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A number of magnetic resonance imaging (MRI) studies have shown age-related

alterations in brain structural networks in different age groups. However, the specific

age-associated changes in brain structural networks across the adult lifespan is

underexplored. In the current study, we performed amultivariate independent component

analysis (ICA) to identify structural brain networks based on covariant gray matter volume

and then investigated the age-related trajectories of structural networks over the adult

lifespan in 536 healthy subjects aged 20–86 years. Twenty independent components

(ICs) were extracted in the ICA, and statistical analyses between age and ICA weights

revealed 16 age-related ICs across the adult lifespan. Most of the trajectories of ICA

weights demonstrated significant linear decline tendencies, and the corresponding

structural networks primarily included the anterior and posterior dorsal attention

networks, the ventral and posterior default mode networks, the auditory network, five

cerebellum networks and the hippocampus-related network with the most significant

decreased tendency among all ICs (p of age= 1.11E-77). Only the temporal lobe-related

network showed a significant quadratic tendency with age (p of age2 = 5.66E-06). Our

findings not only provide insight into the patterns of the age-related changes of structural

networks but also provide a foundation for understanding abnormal aging.

Keywords: independent component analysis, structural network, magnetic resonance imaging, gray matter

volume, age-related changes

INTRODUCTION

Magnetic resonance imaging (MRI) studies have shown that the brain undergoes remarkable
structural development during childhood and adolescence and that those alterations continue even
through adulthood (Good et al., 2001; Gogtay et al., 2004; Raji et al., 2012; Fjell et al., 2013; Mills
et al., 2014). The global gray matter volume decreases linearly with age, and the total white matter
volume shows an inverse U-shaped tendency in healthy adults (Good et al., 2001; Ge et al., 2002);
however, regional brain changes are heterogeneous in different regions across the adult lifespan
(Gogtay et al., 2004; Allen et al., 2005; Curiati et al., 2009; Ziegler et al., 2012; Fjell et al., 2013). For
example, the gray matter volumes of the frontal, parietal and occipital lobes present linear decreases
with age across the adult lifespan (Allen et al., 2005), while the hippocampus volume presents a
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non-linear trend with age (Allen et al., 2005; Fjell et al., 2013).
Early structural MRI researches used univariate methods, such as
regions of interest (ROIs) or voxel-based morphometry (VBM),
to investigate the age-related gray matter changes; however,
these studies considered ROIs or brain voxels as independent
variables and ignored the interregional covariant information
among them.

A number of brain MRI studies have investigated anatomical
network changes based on the structural covariance of gray
matter volume in normal adults (Brickman et al., 2007; Bergfield
et al., 2010; Li et al., 2013; Hafkemeijer et al., 2014). Li et al.
used seed-ROI regression models to explore age-related changes
of gray matter volumes in eight gray matter networks in young,
middle-aged and older groups of healthy subjects aged 18–89
years (Li et al., 2013). Hafkemeijer et al. utilized independent
component analysis (ICA) to extract nine gray matter anatomical
networks in middle-aged to older normal participants (45–85
years), who were divided into four age subgroups (Hafkemeijer
et al., 2014). Brickman et al. identified aging-related regional
MRI covariance patterns in younger and older groups of healthy
adults using a multivariate statistical model called the subprofile
scalingmodel (SSM; Brickman et al., 2007). These studies showed
that structural covariance patterns or networks demonstrated
different age-related changes among the different age groups
(Brickman et al., 2007; Li et al., 2013; Hafkemeijer et al., 2014).
For example, there was a negative correlation between age and
gray matter volume in four anatomical networks, including the
medial visual cortical network, sensorimotor network, default
mode network (DMN) and executive control network; however,
gray matter volume was not significantly associated with age in
five other networks, including the temporal network, auditory
network, and three cerebellar networks (Hafkemeijer et al., 2014).
It has been noted that the above-mentioned studies focused
primarily on brain structural network changes in different
age groups. However, the age-related trajectories of the brain
structural networks across the adult lifespan need to be further
explored.

Multivariate analysis methods can identify the inter-regional
covariance relationship among different brain regions. Therefore,
these approaches have been widely applied to brain imaging
studies (Damoiseaux et al., 2006; Brickman et al., 2007; Mantini
et al., 2007; Xu et al., 2009; Bergfield et al., 2010; McIntosh
and Mišic, 2013; Guo et al., 2014; Hafkemeijer et al., 2014).
ICA, as a popular data-driven multivariate analysis method,
was introduced first to the studies of brain functional networks
(Damoiseaux et al., 2006; Mantini et al., 2007) and then to
those of structural networks (Xu et al., 2009; Guo et al., 2014;
Hafkemeijer et al., 2014). Xu et al. presented a source-based
morphometry (SBM) approach using ICA to study gray matter
network differences between subjects with schizophrenia and
healthy control subjects and confirmed the validity of ICA in
structural MRI data (Xu et al., 2009). Guo et al. also applied
ICA to examine structural covariance networks across healthy
young adults and to determine their spatial consistency (Guo
et al., 2014). Compared with other multivariate analysis methods,
ICA is a higher-order statistical method and can decompose
linear mixed signals into maximally independent components

(Calhoun et al., 2009). In this way, ICA can effectively extract
independent sources from complex brain imaging data without
a priori information.

The purpose of the current study is to explore age-related
gray matter changes at the network level across the adult
lifespan. We applied the ICA method to identify structural
gray matter covariance networks among 536 healthy subjects
aged 20–86 years. Finally, regression analyses were performed
on ICA weights and age to investigate age trajectories of the
corresponding networks.

MATERIALS AND METHODS

Participants
Structural MRI data were obtained from a large public
database of the Information eXtraction from Images (IXI)
(http://brain-development.org/ixi-dataset/). In this study, 536
healthy subjects (Females/Males = 273/263, age range 20–86
years) were included. Specific information about the subjects
is presented in Table 1. More details about demographic
information of the participants are presented on the IXI database
website (Kennedy et al., 2016).

Data Acquisition
All structural MRIs were obtained on three different sites: a
Philips 1.5T system at Guy’s Hospital, a General Electric (GE)
1.5T at the Institute of Psychiatry, and a Philips 3T magnetic
resonance scanner at Hammersmith Hospital. The T1-weighted
structural MRIs were acquired using a magnetization-prepared
rapid acquisition gradient-echo (MPRAGE) sequence. Scanning
parameters for Philips 1.5T scanner were: TR= 9.8 ms, TE= 4.6
ms, flip angle= 8◦; and for Philips 3T scanner were: TR= 9.6 ms,
TE = 4.6 ms, flip angle = 8◦. Scanning parameters for GE 1.5T
scanner were not available.

Image Preprocessing
In this study, all structural MRI data were processed using the
VBM8 toolbox (available at http://dbm.neuro.uni-jena.de/vbm8)
(Ashburner and Friston, 2000; Good et al., 2001; Ashburner,
2007) in the Statistical Parametric Mapping (SPM8) software
(available at: http://www.fil.ion.ucl.ac.uk/spm). In brief,
using adaptive maximum posterior (MAP) and partial
volume estimation (PVE), all of the structural images were
segmented into gray matter, white matter and cerebrospinal
fluid. Subsequently, a diffeomorphic anatomical registration
exponential Lie algebra (DARTEL) approach (Ashburner, 2007)
was applied to normalize each subject’s gray matter image to
the average DARTEL template, which was generated iteratively
and finally to the Montreal Neurological Institute (MNI) space.
Additionally, to preserve the total gray matter amount in the
native space, the voxel of each gray matter image was multiplied
by the Jacobian determinant from the normalization. Gaussian
smoothing was performed with a kernel of 8 mm full width at
half maximum (FWHM) on each subject’s gray matter image.

Multiple linear regression models were constructed for the
spatial preprocessed gray matter maps to account for two
confounding factors: scanner and gender. In order to avoid
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TABLE 1 | Sample characteristics of different age groups.

Age span (yr) Mean age (yr) No. subjects No. subjects in scanning sitea Female/male Ethnicityb Education meanc

20–29 25.41 93 35/41/17 52/41 64/2/12/15 4.39

30–39 34.36 106 55/28/23 42/64 80/3/12/11 4.58

40–49 44.41 86 51/25/10 46/40 73/1/6/6 4.05

50–59 55.2 88 55/29/4 53/35 72/4/7/5 3.53

60–69 64.01 116 68/41/7 72/44 94/3/11/8 3.55

70–79 72.81 41 21/14/6 6/35 35/1/2/3 3.07

80–86 83.75 6 4/1/1 2/4 6/0/0/0 3.67

Total 536 289/179/68 273/263 424/14/50/48 3.94

aThree separate subsamples from different scanning sites in London: Guy’s Hospital: Philips 1.5T/Hammersmith Hospital: Philips 3T/Institute of Psychiatry: General Electric 1.5T
bThe number of different ethnic groups in our IXI sample: Caucasian/Black/Asian/Other
cEducation levels: 1 = No qualifications; 2 = O-levels, GCSEs, or CSE; 3 = A-levels; 4 = Further education; 5 = University or Polytechnic degrees.

the possible bias of different scanners, all participants from
the three scanners (Guy’s Hospital, Institute of Psychiatry and
Hammersmith Hospital) were represented with three column
dummy independent variables of 0/1 in regression models.
Additionally, gender was a nuisance factor in this study, then
gender was also represented with one column dummy variables
of 0/1. The adjusted gray matter images were entered into the
subsequent ICA procedure.

ICA
The ICA was implemented using the fusion ICA toolbox (FIT)
(available at http://mialab.mrn.org/software/fit/index.html). In
this study, the gray matter image of each subject was spatially
concatenated as a row vector to form a subject-by-voxel input
data matrix. Then, the initial matrix was decomposed into a
subject-by-sourcemixingmatrix (also referred to as ICAweights)
and a statistically independent source-by-voxel source matrix
(spatial components or brain networks) using the informax
algorithm which minimizes the mutual information of the
sources (Calhoun et al., 2009; Xu et al., 2009). The mixing matrix
exhibits the interrelationship in subjects and source networks,
and the source matrix exhibits the interrelationship in source
networks and voxels across the whole brain. Then each column
of the mixing matrix represents the degree to which one subject
contributes to the corresponding source network. Each row
of the source matrix indicates a spatial distribution of brain
structural network which expresses the covariant changes of
the gray matter volume within the brain (Xu et al., 2009).
Finally, each source network was converted to a z-score map and
reshaped to a 3D brain map with a threshold Z = 3 to reveal
the gray matter structural covariant patterns. The resulting ICA
coefficient weights were used for the statistical analysis.

Statistical Analysis
Cubic, quadratic and linear regression analyses were performed
separately between age (independent variables) and each column
of the ICA weights (dependent variables) to explore the age-
related trajectories of networks throughout the adult lifespan.
Bayesian Information Criterion (BIC) was used to determine the
optimal regression model with the smallest BIC value. A single-
sample T-test was performed on the regression coefficients of the

highest-order age item with the statistical significance threshold
set at p < 0.05 with Bonferroni correction for each optimal
regression model.

Additionally, in order to evaluate the age range effect on the
age-related patterns, we re-performed the same statistical analysis
of the ICs for subjects aged 20–80 years, 20–70 years, and 20–60
years, respectively.

RESULTS

Twenty independent components (ICs) were extracted in the
ICA. The BIC and T-test revealed 16 ICs significantly associated
with age at Bonferroni corrected P-value (Figures 1–3). Fifteen
ICs showed significant linear declines (p < 2.50E-03), and
only one IC (IC 17) had a quadratic trend (p = 5.66E-06).
These structural networks included the anterior and posterior
dorsal attention networks (DAN; Figure 1, IC 2 and IC 7), the
ventral and posterior DMN (Figure 1, IC 6 and IC 11), the
auditory network (Figure 2, IC 12), the sensory-motor network
(Figure 2, IC 15), the language-related speech network (Figure 2,
IC 3), the hippocampus-related network (Figure 2, IC 16), the
caudate-related network (Figure 2, IC 9), the thalamus-related
network (Figure 2, IC 13), the cerebellum networks (Figure 3,
IC 4, IC 5, IC 14, IC 19, and IC 20), and the temporal lobe-
related network (Figure 3, IC 17). The main brain clusters in
each IC are described in Table 2. The hippocampus-related
network (Figure 2, IC 16) showed themost significant decreasing
tendency among them (p= 1.11E-77).

Figures 1–3 show age-related changes in the ICs and the
corresponding scatterplots with best fitted curves between ICA
weights and age for each IC. Table 3 lists the results of the
regression statistics analysis.

The results for subjects aged 20–80 years showed that the ICA
weights of the same 15 ICs exhibited significant linear declines (p
< 2.50E-03), and only that of IC 17 had a significant quadratic
trend (p = 4.17E-04). The results for subjects aged 20–70 years
showed that there were still the same 14 ICs showing significant
linear declines (p < 2.50E-03), but one IC (IC 4) showed non-
significant linear reduce (p = 0.0191). In addition, IC 17 was
also had a quadratic trend with non-significant level (p of age2
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FIGURE 1 | Age-related changes in gray matter structural networks. (A) and (C) columns: IC 2, 7, 6, and 11 represent structural network maps associated with age in

536 healthy adult subjects. The color bar represents Z scores. (B) and (D) columns: the orange scatterplots show the age-related patterns in different networks. The

orange lines represent the fitted lines between age and ICA weights for each network.

FIGURE 2 | Age-related changes in gray matter structural networks. (A) and (C) columns: IC 12, 15, 3, 16, 9, and 13 represent structural network maps associated

with age in 536 healthy adult subjects. The color bar represents Z scores. (B) and (D) column: the orange scatterplots show the age-related patterns in different

networks. The orange lines represent the fitted lines between age and ICA weights for each network.
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FIGURE 3 | Age-related changes in gray matter structural networks. (A) and (C) columns: IC 4, 5, 14, 19, 20, and 17 represent structural network maps associated

with age in 536 healthy adult subjects. The color bar represents Z scores. (B) and (D) column: the orange scatterplots show the age-related patterns in different

networks. The orange lines represent the fitted lines between age and ICA weights for each network.

= 0.0081). The results for subjects aged 20–60 years showed that
all 16 ICs had the linear decreased patterns. Twelve of 16 ICs were
still significant (p < 2.50E-03) and the remaining 4 ICs (IC 4, 17,
19, 20) were non-significant with a minimum of p= 0.0062.

DISCUSSION

In the current study, we first performed multivariate ICA to
investigate the brain structural covariance networks across the
adult lifespan based on healthy subjects’ MRI data acquired from
the dataset IXI. Then, we further explored the trajectories of the
structural networks associated with age. We found 16 significant
age-related networks, and ICA weights of 15 networks decreased
linearly with age; only ICA weights of the temporal lobe-
related network (IC 17) showed a significant quadratic tendency
with age.

In previous studies, researchers have extracted the DAN
based on functional MRI (fMRI) data (De Luca et al., 2006;
Fox et al., 2006; Mantini et al., 2007; Power et al., 2011). For
example, Mantini et al. decomposed fMRI data via ICA to
investigate the brain resting state networks from 15 healthy
subjects (20–29 years) and obtained a DAN network mainly
including the bilateral intraparietal sulcus (Mantini et al., 2007).
We reported that IC 2 and IC 7 corresponded to the anterior

and posterior DAN. Some resting state functional studies have
explored functional connectivity density (FCD) changes of DAN
across lifespan (Tomasi and Volkow, 2012; Betzel et al., 2014).
Betzel et al. found two dorsal attention components (DorsAttnA
and DorsAttnB), and the modularity of DorsAttnA which mainly
located to the temporo-occipital cortex, parieto-occipital cortex,
and superior parietal lobule showed a prominent age-related
linear decrease of FCD across the subjects aged 7–85 years (Betzel
et al., 2014). Tomasi and Volkow used a FCD mapping approach
and revealed statistically significant age-related FCD decreases in
DAN (r = −0.23, p < 1.00E-06) from healthy subjects (13–85
years) (Tomasi and Volkow, 2012). Our current results showed
that gray matter volumes of IC 2 and IC 7 also exhibited
significant linearly decreased trends with age (p = 1.36E-34 and
p = 2.40E-13, respectively), which suggested that functional and
structural DAN have similar age-related patterns.

We found that ICA weights of both the ventral and posterior
DMN (IC 6 and IC 11) declined linearly with age ranging
from 20 to 86 (Figure 1, Tables 2, 3). Several neuroimaging
studies have proposed that the structural DMN changes with
age not only during the developmental process (Bluhm et al.,
2008; Supekar et al., 2010) but also in adult life (Luo et al.,
2012; Spreng and Turner, 2013; Hafkemeijer et al., 2014). Spreng
et al. suggested a significant linear decline between age and
the structural covariance of the default network scores across
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TABLE 2 | Brain regions showing age-related changes in structural networks.

Brain regions Peak coordinates Z Cluster size

MNI (X,Y,Z) (mm3)

IC 2: ANTERIOR DORSAL ATTENTION NETWORK

R middle frontal gyrus 36 27 35 10.92 11,070

L middle frontal gyrus −35 29 32 7.93 9,140

L precentral gyrus −38 11 47 5.77 3,139

IC 3: LANGUAGE-RELATED SPEECH NETWORK

R inferior frontal gyrus 53 20 9 4.77 2,498

L inferior frontal gyrus −51 9 15 4.5 2,929

IC 4: CEREBELLUM NETWORK 1

R cerebelum 8 area 35 −59 −54 11.96 9,386

L cerebelum 8 area −35 −56 −53 10.61 6,500

R cerebellum, lobule 7b 38 −66 −53 10.12 1,887

L cerebellum, lobule 7b −38 −62 −53 9.44 1,684

IC 5: CEREBELLUM NETWORK 2

R cerebellum crus2 12 −84 −33 6.68 3,540

R cerebellum crus1 14 −84 −30 6.36 2,005

IC 6: VENTRAL DEFAULT MODE NETWORK

R middle temporal gyrus 51 −38 5 5.72 2,636

L middle temporal gyrus −51 −41 2 8.19 8,714

R angular gyrus 45 −60 27 4.94 2,656

L angular gyrus −42 −57 23 7.27 3,736

IC 7: POSTERIOR DORSAL ATTENTION NETWORK

R postcentral gyrus 57 −20 32 8.35 8,039

L postcentral gyrus −56 −24 30 5.87 2,015

R supramarginal gyrus 59 −18 29 8.23 5,144

L supramarginal gyrus −53 −26 33 6.22 2,774

R inferior parietal lobule 32 −38 50 5.67 2,977

L inferior parietal lobule −51 −27 36 6 5,528

IC 9: CAUDATE-RELATED NETWORK

R caudate nucleus 14 18 0 7.43 2,626

L caudate nucleus −12 17 −2 7.01 1,715

R putamen 18 17 0 5.22 709

L putamen −29 3 −2 6.35 1,364

IC 11: POSTERIOR DEFAULT MODE NETWORK

R precuneus 9 −50 36 7.53 8,546

L precuneus −9 −50 35 8.89 9,383

R middle cingulate gyrus 8 −48 35 7.89 2,974

L middle cingulate gyrus −8 −50 33 8.89 3,453

IC 12: AUDITORY NETWORK

R inferior frontal gyrus 42 −27 17 7.26 2,977

R superior temporal

gyrus

44 −29 17 7.12 2,504

L superior temporal gyrus −42 −33 12 8.94 6,581

R rolandic operculum 42 −27 17 7.26 2,977

L rolandic operculum −41 −33 14 8.81 1,826

IC 13: THALAMUS-RELATED NETWORK

R thalamus 3 −18 6 9.66 3,206

L thalamus 0 −18 6 9.57 3,173

IC 14: CEREBELLUM NETWORK 3

R cerebellum crus1 47 −54 −36 9.63 8,350

(Continued)

TABLE 2 | Continued

Brain regions Peak coordinates Z Cluster size

MNI (X,Y,Z) (mm3)

L cerebellum crus1 −44 −56 −36 10.68 7,212

IC 15: SENSORY-MOTOR NETWORK

R superior frontal gyrus 17 6 65 6.3 6,423

L superior frontal gyrus −23 −12 60 6.31 3,554

R middle frontal gyrus 26 14 48 4.72 1,232

L middle frontal gyrus −27 −9 53 4.4 729

IC 16: HIPPOCAMPUS-RELATED NETWORK

R hippocampus 29 −15 −21 4.08 1,033

L hippocampus −26 −15 −21 4.19 1,205

R parahippocampal gyrus 24 −8 −24 3.97 1,073

L parahippocampal gyrus −21 −8 −26 3.93 597

IC 17: TEMPORAL LOBE-RELATED NETWORK

R inferior temporal gyrus 38 6 −42 6.14 7,243

L inferior temporal gyrus −35 8 −42 7.52 7,459

R middle temporal pole −35 6 −44 7.11 3,750

L middle temporal pole 45 14 −36 5.83 4,138

IC 19: CEREBELLUM NETWORK 4

R cerebelum 8 area 9 −60 −56 8.9 6,247

L cerebelum 8 area −15 −69 −53 9.04 4,604

R cerebellum crus2 15 −80 −47 6.64 4,114

L cerebellum crus2 −11 −80 −44 6.33 3,459

IC 20: CEREBELLUM NETWORK 5

R cerebelum 6 area 20 −74 −24 6.23 6,281

L cerebelum 6 area −14 −77 −24 8.68 5,947

R cerebellum crus1 20 −77 −26 5.88 4,398

L cerebellum crus1 −12 −77 −23 8.64 5,495

the adult lifespan of 18–96 years (Spreng and Turner, 2013).
Meanwhile, Hafkemeijer et al. revealed that there was a negative
association between age and gray matter volume in the DMN
from 45 to 85 years of age (Hafkemeijer et al., 2014), in agreement
with our results. Moreover, age-related changes can also be found
in the functional connectivity (FC) in the DMN (Damoiseaux
et al., 2008; Hafkemeijer et al., 2012; Onoda et al., 2012; Huang
et al., 2015). Damoiseaux et al. demonstrated that the FC of
the DMN decreased in older participants (age 70.7 ± 6.0 years)
relative to young participants (age 22.8± 2.3 years) (Damoiseaux
et al., 2008). The DMN consists of sub-networks and different
sub-networks are responsible for different cognitive functions
(Uddin et al., 2009; Damoiseaux et al., 2012; Huang et al., 2015).
The degree to which age affects the relevant cognitive functions
of default mode sub-networks seems to be different (Huang
et al., 2015). We also demonstrated that these two DMN ICs
presented significant declining trends but with different degrees
(p = 4.66E-50 for the ventral DMN and p = 1.41E-06 for the
posterior DMN), possibly because of DMN sub-network’s distinct
cognitive functions. When considered together, these findings
indicate that the decreased functional connectivity within the
DMN may be associated with structural network changes of
the DMN.
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TABLE 3 | T-test for regression analyses of ICA weights with age in different ICs.

Network Regression statistics

R2 Beta* (95% confidence intervals) t P

IC 2: anterior dorsal attention network 0.246 −3.75E-04 (−4.31E-004, −3.19E-04) −13.19 1.36E-34

IC 3: language-related speech network 0.139 −3.87E-04 (−4.69E-04, −3.05E-04) −9.29 3.77E-19

IC 4: cerebellum network 1 0.025 −9.44E-05 (−1.45E-04, −4.41E-05) −3.68 2.54E-04

IC 5: cerebellum network 2 0.028 −1.07E-04 (−1.61E-04, −5.36E-05) −3.93 9.80E-05

IC 6: ventral default mode network 0.340 −4.97E-04 (−5.56E-04, −4.38E-04) −16.57 4.66E-50

IC 7: posterior dorsal attention network 0.096 −2.29E-04 (−2.89E-04, −1.70E-04) −7.52 2.40E-13

IC 9: caudate-related network 0.168 −3.14E-04 (−3.73E-04, −2.54E-04) −10.37 4.35E-23

IC 11: posterior default mode network 0.043 −1.46E-04 (−2.04E-04, −8.71E-05) −4.88 1.41E-06

IC 12: auditory network 0.306 −4.58E-04 (−5.16E-04, −3.99E-04) −15.34 2.90E-44

IC 13: thalamus-related network 0.113 −3.92E-04 (−4.85E-04, −2.98E-04) −8.24 1.32E-15

IC 14: cerebellum network 3 0.157 −2.89E-04 (−3.45E-04, −2.32E-04) −9.96 1.56E-21

IC 15: sensory-motor network 0.280 −4.96E-04 (−5.64E-04, −4.29E-04) −14.41 5.44E-40

IC 16: hippocampus-related network 0.479 −5.67E-04 (−6.17E-04, −5.17E-04) −22.17 1.11E-77

IC 17: temporal lobe-related network 0.039 −1.01E-05 (−1.44 E-05, −5.75 E-06) −4.59 5.66E-06

IC 19: cerebellum network 4 0.070 −2.09E-04 (−2.73E-04, −1.44E-04) −6.36 4.47E-10

IC 20: cerebellum network 5 0.118 −2.80E-04 (−3.45E-04, −2.15E-04) −8.45 2.88E-16

*Beta of the highest item in the regression model.

Our ICA results found three other gray matter covariant
networks: the auditory network (IC 12), the sensory-motor
network (IC 15), and the language-related speech network (IC
3; Figure 1 and Table 2). Significant linear decrease trajectories
were found between the ICA weights and age in these three
networks (Table 3). Li et al. also found that the structural
associations in the auditory network and language-related speech
network decreased significantly with age between the young
and middle-aged groups and were relatively preserved or mildly
changed between the middle-aged and old groups (Li et al.,
2013). Whereas, they found that there was an increased tendency
in structural associations within the motor network from the
young group (18–23 years) to the middle-aged group (30–58
years) which was different from ours, and a downtrend from the
middle-aged to the old group (60–69 years) but no significant
difference between the young and old groups (Li et al., 2013). In
addition, Zielinski et al. investigated the developmental structural
changes in these networks based on children and adolescents
in four age categories (from 5 to 18 years) and found that the
primary auditory and motor networks largely developed in early
adolescence; in contrast, the language-related speech network
showed a significant expansion in late adolescence (Zielinski
et al., 2010). Further, an accelerated decline on the gray matter
volume in the middle and superior frontal gyrus (the main brain
areas of IC 15) in ages older than 20 years was reported (Giorgio
et al., 2010). A number of studies have illustrated an accelerated
loss of gray matter volume in auditory-related regions (the main
brain areas of IC 12) in aging adult brains (Good et al., 2001;
Lemaître et al., 2005; Kalpouzos et al., 2009). The significant
decline trends from 20 to 86 years old showed by IC 12 and
IC 15 in our study are consistent with the regional patterns of
age-related gray matter loss in these studies.

Apart from the ICs discussed above, IC 16 included the left
and right hippocampus and parahippocampal gyrus (Figure 2)
and showed the most significant decreasing tendency among all
ICs (p= 1.11E-77). Several studies have consistently reported an
accelerated decline of the graymatter volume in the hippocampus
with age (Manrique et al., 2009; Fjell et al., 2013). Fjell et al.
delineated age-related trajectories of the volume of 17 ROIs in
healthy adults (18–94 years) via a non-parametric smoothing
spline approach, and the hippocampus showed the fastest loss
rate (Fjell et al., 2013). Although, we employed different method
from Fjell et al., nevertheless, the gray matter volume of
hippocampus-related network also had the most severe aging-
related atrophy (p = 1.11E-77) in comparison to those of other
networks. Further, the decline of memory and cognitive abilities
with age has been frequently discussed (Schönknecht et al., 2005;
Manrique et al., 2009; Rosenbaum et al., 2015). Our findings add
to the growing evidence that memory deficits of aging may be
related to the atrophy of the hippocampus.

We also identified five cerebellum networks: IC 4, IC 5, IC
14, IC 19, and IC 20 (Figure 2 and Table 2). O’Reilly et al.
found that cerebellum contained at least two zones, including
a primary sensorimotor zone and a supramodal zone, which
were equivalent to our network IC 14 (O’reilly et al., 2010).
Dobromyslin et al. even found multiple cerebellar networks, and
four of our cerebellum networks (except IC 5) were spatially
similar to four of theirs (except a, f, g) (Dobromyslin et al., 2012).
Significant linear declines between ICA weights and age were
observed in these five cerebellum networks (Table 3). Raz et al.
revealed an age-related linear decline in the volume of cerebellar
hemispheres and vermis based on healthy adults aged 18–81
years, which is in agreement with the trajectory of our cerebellum
networks (Raz et al., 2001). The cerebellum is commonly involved
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in motor coordination and now is also considered to be related
to the modulation of cognition and learning (Raz et al., 2000;
Bernard and Seidler, 2014).

In our results, the trajectory of the temporal lobe-related
network (IC 17; Figure 2 and Table 2), a quadratic decrease over
age (t=−4.59, p of age2 = 5.66E-06), showed an increasing trend
from 20 to 50 years old and was followed by an obvious decline.
Previously, age-related differences of the temporal anatomical
network have been reported (Alexander et al., 2006; Brickman
et al., 2007; Douaud et al., 2014; Hafkemeijer et al., 2014).
Hafkemeijer et al. found that the temporal lobe-related network
(network e) showed the decreased trend with non-significant
level in middle-aged to older adults (Hafkemeijer et al., 2014).
Douaud et al. assessed brain structure networks among normal
subjects (8–85 years) and the brain network mainly including
the medial temporal areas showed a symmetric and strong non-
monotonic relationship with age (Douaud et al., 2014). Alexander
et al. used the SSMmethod to identify structural network patterns
associated with age from healthy adults (22–77 years) and found
older age was associated with less gray matter in the frontal and
temporal brain regions (Alexander et al., 2006). Sowell et al.
found that the gray matter density in the temporal-related area
showed a non-linear change with an inverted U-shaped curve
with age across the lifespan (7 to 87 years) (Sowell et al., 2003).
Because of the late maturation pattern of the temporal lobe in the
human brain (Gogtay et al., 2004) and the memory, recognition
and other functions related to the temporal lobe (Macsweeney
et al., 2002; Diaconescu et al., 2013; Perrodin et al., 2014), the
temporal lobe-related network might mature after other brain
areas, followed by atrophy, thus presenting an inverse U-shaped
tendency with age.

For two subcortical structures, IC 9 was recognized as a
caudate-related network, and IC 13 recognized as a thalamus-
related network. Damoiseaux et al. also found that the functional
brain network K, which contains the thalamus, putamen, insular,
and transverse temporal gyrus, showed spatial overlap with
IC 13 in this study (Damoiseaux et al., 2008). The thalamus-
related network’s path in our results showed a significant linear
reduction across the adult stage (Figure 2 and Table 3), in
accordance with Hafkemeijer et al.’s study, in which the gray
matter volume in this network displayed a slightly negative
association with age (Hafkemeijer et al., 2014). Although, other
studies reported age-related neuroanatomical volume changes
in subcortical structures, such as the caudate and thalamus,
their findings were not exactly consistent (Fjell et al., 2013;
Pfefferbaum et al., 2013; Serbruyns et al., 2015). Serbruyns et al.
have investigated the subregional atrophy of bilateral thalamus
and caudate from 22 to 79 years old, and the right thalamus
showed atrophy from the 5th decade, while 6th decade for the
left thalamus and the bilateral caudate (Serbruyns et al., 2015).
In Pfefferbaum et al.’s study, the best fitted trajectories of the
thalamus and caudate from 20 to 85 years were quadratic models
(Pfefferbaum et al., 2013). Till now, there are relatively few studies
on these two networks. Thus, their network patterns associated
with age need to be investigated further.

We re-performed the same statistical analysis of the ICs
for three different age group (20–80, 20–70, and 20–60 years)
to evaluate the age range effect on the age-related patterns.

Compared with significant age-related results for subjects aged
20–86 years, the results for subjects aged 20–80 years showed the
same age-related patterns. Though these results had different p-
values from the original analysis, all met the significance level.
The results for subjects aged 20–70 years showed the similar
age-related patterns. To be specific, among the reported 15
linear ICs, there were still the same significant 14 ICs, but
one non-significant IC (IC 4). In addition, IC 17 was also
had a quadratic trend with non-significant level. The results
for subjects aged 20–60 years showed the slightly different
age-related patterns. Specifically, all 16 ICs showed the linear
decreased trends with significant 12 ICs and four non-significant
ICs (IC 4, 17, 19, 20). Overall, the results of these additional
analyses are consistent with our original findings and also
demonstrated reasonably the age range effect on age-related
change patterns of brain structural networks. In our results
of subjects aged 20–86 years, the trajectory of the IC 17
showed a quadratic change over age. However, for a shorter
age range, such as 20–70 and 20–60 years, a quadratic trend
over age was not so obvious or even changed to be a linear
path. Indeed, the significance level is associated with the
sample size and the age distribution of participants in each age
group. We should report the results with caution and clearly
declare the age-related patterns with the specific subject age
range.

A specific limitation of our study is the estimation of the
number of components. For ICA-related studies, there is a
lack of available standards to determine the optimal number of
ICA components. Most studies adopted 12 to 25 components
in structural networks or resting-state functional networks
(Beckmann et al., 2005; Damoiseaux et al., 2006, 2008; Smith
et al., 2009). Based on these studies, we chose 20 as the
ICA output number. Additionally, the number of available
subjects aged more than 80 years was relatively smaller than
those of other age groups in the Information IXI database
(http://www.brain-development.org). More subjects older than
80 years needed to be included to confirm our findings. Finally,
our study only investigated structural MRI data and lacked
resting-state fMRI and diffusion tensor imaging (DTI) data.
In future studies, we shall combine multi-modality data to
examine anatomical and functional networks and the age-related
relationships between them.

CONCLUSION

In the current study, we used a multivariate ICA method to
investigate the structural covariance patterns of gray matter
volume through adulthood in 536 healthy subjects. Sixteen
structural networks, with the exception of the temporal lobe-
related network, showed a linear decline trajectory with age from
20 to 86 years. Our results largely confirmed previously reported
findings. We noticed the confirmatory nature of our findings
but for continuous age range so further extending the previous
findings. Our findings not only provide insight into the patterns
of age-related structural changes based on the network in the
human brain, but also provide a foundation for understanding
abnormal aging.
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