), sex x2(1) = 0.040 p = 0.843], 8 2&82°848 52 g
education [t(53) = —0.087, p = 0.93], or BMI [#(53) = —0.98, § ¢ 6
p = 0.33]. For complete sample characteristics, see Jonasson et al. 5 § §
(2017). sa 3§ |Ggs
. . 2899 4§65
Intervention Procedures and Behavioral o 111 4w B3 £88
Outcome Measures g sl L §2%
For detailed descriptions of the intervention, the VO,-peak g N8Iy 4 \%
assessment, and the cognitive test battery, see Jonasson et al. £ R ’% g
(2017). In short, the intervention procedure was as follows: g o %g%
Subjects were recruited from local newspaper advertisement. g 8 __®3 E fé%
Prior to randomization into either of the two intervention S s 5829 8358
arms, all subjects underwent pre-intervention testing. The testing g .‘g’ s NG e
consisted of visits to the lab at six different days. On the 5“ E g S % 3 Eq% %
first testing day participants visited the Sports Science Lab, z N §§ <
Umed University, where fitness measures, including VO;-peak, 8 g£a
were assessed using a standardized graded cycle ergometer test. s 5% £38 §
Neuropsychological testing was performed on three separate % ¥ TUg3g % g §§ g
days. Assessments of cognitive ability included three tests S 2 Tozo2ee o g 8 §
designed to tax (verbal) episodic memory (EM), three test for EE, =) = I S o g §
as well as other tests including assessments of working memory = ©oT e RElage
updating (UPD) and PS. A composite score, cognitive score (CS), % % § %
was computed as a unit-weighted average of EM, EF, UPD, and ¢ (% S E
PS, as a single metric of overall cognition. Finally, MRI-data of g g é - n B
different modalities was collected, of which the rs-fMRI and the g 7 35« § < é
ASL-CBF data is reported here. Additional questionnaires and é 32 % £5lg ga S
dopamine positron emission tomography (PET) imaging were - g % S §% % % S §§
also collected, but will be reported elsewhere. The testing was a 8 oS S8_38::2 £8»2
conducted both before and after the interventions. The cognitive = S 288239088 5283

Frontiers in Aging Neuroscience | www.frontiersin.org 3 August 2017 | Volume 9 | Article 267


http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive

Flodin et al.

Exercise Modulated Intrinsic Brain Activity

testing, including the tests assessing EM, EF, and CS that are used
here, is described in detail in Jonasson et al. (2017).

Acquisition

Brain imaging data was acquired on a 3 T GE scanner equipped
with a 32-channel head coil. High-resolution T1-weighted
structural images were acquired using the following parameters:
180 slices; 1 mm thickness; repletion time (TR) 8.2 ms; time
to echo (TE) 3.2 ms; flip angle 12°; FOV 25 cm x 25 cm.
Functional data were acquired with a gradient EPI sequence with
the following parameters: 37 transaxial slices, 3.4 mm thickness,
0.5 mm gap, TR 2000 ms, TE 30 ms, flip angle 80°, FOV
25 cm x 25 cm, inplane resolution of 2.6 mm x 2.6 mm. During
resting state scan acquisition, subjects were instructed to lie still
and keep their eyes on a white fixation cross for 9 min and 40 s,
resulting in 290 volumes per subject and session.

Whole brain perfusion was measured with a 3D pseudo-
continuous ASL sequence. Labeling time was 1.5 s, post-labeling
delay time was 2 s, field of view was 24 cm, slice thickness was
4 mm, number of averages was 3, number of control label pairs
was 30, and acquisition resolution was 8 x 512 (arms x data
points in spiral scheme). Forty slices covered the whole brain and
the reconstructed voxel size was 1.88 mm x 1.88 mm x 4 mm.
CBF maps were computed using the standard GE reconstruction,
showing tissue CBF in ml/min/100 g.

MRI Data Preprocessing and Denoising
Rs-fMRI data preprocessing was performed in SPM12 using
standard preprocessing steps. These included slice time
correction, realignment and unwarping using 6th degree B-spline
interpolation, and functional to structural coregistration.
Structural images were segmented into gray matter, white matter
and cerebral spinal fluid images. Coregistered functional and
structural images were normalized to standard space using
Geodesic Shooting as implemented in the Shoot toolbox in
SPM12 (Ashburner and Friston, 2011). In short, a common
anatomical group-average 1 mm isotropic template was
generated, and subject specific deformation fields were created
and used for warping T1- and T2*-weighted images from
subject space to group template space. Secondly, non-linear
deformation fields pushing images from group space to MNI
space were applied. Functional data was then resampled into
2mm X 2 x 2 mm and finally smoothed using a Gaussian kernel
of 8 mm.

Cerebral blood flow data was coregistered to structural data,
and normalized using the same normalization procedures as
applied to the structural and functional data.

At the subject level, rs-fMRI time series were denoised
by controlling for: (1) suprathreshold movement (frame wise
displacement >0.25 mm or >3 std change in global signal
intensity, similar to, e.g., (Satterthwaite et al., 2013), (2) signals
from white matter and cerebrospinal fluid (five most explanatory
principal components from each tissue mask), and (3) six
movement parameters obtained from spatial realignment plus
their time derivatives. Subsequent to nuisance regression, time
signals were filtered (band passing 0.008-0.09 Hz). Nine subjects
lost >50% of their volumes either at pre- or post intervention

sessions (of originally 290 volumes) due to movement censoring,
and were therefore excluded from further analysis. Denoising of
data was accomplished with the Conn toolbox (version 15.h).

fMRI Analysis

Longitudinal effects of the intervention were evaluated as group
by time interactions. Voxel-wise group analyses of functional
connectivity were performed using the Conn toolbox, where
the two experimental groups were compared in terms of
longitudinal changes with regard to the resting state metrics.
Likewise, 2-sample t-tests of the post minus pre intervention
BOLDstp and CBF volumes were analyzed using the 2-sample
t-test as implemented in SPMI2. Group level statistics of
graph-theoretical indices (of betweenness centrality and global
efficiency) were calculated using repeated measure ANOVA
(using MatLab) with group and time as factors.

Post hoc analyses aimed to link individual longitudinal changes
in VO;-peak to changes in brain activity were also conducted,
ignoring experimental group-belonging. For these we performed
linear regressions, where changes in brain activity were regressed
on changes in VO,-peak. To guide longitudinal analyses, rs-
fMRI data were first related to aerobic capacity at baseline. Any
obtained significant brain-fitness association at baseline was used
to inform subsequent longitudinal analysis (see below).

In all group analyses, we controlled for age and sex (as e.g.,
done in Maass et al., 2015). For the longitudinal analyses, we
also controlled for baseline ratings of VO,-capacity. Additionally,
since the two experiential groups were matched with regard to
sex and age, the analyses of group by time interactions were also
performed without control for sex, age and VO, - peak ratings.
In all second-level fMRI analyses, we controlled for mean frame
wise displacement (FD).

Seed Based Correlation Analysis

Voxel-wise seed based correlation analyses (SCA) were
performed using the Conn toolbox (15.h). For each subject
and each seed region, z-transformed Pearson correlation maps
were brought to second level group analysis. We defined a priori
seeds in brain regions that in previous literature have been
influenced by aerobic exercise. These included (a) left and right
hippocampus obtained from the SPM Wake Forest University
(WFU) Pickatlas toolbox (Maldjian et al., 2003), (b) left and
right parahippocampus (WFU pickatlas), and (c) PCC, based on
a cluster reported by Boraxbekk et al. (2016) (center of gravity
MNI coordinates —6, —32, 27; 67 voxels).

BOLD-Signal Fluctuations

Variations in the preprocessed and cleaned resting state BOLD
time series were quantified using FSL maths', rendering
one voxel-wise whole brain map of the standard deviations
(BOLDsrp) for each subject and each session. As a corroborating
measure, we also calculated Amplitude of Low Frequency
Fluctuations (ALFF) which quantifies the total power within
the lower frequency band. ALFF was calculated for the
same preprocessed and cleaned volumes as for the BOLDsrp

'http://www.fmrib.ox.ac.uk/fsl
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calculations, using the MatLab toolbox DPARSFA? (Chao-Gan
and Yu-Feng, 2010). Thus, for the examined ALFF calculations,
the examined frequency window was essentially the same as the
bandpass filter used in the resting state data, i.e., 0.008-0.09 Hz.

Graph Analyses

For the network analyses, we created subject specific weighted
graphs based on 264 nodes defined as spherical (4 mm radius)
ROIs centered around functionally relevant coordinates (Power
etal., 2011; Cole et al., 2013) (see Supplementary Table S1). Edges
were defined as Pearson correlation values between each time
series of each ROI-ROI pair, where negative correlations were
nulled. For measures of hippocampal betweenness centrality,
we added two nodes corresponding to the left and right
hippocampus (see Seed Based Correlation Analysis) to the
original (264 nodes) graph. A high degree of betweenness
centrality imply that nodes have central positions, i.e., act as
hubs in the given network. Global efficiency is a measure of how
efficiently information is exchanged across a network. All graph
theoretical measures (i.e., Betweenness Centrality for left and
right hippocampus, and global efficiency) were calculated using
the brain connectivity toolbox (Rubinov and Sporns, 2010) as
implemented in GraphVarl.0 (Kruschwitz et al., 2015).

Independent Component Analyses

Independent component analysis (ICA) was performed using
the conn toolbox (v16, Whitfield-Gabrieli and Nieto-Castanon,
2012). Comparable ICA’s across subjects were obtained through
a dual regression procedure, where we first calculated 20
group level spatial independent components (default value), and
subsequently used the time series pertaining to each component
to obtain subject-specific spatial components. Longitudinal
change in five different networks were analyzed with regard to
baseline and change in aerobic capacity, respectively. The ICA
components of interest were chosen in an attempt to conceptually
replicate the analysis of resting state networks investigated in
Voss et al. (2016). Specifically, these included the default mode
network (DMN), right and left frontoparietal network (FPN),
dorsal attention network (DAN), and Sensorimotor Network
(SIM1) (see Supplementary Figure S1).

Network Based Statistics

We also conducted NBS analysis (Zalesky et al., 2010), on the
graph consisting of the same 264 nodes as used for graph analysis
(see Graph Analyses). NBS allows for identification of group-
effects among ROI-ROI connections or subnetworks, while
controlling for multiple comparisons. NBS is the conceptual
equivalent to cluster statistics for voxel wise whole brain
analyses. Analogous to cluster statistics, NBS yields stronger
statistical sensitivity for distributed effects, which in turn is
traded for spatial resolution which is limited to the size of
the identified network (c.f. cluster), rather than individual
ROI-ROI connections (c.f. voxels). NBS was used to identify
ROI-ROI pairs or subnetworks that revealed group by time
interactions, or where connectivity related to aerobic capacity

Zhttp://restfmri.net

(either at baseline, or in change-change regressions). For
this, we employed a typically used network defining ROI-
ROI (“primary”) connectivity threshold (Zalesky et al., 2010);
p = 0.001 uncorrected. In order to detect weaker but spatially
more distributed sub-graphs for 2nd level contrasts where the
original ROI-ROI connectivity threshold did not show any effect,
we also investigated fitness-network associations using ROI-ROI
connectivity thresholds of p = 0.01 and p = 0.05 uncorrected (two
sided). For NBS (i.e., “network component intensity”) threshold,
we used the significance level of family-wise error correction
(FWE) p = 0.05 (1000 permutations).

Whole Brain Pattern of Functional Connectivity
Additionally, we performed a principal component MVPA, or so
called “connectome-MVPA,” to detect patterns of whole brain
connectivity that correlated with aerobic capacity. The MVPA
analysis complements the SCA and ICA since the investigated
connectivity is not restricted to pre-selected seed regions or
independent components, respectively. Instead, it provides a
regionally unbiased mapping of brain areas with whole brain
connectivity patterns that are predicted by aerobic capacity
or longitudinal change thereof. In detail, the MVPA measure
was obtained by dimension reduction of the whole brain
connectivity matrix of each voxel. The connectivity matrix of
each subject was reshaped into a row vector and subsequently
concatenated over all participants into a matrix N x V,
where N was the number of subjects and V is the number
of voxels within the brain mask. The dimensionality of the
N x V group correlation matrix was reduced by principal
component analysis (PCA). This yielded an N x C matrix,
where C is the number of maintained principal components.
We maintained the first seven principal components that
explained the most of the variance of the connectivity matrix
(C = 7) [according to the rule of thumb to maintain an
approximate 1:7 ratio between number of components and
subjects, as proposed by the metric implementer Nieto-Castenon
(2015)°’]. In other words, the resulting seven component score
volumes best represented the whole brain connectivity pattern
for each subject. These volumes were included in an F-test
at the 2nd level analysis. Thus, we tested for clusters that
were predicted by aerobic capacity with regard to whole brain
connectivity.

The reported activation maps (of contrasted regression
parameter estimates) in group analyses were considered
significant at a cluster-level significance of p < 0.05, false-
discovery rate (FDR) corrected, and cluster defining voxel
threshold of p < 0.001, two-sided. Due to unreliable estimations
of smoothness of the MVPA rendered PCA maps, we used
non-parametric permutation statistics (1000 permutations) as
advocated by the implementer of the metric (Alfonso Nieto-
Castanon, personal communication, September, 23, 2016).
Connectome-MVPA analyses were thresholded using a cluster
based significance threshold of p = 0.05 (FDR). Un-thresholded
statistical maps for all reported results (Figures 1-3) are available
online at http://neurovault.org/collections/2415/.

3http://www.nitrc.org/forum/message.php?msg_id=14332
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FIGURE 1 | Relationship between aerobic capacity and fluctuations of BOLD
signal (BOLDstp) at baseline. For three regions in medial temporal areas, we
observed a negative relationship between aerobic capacity and BOLDgrp.
Green: a cluster (973 voxels) extending parts of right posterior hippocampus
and thalamus. Red: cluster (298 voxels) extending parts of L. Putamen, ())
thalamus and (2) amygdala. Blue: cluster (232 voxels) extending part of right
anterior hippocampus and amygdala. Results are visualized using brain net
viewer (Xia et al., 2013).

FIGURE 2 | Seed based correlation analysis relating aerobic capacity to
resting state functional connectivity. (A) At baseline, aerobic capacity
(VO2-peak) was primarily positively (blue) correlated with right medial temporal
lobe connectivity to frontal, parietal, and occipital areas. Negative correlations
between aerobic capacity and connectivity of the same seed were observed
to thalamus and occipital regions. (B) Longitudinal gains in aerobic capacity
predicted increased functional connectivity between the right medial temporal
lobe and frontal and parietal regions. (C) Change in aerobic capacity is
negatively associated with connectivity between left hippocampus and
contralateral precentral gyrus. Green areas indicate seed regions; blue
indicate positive associations to (change in) aerobic capacity; red indicates
negative associations.

For all significant findings of group by time interactions,
and associations between intrinsic brain activity either with
regard to baseline aerobic capacity or change in aerobic capacity,
we further examined the relationships to cognition. More

Z=18

L. Occipital pole
Z=-10

S1M1

g N

/
o

L Front Orbital G.
Z=10

DMN

c Z =30

>

S1M1 R Thalamus

FIGURE 3 | Independent component analysis (ICA). (A) ICA revealed a
negative association between baseline measures of aerobic capacity and
connectivity between the sensorimotor network (left) the occipital pole (right).
(B) Longitudinal gain in aerobic capacity was associated with increased
connectivity between default mode network (DMN) and left prefrontal cortex.
(C) Change in VO,-peak was negatively related to change in connectivity of
the somatosensory network (S1M1) to right thalamus. Green regions illustrate
the independent components (IC) at baseline; red indicates areas
experiencing decreased connectivity to the IC with higher (or gain in)
VOsq-peak; blue indicates areas with increased fitness predicted connectivity.

specifically, we defined volumes of interest based on the brain
regions that were significantly predicted by aerobic capacity.
These volumes were subsequently used as inclusive masks (i.e.,
small volume correction) within which we investigated effects
of either baseline score or longitudinal change in cognition,
respectively.

RESULTS

Intervention Induced Gains in Aerobic
Capacity

Within the sub-sample used here we observed a significant
group by time interaction, with the aerobic group displaying a
significantly larger improvement in aerobic capacity compared to
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the active control group F(1,43) = 6.20, p = 0.02 (see Table 1).
This was similar to what Jonasson et al. (2017) reported using the
full sample.

Intervention Induced Changes in Intrinsic

Brain Activity

None of the analyses (described in the method fMRI Analysis)
of intrinsic brain activity reveled significant group by time
interactions, neither with nor without control for sex, age and
baseline VO,-peak estimates.

Likewise, the NBS-analysis was non-significant using a range
of network defining ROI-ROI thresholds (see Network Based
Statistics). Finally, none of the graph theoretical measures
(betweenness centrality of left and right hippocampus, or global
efficiency) rendered significant group by time interactions, see
Table 1.

Given non-significant significant group by time interactions
with regard to intrinsic brain activity, we conducted additional
exploratory analyses that in future may guide confirmatory
studies. In these, we tested for relationships between longitudinal
change in VO,-peak and intrinsic brain activity across all
participants disregarding group belonging, similar to what has
been done previously (Maass et al., 2015; Jonasson et al., 2017).
Therefore, we first explored cross-sectional relationships between
VO;-peak and brain activity at baseline. Any relationships
observed at baseline data were subsequently used to inform
regressions of longitudinal change in VO,-peak to changes in
brain activity.

Relationship between Aerobic Capacity
with Resting State Measures at Baseline
BOLD-Signal Fluctuations

Variation of the BOLD signal time series (BOLDstp) was
negatively correlated with aerobic capacity in three clusters
located in midbrain regions at baseline (Figure 1 and Table 2).
The largest cluster (973 voxels) extended over right posterior
hippocampus and thalamus. A second cluster (298 voxels)
covered parts of left pallidum, and to a smaller extent also left
thalamus and amygdala. The third cluster (232 voxels) contained
right anterior hippocampus and right amygdala. Clusters were
anatomically labeled using the WFU pick atlas. BOLDstp were
not positively correlated with aerobic capacity in any brain
region.

Amplitude of Low Frequency Fluctuations (ALFF), resulted
in virtually identical results as BOLDgrp (see Supplementary
Figure S2), and thus ALFF results are not presented further.

Follow-up analyses that tested for the association between
cognitive performance and BOLDgrp were restricted to

the search volume of regions where aerobic capacity
predicted BOLDgsrp (displayed in Figure 1). Given that
particularly hippocampal and mid-temporal brain regions
displayed fitness related BOLDsrp, we tested for EM. In
addition, a meta-analysis (Colcombe and Kramer, 2003)
found the largest association between improved fitness and
cognitive performance to be related to EFs. Furthermore,
in our previous study, improved fitness was primarily
related to improved general cognitive performance (i.e.,
CS) (Jonasson et al., 2017). Therefore, we also tested the
association between EF, CS and BOLDgrp. Neither EM, EF
nor CS were significantly related to BOLDgrp. (All cognitive
outcome measures are presented in detail in Jonasson et al.,
2017).

Seed Correlation Analysis (SCA)

None of the a priori defined seeds displayed significant VO,-
peak predicted connectivity at baseline. However, connectivity
of the post hoc seed in the right medial temporal cortex (see
BOLD-Signal Fluctuations), to frontal-, parietal-, and occipital
regions displayed a positive correlation to aerobic capacity. We
also detected a negative association between aerobic capacity and
the connectivity between the same seed and right thalamus and
right occipital cortex (Figure 2A and Table 3).

Independent Component Analysis (ICA)

At baseline, among the five investigated ICA-derived networks
we observed a negative relationship between VO,-peak and
the connectivity of a sensorimotor network and a brain region
extending over calcarine sulcus and precuneus (see Figure 3A).
No associations between VO,-peak and connectivity of the other
four networks were seen.

Graph Measures, NBS, Connectome-MVPA and ASL
Several measures of intrinsic brain activity turned out not
to be significantly related to aerobic capacity. For graph
theoretical measures, neither global efficiency [#(42) = —0.06,
p = 095] nor left or right hippocampal centrality [L:
1(42) = —0.94, p = 0.34, R: #(42) = —1.23, p = 0.22] reached
significance.

In the NBS analysis, no ROI-ROI connectivities or
subnetworks were correlated with aerobic capacity, neither
corrected nor uncorrected. Furthermore, the connectome-
MVPA did not reveal any significant clusters predicted by
baseline VO,-peak.

Finally, analysis of ASL perfusion data did not reveal any
associations between aerobic capacity and CBF from neither
whole brain nor small volume voxel based analysis.

TABLE 2 | Significant relationships between BOLDstp and aerobic capacity at baseline.

Contrast Region (peak co-oridnates)

Cluster size (# voxels) Cluster p-FDR

Neg pre VO, -peak R. Hippocampus (32, —32, —8)
L. Putamen (-22, —2, —6)

R. Hippocampus (32, —9, 26)

973 <0.000001
298 0.004
232 0.002
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Relationship between Longitudinal
Change in Aerobic Capacity and Change
in Intrinsic Brain Activity
Seed Correlation Analysis
Longitudinal gain in aerobic capacity was positively associated
with changes in functional connectivity between the BOLDgTp-
derived seed region in right medial temporal lobe, and right
angular gyrus and left inferior frontal gyrus (Figure 2B
and Table 3). However, change in aerobic capacity was
negatively associated with change in connectivity between a
priori defined seed regions in the left hippocampus and the
right precentral gyrus (Figure 2C and Table 3). None of
the other a priori defined seeds related to change in VO,-
peak.

Behavioral follow-up analyses did not reveal any significant
relationships between changes in the fitness related SCA results
and EM, EEF, or CS.

Independent Component Analysis

Independent component analysis identified two significant
associations between changes in VO,-peak and connectivity.
Firstly, there was a positive relationship between gains in VO,-
peak and connectivity between DMN and left frontal pole
(see Figure 3B and Table 3). Secondly, a negative relationship
between change in VO;-peak and the connectivity between
the SIMl-network and right hypothalamus was observed
(Figure 3C). There was no significant relationship to changes in
cognition (EM, EF, and CS).

Network Based Statistics

The NBS revealed a subnetwork constituted by connected
nodes in the DMN, the frontal parietal-, visual- and ventral
attention network (Figure 4) in which gains in fitness was related
to changes in intra-network connectivity. Since the subgraph
detected by NBS does not allow for inferences on individual edges
(i.e., ROI-ROI connections), we also correlated change in VO,-
peak to connectivity between all individual ROI-ROI pairs (i.e.,
34584 individual connections). In this analysis, no connections

were significant (Bonferroni correcting for the edges in the full
adjacency matrix).

Graph Measures, BOLDgtp, Connectome-MVPA
and ASL
For the graph analysis, neither global efficiency [F(1,42) = 0.70,
p = 0.39], nor betweenness centrality of hippocampus [left:
F(1,43) = 1.35, p = 0.25; right: F(1,43) = 0.45, p = 0.50] was
significantly related to change in fitness.

None of the other measures of intrinsic brain activity
(MVPA, BOLDstp,) or ASL yielded significant change-change
relationships to fitness.

DISCUSSION

In the current study, we aimed to characterize the effects of
exercise induced improvements in aerobic capacity on intrinsic
brain activity. To accomplish this, we have employed a wide range
of resting-state fMRI metrics as well as measures of CBF using
ASL.

No Longitudinal Group Differences in
Brain Activity

Based on previous literature, we predicted significant group by
time interactions with regard to hippocampal connectivity, DMN
integrity and vascular response as revealed by BOLDstp and
CBF. In the present study, none of these measures displayed
group differences in longitudinal changes.

A possible explanation may be that both groups improved
in aerobic capacity. Since we stipulate that gain in VO,-peak
would be the active constituent mediating improvements in
cognition and modulations of intrinsic brain activity (in line with
the fitness hypothesis of cognition, (North et al., 1990; Kramer
et al,, 1999)], we reasoned that interindividual change in aerobic
capacity across both groups could be a sensitive predictor of
brain changes (similar to approaches used in previous studies,
e.g., Maass et al., 2015). Thus, we performed post hoc analyses

TABLE 3 | Relationships between functional connectivity and aerobic capacity at baseline and change over time.

Contrast Seed Target(s) (peak coordinates) Cluster size (# voxels) Cluster p-FDR
Pre VO, -peak R. Hippocampus* R. Superior Frontal Gyrus (14, 2, 58) 458 0.000005
L. Precentral gyrus (—22, —6, 56) 132 0.014
R. Occipital cortex (28, —62, 58) 116 0.017
R. Frontal pole (22, 48, 32) 116 0.017
Neg pre VO, -peak R. Hippocampus* R. Thalamus (WM), (12, —28, 18) 178 0.0047
Occipital (WM) (22, —86, 0) 145 0.012
ICA STM1 L. Occipital Pole (2, —92, 18) 133 0.0019
dVO,-peak R. Hippocampus* R. Angular Gyrus (36, —48, 30) 197 0.0013
L. Inf Frontal Gyrus (—48, 14, 6) 105 0.022
ICA DMN L. Front. Orbital (—32, 30, —8) 109 0.019
Neg dVO,-peak L. Hippocampus R. Precentral Gyrus (—36, —12, 36) 139 0.0097
ICA STM1 R. Thalamus (-6, —28, 12) 114 0.0043

Target regions are labeled based on the locations of the largest number of voxels within significant cluster, as identified and labeled within the Conn-toolbox. *Seed region

defined post hoc from VO2-peak predicted BOLDgrp effects at baseline.
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FIGURE 4 | Network based statistics (NBS) derived graph component predicted by change in VO,-peak. Using change in VO2-peak to predict longitudinal change
in the brain graph (264 nodes), we retrieved a subgraph spanning both task-negative and task-positive networks. Edge definition was p = 0.001 unc, and network
component significance threshold FWE corrected p < 0.05. The adjacency matrix (top right) depicts participating nodes, and only significant t-values (t > 3.54) are

shown. For MNI-coordinates of participating nodes, see Supplementary Table S1.

investigating inter individual change-change relations. The lack
of significant effects is discussed in further detail below.

Post hoc Analyses of Fitness-Brain
Relationships

Aerobic Capacity and the Medial Temporal Lobe

In the post hoc analyses we observed several associations between
aerobic fitness and intrinsic brain activity, both at baseline and
over time. Longitudinal change in aerobic capacity predicted
change in hippocampal connectivity. Whereas left hippocampus
displayed a decreased connectivity to precentral gyrus with
increasing fitness, the right hippocampus was associated with
increased connectivity to frontal and parietal areas. The right
hippocampus, similar to baseline, was associated with increased
frontal and parietal connectivity. Previously, Voss et al. (2013)
reported enhanced connectivity between parahippocampus and
bilateral temporal cortex, as well as to occipital and parietal areas
following a 12 months aerobic (walking) intervention. Similar
to the current findings, they observed reduced connectivity of
left hippocampus, although to the right prefrontal cortex rather
than to the right precentral gyrus as seen in here. Interestingly,
the authors showed that increased connectivity between bilateral
parahippocampal gyrus and middle temporal gyri were positively
predicted by increases in neurotrophic growth factors, although
no direct test of the behavioral significance of any of the
connectivity changes was presented.

We detected relationships between BOLDgsrp and aerobic
capacity at baseline, whereas gains in aerobic capacity did
not relate to changes in BOLDgrp over time. Contrary to
what previously has been reported (Burzynska et al, 2015;
Gauthier et al, 2015), the relationships between aerobic
fitness and BOLDgstp were negative and primarily observed
in mid-temporal rather than cortical areas. Burzynska et al.
(2015) reported cross-sectional associations between BOLDgtp
and physical activity, suggesting that BOLDstp could reflect
a long-term cardiovascular trait, which coheres with the
absence of any intervention related changes in current study.
Notably, they did not observe relationship between aerobic
capacity and BOLDgrp, but only a positive relationship
between BOLDgrp and physical activity. Our findings suggest
that high aerobic capacity is associated with a more stable
BOLD-signal within the temporal medial lobe. Speculative,
the high fit subjects would experience relatively lower levels
of physical demand, which could reconcile current findings
with those reported by Burzynska et al. (2015). However,
no on-line monitoring of degree of physical work during
scanning was performed. Thus, further studies are required to
establish the relationship between gains in aerobic capacity and
BOLDstp.

Longitudinal changes in intrinsic brain activity that were
predicted by change in aerobic fitness did not relate to changes
in any of the investigated cognitive domains (EM, EE and CS).
A plausible reason for this is the absent relationships between
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the cognitive variables and VO,-peak, both at baseline and in
change-change scores (Supplementary Table S2). Unfortunately,
this limits the conclusions of the functional meaning of the
observed fitness related brain changes. Thus, any functional
interpretations of these brain changes are unknown and would
have to rely on reverse inference, for which we lack unique
cognition-connectivity associations.

Taken together, the findings above support the notion that
aerobic fitness primarily affects mid temporal brain regions.
In addition to the exercise intervention studies investigating
changes in intrinsic brain activity (Voss et al., 2013; Burzynska
et al, 2015; Maass et al., 2015; Bér et al., 2016; Tozzi et al,
2016), corroborating evidence of hippocampal involvement is
also provided by studies investigating structural changes (e.g.,
Erickson et al., 2011, for a review, see Erickson et al., 2014;
Jonasson et al,, 2017). The fact that hippocampus display a
high capacity for plastic change in relation to environmental
factors (for a review, see Leuner and Gould, 2010), and
also undergoes age related resting state connectivity changes
(Salami et al., 2016), provides further motivation to specifically
probe the intrinsic brain activity in the mid-temporal lobe. By
standardizing research protocols and outcome measures, the
mechanisms linking hippocampal brain activity, brain structure,
vascularity, molecular growth factors and behavior will hopefully
be revealed (Duzel et al., 2016; Stillman et al., 2016).

Network Changes
Network based statistics analysis revealed a graph sub-
component that was predicted by the longitudinal change in
VO,-peak. Whereas previous cross-sectional reports (Voss et al.,
2016) showed a higher within network integrity (particularly in
DMN) with higher fitness, our longitudinal findings suggest that
increased fitness also modulate between network connectivity.
Whether the explanations for the discrepant finding are found in
differences in methodological approaches (e.g., graph defining set
of nodes) or lack of statistical power remains to be determined.
Resting state networks derived by ICA revealed relationships
between fitness and connectivity of both the SIM1 and the DMN.
Decreased connectivity between M1S1 and right thalamus was
associated with increased aerobic capacity. M1S1 receives input
from parts of thalamus, and the decreased connectivity with gains
in fitness seems counterintuitive at first. Speculatively, this could
reflect enhanced neuronal efficiency, although such a hypothesis
should be investigated using methods that complement the
correlational fMRI approaches used here. The connectivity
between the same SIM1 network and occipital cortex were
negatively related to fitness at baseline. In a small exercise
intervention among obese children, Krafft et al. (2014) observed
that the ICA derived motor network underwent decreased
connectivity to visual areas in precuneus in the exercise
group, resembling current baseline finding. Although our fitness
predicted SIM1 connectivity targeted different regions at baseline
compared to over time, it seems that functional segregation of
SIM1 reflects better fitness. However, in an aged cohort more
similar to ours, Voss et al. (2010) did not see group by time
changes in motor connectivity, why this finding would need to
be investigated further.

Interestingly, we observed enhanced connectivity between
the DMN component and the left orbitofrontal cortex that
correlated with gains in fitness. Even though the orbital
cluster is localized more laterally than the typical ventromedial
frontal DMN hub, the observation bears similarities to previous
literature of fitness related connectivity of the posterior anterior
midline core of the DMN (Voss et al., 2010, 2016). Both
these studies interpret the fitness-related DMN integrity as a
rejuvenated connectivity pattern, typical for younger subjects.
A similar interpretation could be given here, but the lack
of associations between cognition and these fitness-related
connectivity patters prevent any firm conclusion of their
behavioral significance.

Limited Effects

The a priori hypothesized group by time interactions, as
well as the majority of the exploratory tests that aimed
to relate longitudinal change in VO,-peak to change in
intrinsic brain activity, turned out to be non-significant. Despite
drawing on previous literature that have investigated intrinsic
capacity in relation to aerobic fitness among elderly, we were
largely unable to conceptually replicate these. The replication
failures could likely be attributed both to factors pertaining
to cognitive brain imaging in general (see below), as well as
to factors specific to this study context (e.g., differences in
study design, interventions, cohorts and analyses strategies).
Another potentially important issue is the fact that the active
control group may have exercised more vigorously than in
many previous interventions, considering that aerobic capacity
increased substantially also for this group. Recent research have
shown that resistance and coordination training, part of our
active control training regimen, may influence the BOLD-signal
during task performance (Voelcker-Rehage et al, 2011; see
Voelcker-Rehage and Niemann, 2013, for a review), as well as
show similar effects on hippocampus volume as aerobic exercise
(Niemann et al,, 2014). By comparing two training regimens
which both have positive effects on brain and behavior, actual
intervention effects may thus have been masked.

The effects of gains in fitness on the exploratory resting-state
measures (e.g., global efficiency, connectome-MVPA, BOLDstp)
of the resting-state brain activity were likely too subtle to
be detected in current study. The BOLD signal acquired
during resting state fMRI is inherently noisy, and estimations
based on high quality fMRI data showed that the variance
associated with neuronal activity only constituted around 4%
of the total variance of the BOLD-signal time series (Marcus
et al.,, 2013). However, despite the large contribution of non-
neuronal noise to the resting state BOLD signal, test-retest
reliability of group average of cardinal resting state networks
has been reported to be fairly reliable over time (Zuo et al,
2010; Wisner et al, 2013), although the choice of both
resting state measures and preprocessing pipeline influence
the degree of test-retest reliability (Yan et al, 2013). Not
surprisingly, between-group comparisons of brain activity are
also typically much smaller than single group averages (for an
informative discussion on effect sizes in fMRI, see Poldrack et al.,
2017).
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Limitations and Future Directions

Current study has several limitations. First, we were unable to
selectively induce improvements of VO;-peak in the aerobic
group, although the aerobic group improved more than the
control group. This likely decreased any exercise induced group
differences of the outcome measures. Although challenging,
experimental designs that more efficiently prevent cardiovascular
training in the active control group could potentially reveal
stronger experimentally induced brain changes.

Furthermore, current study only measured two time points,
i.e., before and after the 6-months intervention. Future studies
would benefit from sampling data at multiple (>2) time points,
for higher temporal resolution of the developmental trajectories.
One motive for this is the expansion-partial normalization
hypothesis of neuroplasticity (Brehmer et al, 2014), which
proposes that longitudinal brain changes commonly follow
inverted u-shaped temporal profiles, which could only be
detected if data were acquired at multiple time points.

Resting state studies of physical interventions are still
sparse. A greater understanding of the mechanisms mediating
the neurocognitive effects of aerobic exercise are valuable
for optimizing intervention programs to target the relevant
neurophysiological processes and cognitive domains with higher
precision. To enhance the reliability and replicability of imaging
findings, several factors have recently been proposed (Ioannidis
et al,, 2014; Poldrack et al., 2017). Complete reporting of results
(i.e., including null findings), as well as clear declarations of which
analyses are ad hoc or exploratory and which are hypothesis
driven, are both critical when aggregating research findings in
meta-analyses, or for informing the design of future studies.
Above all, the authors emphasized the importance of attaining
proper statistical power, e.g., by enhancing cohort sizes for
instance through laudable data sharing initiatives. Moreover,
increased statistical power is also obtained by larger effect
sizes. Stronger experimental effects could likely be achieved
by longer and more intensive interventions. Potentially, longer
intervention studies would also enable the observed brain
changes to translate into improvements in behavior.

CONCLUSION

We have characterized changes in intrinsic brain activity
following a 6-months physical exercise intervention. None
of our a priori hypothesis of group by time interactions
regarding intrinsic brain activity were confirmed. However,
when investigating the linear relationships between longitudinal
gain in aerobic capacity and changes in functional connectivity
we observed exercise modulated hippocampal connectivity.
Likewise, gain in aerobic capacity was associated with increased
connectivity between the DMN and prefrontal cortex, but
negatively related to sensorimotor-thalamic connectivity.
However, these changes did not relate to changes in cognition,
possibly due to the length of the intervention, or insensitive

behavioral measures. The majority of the exploratory analyses
did not reveal significant associations between fitness and
intrinsic brain activity, although we observed that mid-temporal
BOLDgstp was negatively associated with fitness at baseline.
The current study provides resting-state fMRI evidence that
exercise preferentially modulate mid-temporal brain regions and
hippocampus. The functional significance of these brain changes
should be investigated further, preferably in high powered studies
using data acquired at multiple time points.
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