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Patients with late-life depression (LLD) have a higher incident of developing dementia,
especially individuals with memory deficits. However, little is known about the white
matter characteristics of LLD with memory deficits (LLD-MD) in the human connectome,
especially for the rich-club coefficient, which is an indicator that describes the
organization pattern of hub in the network. To address this question, diffusion tensor
imaging of 69 participants [15 LLD-MD patients; 24 patients with LLD with intact memory
(LLD-IM); and 30 healthy controls (HC)] was applied to construct a brain network for each
individual. A full-scale battery of neuropsychological tests were used for grouping, and
evaluating executive function, processing speed and memory. Rich-club analysis and
global network properties were utilized to describe the topological features in each group.
Network-based statistics (NBS) were calculated to identify the impaired subnetwork in
the LLD-MD group relative to that in the LLD-IM group. We found that compared with HC
participants, patients with LLD (LLD-MD and LLD-IM) had relatively impaired rich-club
organizations and rich-club connectivity. In addition, LLD-MD group exhibited lower
feeder and local connective average strength than LLD-IM group. Furthermore, global
network properties, such as the shortest path length, connective strength, efficiency
and fault tolerant efficiency, were significantly decreased in the LLD-MD group relative
to those in the LLD-IM and HC groups. According to NBS analysis, a subnetwork,
including right cognitive control network (CCN) and corticostriatal circuits, were disrupted
in LLD-MD patients. In conclusion, the disease effects of LLD were prevalent in rich-club
organization. Feeder and local connections, especially in the subnetwork including right
CCN and corticostriatal circuits, were further impaired in those with memory deficits.
Global network properties were disrupted in LLD-MD patients relative to those in LLD-IM
patients.

Keywords: late-life depression, memory deficits, white matter, connectome, graph theory, rich-club

INTRODUCTION

Late-life depression (LLD) is one of the most common psychological diseases in old age, with
a prevalence that ranges from 3.5 to 7.5% (Weyerer et al., 2013). It is characterized by a heavy
economic burden (Zivin et al., 2013) and is frequently accompanied by cognitive deficits (Butters
etal., 2004) even after remission (Bhalla et al., 2006; Baba et al., 2010). In addition, numerous studies
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have shown that LLD patients have a higher risk of developing
dementia, especially Alzheimers disease (AD), than healthy
controls (Byers and Yaffe, 2011; Diniz et al, 2013; Heser
et al., 2016). Among LLD, the patients with memory deficits
are thought to have the most predictable signs of subsequent
dementia (Rushing et al., 2014; Heser et al., 2016). However,
little is known about the structural features of LLD with memory
deficits (LLD-MD), which is crucial for understanding the disease
process of LLD and the mechanism of AD development.

LLD is characterized by white matter lesions (Alexopoulos
et al., 1997; Sneed et al., 2008), and these lesions are associated
with some symptoms of LLD, such as cognitive deficits and
affective symptoms (Kohler et al, 2010; Dalby et al, 2012).
However, the distinctive white matter network topological
structure underlying LLD, especially in individuals with memory
deficits, is largely unknown. The connectome is an approach
to help us understand the organization of the complex brain
connective network through brain network construction and
application of graph theory (Sporns et al., 2005). This technology
has been applied to discover the underlying brain structural
changes under neuropsychological diseases (Daianu et al., 2015;
Gong and He, 2015; Schmidt et al., 2017). In LLD, the breakdown
of global network properties and reductive connectivity between-
hemisphere was found in previous studies of the white matter
connective network (Bai et al., 2012; Li et al., 2017). But, there
is still largely unknown about the topological organization,
especially the role of hub, in LLD.

In the development of the connectome, several methods
from graph theory have been used to describe the topological
characteristics of the human brain network. Among them, the
important role of the hub (the node with a relatively stronger
connection in the network) has been identified, and the tendency
to have more interconnection among hubs than random effects
was called rich-club. Rich-club connectivity is important in
information integration and its disruption is believed to be the
cause of dysfunction in psychosis (Schmidt et al., 2017). Van
den Heuvel and Sporns were the first to describe the existence
of rich-club organization in the human brain network (van den
Heuvel and Sporns, 2011). Since then, many studies have started
to apply rich-club analysis to describe network properties in
disease states (van den Heuvel et al., 2013; Collin et al., 2014;
Daianu et al., 2015; Schmidt et al., 2017), and their contributions
have help us to obtain the better understanding of human
brain network topology, especially under the disease states of
neuropsychological disorders. According to van den Heuvel et al.
rich-club is crucial in information integration among different
functional modules (van den Heuvel et al., 2013), while functional
modules disruption was found in major depressive disorder
and correlated with the feelings of helplessness (Peng et al.,
2014), indicated that rich-club organization may be relevant
to depression. What is more, impaired rich-club coefficient
was also found on schizophrenia, which was characterized by
psychiatric symptoms (van den Heuvel et al., 2013). However,
direct evidence from LLD was lacked. AD, which is well known
for memory deficits and can be the result of LLD-MD, was
found relatively preserved rich-club organization, while cognitive
function was consistent with non-rich-club connectivity (Daianu

et al., 2015). According to the evidences as described above,
we hypothesized that as for LLD-MD, a neuropsychological
disease with depression symptom, memory deficits and high risk
of developing AD, may be characterized by both deficits rich-
club organization and disrupt non-rich-club connectivity. So we
designed this study to verify this hypothesis.

What is more, in order to obtain a more comprehensive
understanding of LLD-MD, global network properties and
Network-based statistics (NBS) also applied in the current study.
Global network properties, such as clustering coefficient, the
shortest path length, connective strength, efficiency and others
in the global network level, are used to measure the efficiency
of a network’s information processing. NBS is a powerful tool to
identify the different subnetworks between groups with relatively
weaker control of the family-wise error rate (FWER). Numerous
studies have applied NBS to distinguish the experimental effects
on the brain network (Cocchi et al., 2014; Myung et al., 2016). We
expect that the application of NBS will allow us to identify the
effects of memory deficits in LLD’s structural network. Overall,
the motivation of this study is to determine the unique structural
changes in LLD-MD patients as compared to LLD patients with
intact memory (LLD-IM) and healthy controls (HC) through
connectome.

To the best of our knowledge, this is the first time to identify
the characteristics of LLD through the rich-club coefficient.
We used probabilistic tractography to construct white matter
networks of diffusion tensor imaging (DTI) in 15 LLD-MD
patients, 24 LLD-MI patients and 30 HC. Nodes were defined by
registering automatic anatomical labeling (AAL) to DTI through
a T1 structural image. Weight rich-club analysis, global networks
properties and NBS analysis were applied to describe the
topological features of LLD-MD and determined whether rich-
club organization and non-rich-club connectivity were disrupted
in LLD-MD. Furthermore, the correlation between cognitive
function and white matter network topological features was
investigated.

MATERIALS AND METHODS

Participants

Thirty-nine LLD patients were recruited in The Affiliated
Brain Hospital of Guangzhou Medical University and 30 HC
individuals in a local community from June, 2014 to June, 2016.
All of them were of Han Chinese ethnicity and were right-
handed. Written informed consent was obtained from all of the
participants. Research ethics permission was approved by The
Affiliated Brain Hospital of Guangzhou Medical University ethics
committee.

LLD patients met the following inclusion criteria: (1) age
>55 years old; (2) met the Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition (DSM-IV) criteria for
major depression disorder after the age of 55; (3) diagnosis
confirmed by trained psychiatrists from the Affiliated Brain
Hospital of Guangzhou Medical University; (4) able to cooperate
in neuropsychological tests; and (5) clinical stage confirmed by
their psychiatrists not to be in a relapse stage. Exclusion criteria
included: (1) inability to cooperate with neuropsychological tests;
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(2) a history of the other major psychiatric disorders, such
as bipolar affective disorder and schizophrenia; (3) a family
history of bipolar disorder and/or schizophrenia; (4) a primary
neurological illness, such as stroke and brain tumor; and (5)
a physical disease that can cause emotional problems, such as
hypothyroidism and anemia.

We further divided LLD patients into two groups: patients
with memory deficits and patients with intact memory. For the
Auditory Verbal Learning Test-delayed recall score (AVLT-N5),
patients with age- and education-adjusted scores <1.5 SD (the
cutoft was AVLT-N5 < 4 for ages 50-59 years) were identified as
having memory deficits. The rest of the patients were defined as
having intact memory. Of the 39 LLD patients, 15 of them were
classified as LLD-MD patients, and 24 as LLD-IM patients.

Considering that mild cognitive deficit was common in LLD,
which is caused by disease effects, all HC were required to have
Mini-Mental State Examination (MMSE) scores >24 and age-
and education-adjusted AVLT-N5 scores >1.5 SD, and those who
had been diagnosed with major depressive disorder before the
study were excluded. Other exclusion criteria were similar to
those for the LLD groups.

Neuropsychological Tests

A full-scale battery of neuropsychological tests was assessed prior
to MRI scans. The battery included the MMSE, the Hamilton
Rating Scale for Depression (HRSD), the AVLT, the Trail-Making
Test (TMT), the Stroop Color and Word Test (Stroop), the
Digit Span Test (DST), the Symbol-Digit Modality Test (SDMT),
the Logical Memory Test (LMT) and the participants medical
records. One of the subjects in the LLD-MD group did not
complete the TMT.

We separated cognitive function into 3 domains: executive
function, processing speed and memory. Each of the domains was
calculated by the battery of neuropsychological tests described
above. The calculations followed the procedure described by
Sheline et al. (2006). In brief, the measure of executive function
was calculated by average Z scores of (1) the reverse of the
difference between completion time of TMT Part B and TMT Part
A; (2) the reverse of the difference between completion time of
Stroop Part C and Stroop Part A; and (3) the difference between
the DST backward scores and the DST forward scores. Processing
speed was calculated by the average Z scores of (1) the reverse
completion time of Stroop Part A; (2) the reverse completion time
of TMT Part A; and (3) the correct number of SDMT. Memory
was calculated by the average Z scores of (1) the average scores of
AVLT from N1 to N5; and (2) the long-term scores of LMT.

MRI Acquisition

Participants were scanned using a 3.0-Tesla Philips Achieva
scanner (Phlips, Best, The Netherlands) at The Affiliated Brain
Hospital of Guangzhou Medical University. Before scanning, a
T2-weight image was applied to rule out cerebral infarction,
tumors, and major white matter lesions. The DTI scanning
parameters were as follows: direction = 32, by = 1,000 s/mm?,
repetition time (TR) = 10,015 ms, echo time (TE) = 92 ms,
flip angle = 90°, imaging matrix = 128*128 mm?, FOV =
256*256 mm?, 75 contiguous slices, and voxel dimension of

2*2*2mm?>. High-resolution T1-weight images were acquired
from a 3D spoiled gradient echo sequence: TR = 8.2 ms, TE
= 3.8 ms, slices thickness = 1 mm, and FOV = 256*256 mm?
(matrix = 256%256*188).

Data Preprocessing

Data preprocessing was performed using FMRIB’s Diffusion
Toolbox (FMRIB’s Software Library, FSL) for the following
procedures. First, the eddy current correlation was used to correct
the distortions from stretches and shears in the DTT as well as
correct for simple head motion. Second, by image extraction
and brain extraction (fractional intensity threshold = 0.2) were
performed. Third, Bedpostx (Bayesian Estimation of Diffusion
Parameters Obtained using Sampling Techniques) was used to
set up the distribution of fiber orientation at each voxel. In T1
images, BET was utilized for brain extraction (fractional intensity
threshold = 0.3).

Network Construction

The brain network contains nodes and edges. To determine the
nodes in the network, we selected 90 areas of gray matter regions
of the cerebrum from AAL, which included 45 regions of cortical
and subcortical structures in each hemisphere. Edge definition
was accomplished using the connectivity probability between
each pair of nodes in the network. Network construction was
performed by PANDA (Cui et al,, 2013). The details of network
construction were as follows.

Node Definition

The procedure was completed following Gong’s description
(Gong et al., 2009). Briefly, T1 images were non-linearly co-
registered to the MNI152_T1_Template. The inverse warp was
obtained from a previous step, and the transformation matrix
from T1 to b0 were combined to warp the AAL regional mask
from the MNI space to the individual T1 space and by space
successively. Entirely, 90 AAL regions were executed using the
same procedures as described above to establish the seed mask.
For each of the seed masks, the rest 89 regional masks were
merged as the terminal mask.

Edge Definition

As we described above, probabilistic tractography (FSL 5.09) was
used to define the edge of the brain network. For each voxel in
the seed mask, 5,000 streamlines were sampled. Depending on
the distribution of the orientation set up by Bedpostx, each fiber
was drawn. The tract was established every 0.5 mm to the other
89 masks and terminated in a terminal mask to prevent tracking
in the loop. Finally, connectivity probabilities from the seed mask
to the rest of the 89 target masks were established. The probability
was defined as weight. After 90 seed masks were performed, the
same procedure described above was carried out and a 9090
connective matrix was constructed for each subject.

It is impossible to determine the direction between node i
and node j by probabilistic tractography. Therefore, we defined
the undirectional connective matrix using Schmidt’s description
(Schmidt et al., 2017), and the probabilities of node i and node j
were calculated by the average of weight ij and weight ji.
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Network Analysis

In the current study, we attempt to characterize the differences
in the white matter network between LLD-MD and LLD-IM
patients by network analysis, which contained 3 parts, including
weighted rich-club analysis, global efficiency assessment and
network-based statistics.

Weighted Rich-Club Analysis

Rich-club organization is to describe the tendency connection
among a set of the most important nodes in the network
and is usually represented by the rich-club coefficient. To
investigate whether the rich-club organization was affected in
39 LLD patients or just in 15 LLD-MD patients among them,
we conducted weight rich-club analysis. Although probabilistic
tractography can reflect the real white matter connection between
brain region, but its node’s strength show no bias in different
nodes and it is not available to figure out the most importance
nodes in the network, which is the first step of weight rich-club
analysis. Therefore, the network matrix should be normalized
before weight rich-club analysis to distinguish the important
nodes from the others. The weight of the connection is influenced
by the voxels size of both the seed region and the target region
of the network, which constructed by probabilistic tractography.
In our study of probabilistic tracking, 5,000 streamlines were
generated pre-voxel in the seed mask and ended at the target
mask, which means that a larger seed mask and target mask will
lead to more streamlines. The definition of weighted rich-club
node is depended on the relative connective strength from the
network. Furthermore, volume differences become larger in older
subjects, and the gray matter voxels should also take into account.
Thus, we normalized the network matrix with the following
equation:

(seed voxels/gray matter voxels) x
(target voxels/gray matter voxels)

normalized_W;; =

where Wj; is the probability connective weight between a pair
of nodes (i and j) in the network. With this equation, we ruled
out the effects of seed voxels, target voxels and whole brain gray
matter volumes on the probabilistic tractography in the weighted
rich-club analysis to display the relative strongest connection in
the network. And the procedure of normalizing was only taken
in weight rich-club coeflicient calculation and rich-club node
definition to avoid that those over strong central connections
would mask the effect of other non-central connections in
network properties’ calculation. Before normalized the network
matrix, the edges that existed in less than 20% of the subjects in
the group were excluded from the network.

According to Schmidt and Opsahl’s description (Opsahl et al.,
2008; Schmidt et al., 2017), the weighted rich-club analysis was
performed with the following procedures. First, richness factor
r is defined as the faction of the strongest nodes among the
network (here we defined r as the rank from 14/15 to 1/15,
which ensured that the rich-club node number is an integer),
and E > r is defined as the edges in the rich-club subnetwork
with richness factor >r. In a particular richness factor r, a

rich-club subnetwork was constructed by the interconnection
among the top r*90 strongest nodes, and the weight rich-club
coefficient ¢“(r) can be calculated by the following equation:

Es,
(1) = w=r/Y. oolrank, where w-., is the weight of the rich-
=1

E
club network and Xfwlra“k is the sum of the strongest E.,

=1
connections in the whole network. Second, to eliminate the
random effect, 1,000 random networks were constructed by
a weight reshuffle according to Opsahl’s description (Opsahl
et al., 2008). Then, a normalized rich-club coefficient (¢{ ... (7))
was determined by the ratio of @“(r) /@y , = (r), where
P ndom () 1s the average of 1,000 random networks™ rich-
club coefficients. ¢p, ., (r) >1 was considered to indicate the
existence of rich-club organization for the network. Finally, we
constructed the distribution of the rich-club coefficient in a
series of r levels in LLD-MD and LLD-IM patients and HC
individuals.

After constructing the rich-club subnetwork, nodes besides
the rich-club was defined as a local region. The feeder
connections was the connection between rich-club regions and
local regions, and the local connections was represented as the
interconnection among local regions (shown in Figure 2). The
connective average strength of rich-club connections, feeder
connections and local connections were divided the number
of connections of each subnetwork from their total network’s
weight.

Global Network Properties

To describe the white matter network topology in global
level, we calculated several global network properties: clustering
coefficient (Cp), shortest path length (Lp), efficiency (E_glob),
connective strength (S), fault tolerant efficiency (Eloc) and
assortativity (r) (Newman, 2002; Leung and Chau, 2007). All
global network properties were calculated with the GRETNA
toolkit (Wang et al., 2015) or home make matlab program. To
rule out the spurious connections, if the connection existed
in less than 20% of the group subjects, it was excluded from
the connective matrix before calculating the global network
properties.

Global clustering coefficient

The global clustering coeflicients defined as the average of
the likelihood of a neighbor to neighbor connection. The
greater value is represented to a larger extent of the local
interconnectivity of a network. For a network G, the equation is

L.
global Cp = (1/N) x Z{Z [2/ki(k; — I)Z (Q)iju)jko)ki)3]}, in
ieG jk

which k; is the degree of node i and wj; is the weight between
node i and node j. N = 90.

Global shortest path length

The global shortest path length is defined as the average of all
shortest lengths between each pair of nodes in the network.
The smaller value is represented for the faster transfer speed
of information in the brain. For a network G, the equation is
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Global L, = [1/N(N — 1)] x ZizjecLij], where Ljj is the shortest
path length between node i and node j and N = 90.

Small world properties

Before small world property calculations, 1,000 random
networks were generated that maintain the same nodes
and edges as the original network but also maintain
differences in distribution. The small world properties
contained the normalized global shortest path length (A,
A = Global Llrfal/Global Lg’“d), normalized global clustering

coefficient (y, y = Global C;eal/Global C;and) and small-

worldness (0, 0 = y/\), while Global L;and and Global C}rj‘“d are
the means of 1,000 random network global clustering coefficients
and the global shortest path length, respectively, A ~ 1, y > 1,
and ¢ >1 indicate the existence of small world properties.

Network connective strength

The connective strength of node i is defined as the sum of
the connective weight, which directly connects to the node i.
Network connective strength is the average of all of the nodal
connective strength in the network. For a network G, the
equationis S = (1/N) x X[} (D wyj)], where wjj is the weight

ieG jeG

between node i and node j. The greater network connective
strength is represented by the greater connection connective
strength in the network.

Global efficiency

The global efficiency is represented as the information transfer

efficiency of the network. For a network G, the equation is Eg)op, =

[I/NN-=D]x > 1/ Lij, where Ly is the shortest path length
i#jeG

between node i and node j.

Global fault tolerant efficiency

The Eloc of node i is defined as how much of the network is
fault tolerant when the first neighbors of node i were removed
from the network. The global Eloc is the average of nodal Eloc in
the network. The greater global Elocis represented for the greater
fault tolerance of the network. For a network G, the equation is

Ejoc = (1/N) x Z Eglob(Gi)-
ieG

Assortativity
Assortativity is defined as one node that tends to connect
with other similar nodes in the network. In this study, we
calculate assortativity with Pearson correlation coefficients of
connective strength between each pair of linked nodes in the
network as Leung and Chau (2007). The equation is r® =
! Y 0y T k)11 X0y Sicro k)
H771 Zw(ww Ziem;) k?)—[HT71 Zw(ww ZieF(tp) ki)]
the network is sorted by ascending values, H is the total weight
of all the edges in the network, w,, is the weight of the ¢ th edge,
and F (¢) is the pair of nodes connected by the ¢ th edge. If M is
represented as the total degree of the network, then ¢ =1 ~ M.

5, where the edge of

Density of network
Density of network is the fraction of present connections to
possible connections. In this study the possible connections is
equal to N(N — 1)/2.

Network-Based Statistics (NBS)

To further determine the different connections between a pair of
LLD groups. NBS was performed following Zalesky’s methods
(Zalesky et al., 2010) with NBS connectome software (http://
www.nitrc.org/projects/nbs/). Before NBS, a binary mask that
contains 80% of the edges for either the LLD-MD group or the
LLD-IM group was applied to the matrix of the LLD groups.

Statistical Analysis

The group differences in age, years of education, HRDS, MMSE,
and AVLT-N5 were determined by one-way ANOVA test. The
gender data was analyzed by chi-square test.

Group differences in the normalized rich-club coefficient
were calculated by permutation test (10,000 permutations) and
adjusted for age, education, and gender. Findings were corrected
for the levels of rich-club factors (P < 0.05/14). To further test
the group differences in different rich-club factor levels, the area
under curve of rich-club coefficients in different rich-club factor
levels was calculated, and permutation test (10,000 permutations)
was used to determine the group differences (P < 0.05). Rich-
club regions were determined by the procedure Schmit described
(Schmidt et al., 2017). For sorting by node connective strength,
we selected the 12 most powerful nodes (2/15*90nodes, ~13.3%
of the whole network nodes) from HC and defined them as
the rich-club region. The decision was made from the results
of the permutation test, which indicated significant differences
among three groups appeared in the r = 2/15 level and matched
the values described in a previous article (van den Heuvel and
Sporns, 2011; Schmidt et al, 2017) in which rich-club was
selected from the top 15 or 14.6% nodes based on their node
connective strength or degree. In the rich-club region, edges that
existed in more than the 80% of the subjects were selected as the
rich-club connections.

To determine the group differences in cognitive function
and global network properties, comparisons were made using
ANCOVA to remove the effects of age, years of education and
gender. Post hoc analysis was performed using LSD method
in all of the above analyses. P < 0.05 was considered to
be statistically significant. The potential relationships between
cognitive function (executive function, processing speed and
memory) and global network properties in all participants were
tested using a Pearson correlation analysis and adjusted with
HDRS. The findings were corrected for the number of performed
tests in each network property (P < 0.05/3).

To determine the significant differences in the subnetwork
connection between the LLD-MD and LLD-IM groups. NBS
was taken and the procedure developed by Zalesky and Li
was used (Zalesky et al., 2010; Li et al., 2017). First, the ¢-
test statistic threshold was chosen by primary threshold (P <
0.01). Then, a two sample one-tail ¢-test (LLD-MD<LLD-IM)
was computed for difference edges between LLD-MD and LLD-
IM. A set of suprathreshold links were constructed according
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to the statistic threshold. Then, a connected graph component
was determined by breadth search, and the component size
M was established by the sum of test statistics values across
all connections in the component. A permutation test (5,000
permutations) was used to correct for multiple comparisons. The
size of the largest component was recorded in each permutation
and generated a random component size distribution. Finally, the
correct P value was determined by the position of the M in the
random component size distribution. The significantly different
subnetwork between the pair of LLD groups was obtained.
Connective strength of the NBS subnetwork was calculated.

To further explore the relationship between cognitive function
and regional network properties (i.e, rich-club connective
average strength, feeder connective average strength, local
connective average strength and NBS subnetwork connective
strength), a Pearson correlation test was applied to the LLD
groups and the HC group and adjusted with HDRS. The findings
were corrected for the number of tests performed for each
network property (P < 0.05/3). Further, the relation between
the subnetworks (rich-club, feeder, and local) connective average
strength and cognitive function (executive function, processing
speed and memory) will use stepwise multiple regression to
confirm. Cognitive function will set as the dependent variable
and subnetworks (rich-club, feeder, and local) connective average
strength will set as the independent variable. HDRS will enter the
regression equation as a covariance.

The relation between HDRS and rich-club coefficient and
subnetwork connective strength were performed with Pearson
correlation test.

RESULTS

Demographics and Neuropsychiatric

Results
The demographic data is shown in Table 1. There were no
significant differences in age, education and gender in the
three groups (all P > 0.1). Among the LLD-MD group, 3
patients received a serotonin noradrenaline re-uptake inhibitor
(SNRI), 10 patients received selective serotonin reuptake
inhibitors (SSRI), 1 patient received tricyclic antidepressants
(TCAs), 1 patient received noradrenergic and specific
serotonergic antidepressants (NaSSA), and 5 patients received
benzodiazepines (BZ) as a combination treatment within the last
3 months. Among the LLD-IM group, 4 patients received SNRI,
11 received SSRI, 1 received TCAs, 2 received NaSSA, 6 did not
take any antidepressant medicine and 13 patients received BZ
as a monotherapy or combination treatment within the last 3
months. No difference was found between the LLD-MD and
LLD-IM groups between antidepressant treatment (x? = 4.697;
P = 0.320) and BZ (x*> = 1.612; P = 0.204). Differences were
found in the HRSD, AVLT-N5, and MMSE (P < 0.05). After
adjusted with age, education and gender, executive function,
processing speed and memory were still different among the
three groups (all P < 0.05).

Furthermore, both the LLD-MD and LLD-IM groups had
significant decreases in the HRSD scores compared to the HC

TABLE 1 | Demographics and neuropsychiatric results in the LLD with memory
deficits and LLD with intact memory groups as well as the healthy control group.

LLD-MD (n =15) LLD-IM(n=24) HC (n=30) P-values
Mean (SD) Mean (SD) Mean (SD)

Age 64.47 + 6.87 66.21 + 5.57 66.23 + 4.95 0.567
Education 8.53 &+ 3.76 9.71 +£ 3.82 10.65 + 3.00 0.158
Gender 3M/12F 6M/18F 6M/24F 0.891
HRSD 9.13 £+ 7.922 10.79 + 7.118 1.27 £ 3.04 <0.0001*
AVLT-N5 0.80 + 1.152P 6.71 £ 2.16 7.30 £1.99 <0.001*
MMSE 21.40 + 4.45% 26.54 + 2.40 27.37 £ 1.75 <0.001*
COGNITIVE DOMAINS
Executive —0.375 + 0.3328°  0.065 + 0.635 0.139 + 0.462  0.003*
function
Processing —0.791 + 0.7218% —0.034 + 0.6922  0.423 + 0.710 <0.001*
speed
Memory —1.140 + 0.36228  0.197 + 0.700 0.413 + 0.714 <0.001*

*Significant according to one-way ANOVA (P < 0.05); *Significant according to one-way
ANCOVA (adjusted for age, education and gender, P < 0.05).

aSignificant according to LSD post hoc comparisons (vs. HC; P < 0.05).

bSignificant according to LSD post hoc comparisons (vs. LLD-IM; P < 0.05).

Group differences in all variables were calculated according to ANOVA, except for gender,
which was determined through a chi-square test; LLD-MD, late-life depression with
memory deficits; LLD-IM, late-life depression with intact memory; HC, healthy controls.

group (all P < 0.05). No differences were found between the LLD-
MD and LLD-IM groups (P = 0.397) in HRSD. No correlation
was found between HRSD and cognitive function in the LLD
groups (all P > 0.1; show in Supplemental Table 2). LLD-
MD patients had lower AVLT-N5 and MMSE scores than those
of LLD-IM patients and HC individuals (all P < 0.05). The
scores of executive function, processing speed and memory were
significantly lower in LLD-MD patients than those in LLD-
IM patients and HC individuals (all P < 0.05). No significant
difference was found in executive function and memory between
LLD-IM patients and HC individuals (all P > 0.05), while
processing speed was significant lower in the LLD-IM group than
that in the HC group (P = 0.042).

Weight Rich-Club Analysis

Under a range of rich-club levels (from r = 12/15 to 2/15),
normalized rich-club coefficient was detected in 3 groups,
for which rich-club organization was defined as the network
connection with a normalized rich-club coeflicient >1. We found
intergroup differences in r = 2/15 through permutation testing
(P =0.001249, 10,000 samples, pass FDR correction for multiple
comparisons, as shown in Figure 1). Indicated by LSD post hoc
comparisons, the normalized rich-club coefficient was decreased
in the LLD-MD and LLD-IM groups compared with that in the
HC group (P = 0.005; P = 0.001). No difference was found
between the LLD-MD and LLD-IM groups (P = 0.998; shown in
Figure 1). The area under the curve of the rich-club coefficient
was significantly different among groups (P = 0.008438), and
compared with HC group, LLD-MD and LLD-IM groups was
showed significant decreased (P = 0.006; P = 0.015). No
difference was found between the LLD groups (LLD-MD and
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LLD-IM) (P = 0.491) on the area under the curve of the rich-club
coeflicient (shown in Figure 1).

The rich-club regions were defined according to the
description in the statistical analysis section, and the rich-
club regions comprised 10 nodes, including bilateral olfactory,
cingulum_post, amygdala, putamen and pallidum. Feeder
connections (non-rich-club regions connected to rich-club
regions) and local connections (interconnections among non-
rich-club regions) were constructed based on rich-club regions
(shown in Figure 2).

A difference was found in the rich-club, feeder and
local connective average strength among the three groups
(P = 0.003630, 0.049758, & 0.000224 respectively, permutation
testing 10,000 samples). The rich-club connective average
strengths of the LLD-MD and LLD-IM group were significantly
weaker than the HC groups (P = 0.001; P = 0.035); the
feeder connective average strengths of the LLD-MD group were
significantly weaker than the LLD-IM groups (P = 0.015); the
local connective average strengths of the LLD-MD group were
significantly weaker than the LLD-IM and HC groups (P < 0.001;
P = 0.011), while the LLD-IM group had a higher value than
the HC group in local connective average strengths (P = 0.032;
shown in Figure 2).

In LLD patients, the local connective average strength
was positively correlated with processing speed (r = 0.555,
P < 0.001) and memory (r = 0.432, P = 0.004), and the
tendency was correlated with executive function [r = 0.361,
P = 0.026 (€(0.05/3,0.05))]; the feeder connective average
strength was positively correlated with executive function
(r = 0.416, P = 0.009) and processing speed (r = 0.411,
P = 0.010); the rich-club connective average strength was
tendency positively correlated with processing speed (r = 0.369,
P = 0.023) and memory (r = 0.330, P = 0.043) (partly
shown in Figure2 according to the finding of stepwise
multiple regression). No correlation between cognitive
function and subnetwork’s connective strength was found
in HC individuals (details are shown in Supplemental
Table 2).

Indicated by stepwise multiple regression, after adjusted
of HDRS, feeder connective average strength (beta = 0.417;
P =0.009) was acted as the influence factor of executive function;
local connective average strength (beta = 0.520; P = 0.001) and
rich-club connective average strength (beta = 0.281; P = 0.043)
were acted as the influence factor of processing speed; local
connective average strength (beta = 0.477; P = 0.004) was acted
as the influence factor of memory.
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(C) A Pearson correlation between subnetwork average connective strength and cognitive function in LLD groups (LLD-MD+LLD-IM) (adjust with HDRS; *P < 0.05;
**P < 0.05/3). The nodes and connections were mapped using BrainNet Viewer software (http://www.nitrc.org/projects/bnv/).
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HDRS show no correlation with rich-club coefficient and
subnetwork connective strength in LLD and HC groups
respectively (all P > 0.05).

Network Property
Small world and global topology of the white matter network is
shown in Table 2.

Small World Properties

The white matter network showed small world organization in
three groups, which was defined as y > 1, A ~ 1, and o(y/1) > 1.
No significant difference was found in the small world properties
among the three groups (all P > 0.1).

Global Topology

None of the individual network showed disconnected network.
Intergroup differences were found in Lp, E_glob, S, Eloc, r and
Density of network (all P < 0.05). In addition, lower E_glob, S
and Eloc was found in the LLD-MD group compared to those in
the other groups (all P < 0.05). Compared to LLD-IM and HC
groups, LLD-MD group had increased Lp (P = 0.002; P = 0.03).

A lower r was found in the LLD-MD and LLD-IM groups than
the HC group (P = 0.02; P = 0.003). LLD-IM displayed lower
density of network than LLD-MD and HC groups (P = 0.050;
P = 0.012). Furthermore, after adjusted with HDRS, S, Eloc
and r were positively correlated with processing speed (all P
< 0.05/3) across all participants, while E_glob was tendency
positive correlated with processing speed [all Pe(0.05/3,0.05)].
S, E_glob and Eloc were positively correlated with memory (all
P < 0.05/3), while r had a positive tendency correlated with
memory [Pe(0.05/3,0.05)]. Lp had a negative tendency correlated
with processing speed (P < 0.05), and a negative correlated with
memory (P < 0.05/3). Details are shown in Supplemental Table 1.

NBS Analysis

We found a series of different connections among the LLD
groups (LLD-MD < LLD-IM, P = 0.004) according to NBS
analysis. The y included 20 nodes and 20 edges. The nodes in
this NBS’s subnetwork were primarily composed of some frontal
[right opercular part of the inferior frontal gyrus (IFGoperc.R),
left triangle part of the inferior frontal gyrus (IFGtriang.L), right
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TABLE 2 | Comparison of small world and global topology among LLD patients with memory deficits and LLD patients with intact memory as well as HC.

LLD-MD (n = 15) LLD-IM (n = 24) HC (n = 30) P-values
Mean (SD) Mean (SD) Mean (SD)
y 1.75 + 0.107 1.76 + 0.082 1.74 + 0.108 0.852
A 1.23 + 0.017 1.23 + 0.011 1.23 + 0.012 0.680
o 1.42 + 0.072 1.43 + 0.064 1.42 + 0.077 0.832
Cp 3.82E—03 =+ 5.14E—04 3.83E—03 =+ 4.15E—04 3.69E—03 =+ 5.43E—04 0.519
Lp 48.25 + 3.7580 44.85 + 2.55 4579 + 3.13 0.006*
S 0.393 + 0.0302P 0.422 + 0.023 0.417 + 0.029 0.008*
E_glob 2.08E—02 + 1.62E—032° 2.24E—-02 + 1.19E—03 2.19E—02 + 1.49E—03 0.008*
Eloc 2.10E—02 =+ 1.57E—0320 2.26E—02 + 1.21E-03 2.23E-02 =+ 1.53E—03 0.008"
r 0.278 + 0.0402 0.276 + 0.0272 0.303 + 0.027 0.006*
Density 0.642 + 0.016° 0.633 + 0.012 0.644 + 0.016° 0.028*

*Significant according to an one-way ANCOVA (adjusted for age, education and gender, P < 0.05).

ap-value < 0.05 in LSD post hoc comparisons (vs. HC).
bp_value < 0.05 in LSD post hoc comparisons (vs. LLD with intact memory).

Cp, clustering coefficient; Lp, shortest path length; S, connective strength; E_glob, efficiency; Eloc, fault tolerant efficiency; r, assortativity; Density, density of network.

triangle part of the inferior frontal gyrus (IFGtriang.R), left
orbital part of the inferior frontal gyrus (ORBinf.L)], paralimbic
[right olfactory cortex (OLF.R), medial part of the superior
frontal (SFGmed.R), right medial orbital part of the superior
frontal gyrus (ORBsupmed.R), right insula (INS.R), right
anterior cingulate cortex (ACG.R), left middle cingulate cortex
(DCGL.L), temporal pole of middle temporal gyrus (TPOmid.R)],
subcortical[left hippocampus (HIP.L), right hippocampus
(HIP.R), left putamen (PUT.L), right putamen (PUT.R), left
thalamus (THA.L), right thalamus (THA.R)], parietal [left
postcentral gyrus (PoCG.L), right precuneus (PCUN.R)] and the
left middle temporal gyrus nodes (MTG.L). The connections
were as follows: (IFGoperc.R-IFGtriang.R); (IFGtriang.L-
ORBinf.L); (SFGmed.R-ORBsupmed.R); (IFGtriang.R-ACG.R);
(OLE.R-ACG.R); (SFGmed.R-ACG.R); (INS.R-ACG.R);
(DCG.L-HIP.R); (HIP.R-PoCG.L); (PoCG.L-PUT.L); (OLE.R-
PUT.R); (INS.R-PUT.R); (PoCG.L-PUT.R); (PCUN.R-PUT.R);
(OLE.R-THA.L); (HIP.L-THA.L); (INS.R-THA.R); (IFGtriang.L-
MTG.L); (PCUN.R-MTG.L); (HIP.R-TPOmid.R). In this NBS’s
subnetwork, 1 edge belonged to a rich-club connection, 6 edges
belonged to the feeder connections, and the rest of the 13 edges
belonged to the local connections in the previous description
(show in Figure 3). Furthermore, the connective strength of this
subnetwork was positively correlated with executive function
(r = 0.424, P = 0.008), processing speed (r = 0.667, P < 0.001)
and memory (r = 0.490, P = 0.002) in LLD patients. No such
correlation was found in HC individuals (as shown in Figure 3).

DISCUSSION

To the best of our knowledge, this is the first time to investigate
the rich-club coefficient of the white matter network of LLD
patients with different memory states. LLD as one of the most
predictable signs of developing AD (Heser et al, 2016), a
comprehensive vision of the structural features of this disease,

especially those associated with memory deficits, are crucial for
understanding the disease process of LLD and the mechanism of
AD development. In the present study, our findings in the white
matter network change in LLD patients with or without memory
deficits demonstrate that (1) impaired rich-club organization,
rich-club connective average strength and assortativity was found
in 39 LLD patients compared to 30 HC subjects; (2) compared
to LLD-IM patients, LLD-MD patients had disruptive feeder
and local connections, especially in cognitive control network
(CCN) and corticostriatal circuits; and (3) the alterations of
global network properties were accompanied by slight cognitive
function change, such as processing speed and memory in the
current study. Our findings were compatible with the previous
study in the white matter network topological features of LLD
patients (Bai et al., 2012; Li et al., 2017) to some extent, and
extend our understanding in the pathological progression of LLD
by describing the rich-club properties of LLD-MD patients.

In the current study, compared to HC individuals, rich-
club organization was disrupted in LLD patients, and this
phenomenon was independent of memory function. Unlike the
other connectome’s findings in depression (Bohr et al., 2012),
which showed no correlation between depression and global
network properties. Our findings suggested that the disease
effects of LLD, other than memory deficits, were more prevalent
in rich-club regions, which was partly consistent with a previous
study about schizophrenia (van den Heuvel et al, 2013) and
high-risk subjects for psychosis (Collin et al., 2014; Schmidt
etal., 2017). As the central part of brain network, rich-club plays
an important role in information integration among different
functional modules (van den Heuvel et al, 2013). In major
depressive disorder, disruptive functional modules was found
and relevant with the feelings of helplessness (Peng et al.,
2014). Combined with the established evidence described above,
we consider this is the reason for rich-club organization and
rich-club connective strength being disrupted in LLD. Striatal
connection is crucial in depressive symptom, including suicide
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FIGURE 3 | (A) NBS analysis showed decreased connections in 20 nodes and 20 edges in LLD-MD compared with the LLD-IM group. Yellow lines represent the
edges of the subnetwork connection according to NBS analysis. Red lines represent the rich-club connections. (B) The Pearson correlation between NBS subnetwork
connective strength and cognitive function in the LLD groups (adjust with HDRS; *P < 0.05/3). The nodes and connections were mapped using BrainNet Viewer
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and treatment response (Lui et al., 2011; Marchand et al., 2013).
Its activity is reduced in depression (Arrondo et al., 2015) and
increased accompanied with treatment response (Heller et al.,
2013). In the current study, rich-club nodes were including
bilateral putamen and pallidum, and rich-club connectivity was
decreased in LLD group, indicated that the rich-club connectivity
could correlate with the disease state. But we failed to find
the correlation between HDRS and rich-club coefficient in the
current study. Considering the white matter change can be
persisted in a relatively long period, and HDRS can only reflect
the current affective state and affected by various of factors. The
rich-club coefficient might be consistent with some indicator
that can reflect the disease state in a relatively long periods, like
the course of disease. Further studies should force on determine
the association between the course of disease and rich-club
organization, as well as the effects of rich-club organization on
network modules in LLD.

Feeder and local connective average strength were decreased
in the LLD-MD group compared to the LLD-IM and HC groups
in current study. Similar damage pattern was appeared in AD
(Daianu et al, 2015). According to our current knowledge,
as the center of AD pathological development, amyloid and
tau can spread through fibers in a “prion-like” pattern and
cause extensive brain damage along white matter fibers (Cohen

et al., 2015; Hasegawa et al, 2016; Pandya et al., 2016). This
phenomenon is partly consistent with the series of studies from
Daianu et al. (2013, 2015), who reported that AD tends to
disrupt the non-rich-club regions of the white matter network.
Combined with Daianu et al.’s finding, our result indicated that
the pathological mechanism of memory deficits in LLD might
be similar to those in AD. Previous evidence from clinical
data (Rushing et al., 2014; Heser et al, 2016) showed that
LLD patients, especially LLD patients with memory deficits,
have a higher risk of subsequent AD. Our findings provide
further evidence to support the idea that LLD-MD could be
a preclinical stage of AD. However, this idea needs further
pathological study, including PIB-PET or autopsy, to confirm.
In addition, a positive correlation between those subnetwork
connective average strength and cognitive function was noted
in LLD patients. Combined with stepwise linear regression, we
found that executive function was significantly correlated with
feeder connective strength and memory was correlated with local
connective strength. Processing speed was relevant with rich-
club and local connective strength, while local connections seem
more important in processing speed than rich-club connections.
However, such relevant was lacked in HC group. Our finding
further indicated that the essential role of local connections
in LLD patients memory and processing speed. According to

Frontiers in Aging Neuroscience | www.frontiersin.org

10

August 2017 | Volume 9 | Article 279


http://www.nitrc.org/projects/bnv/
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive

Mai et al.

Rich-Club in Late-Life Depression

the previous neuropsychological study in LLD (Sheline et al.,
2006), which demonstrated that processing speed is the primary
dysfunction in LLD cognitive deficit and the cause of dysfunction
in other cognitive domains. So, it is reasonable to conduct that
integrity of the local connections may reflect processing speed,
which’s disruption might have a negative effect on memory
in LLD. However, we cannot determine whether the rich-club
disorganization is essential for the effects of local connections
in cognitive functions among LLD patient. To answer this
question, subjects with disruptive local connections and relatively
preserved integrated rich-club organization, such as AD patients,
should be included in future studies. What is more, feeder
connective strength was correlated with executive function. As
we describe above, feeder connections play an essential role in
information transfer between rich-club connections and local
connections by connecting them together. It is established that
dynamic reconfiguration of frontal networks is the foundation
of executive function (Braun et al., 2015). Considering the rich-
club nodes in this study was involved with amygdala, which
is connecting with frontal network through cingulum. So, it is
hard to determinate whether the abnormal frontal brain network,
which is belonging to feeder subnetwork, or the disruptive feeder
subnetwork itself is contributed to executive dysfunction in LLD-
MD. And it is worth further study to figure out.

CCN and corticostriatal circuits are comprised of the
dorsolateral prefrontal cortex (DLPFC), dorsal anterior cingulate
cortex (dACC), posterior parietal cortex, basal ganglia and
thalamus, and they are essential in attention and executive
function (Tadayonnejad and Ajilore, 2014). According to our
NBS analysis, an altered subnetwork connection between LLD-
MD and LLD-IM patients comprises the frontal, paralimbic,
subcortical and some parietal and temporal regions, which
are mainly involved in the right CCN and corticostriatal
circuits as well as belonging to feeder and local connections,
and the strength of this NBSs subnetwork is correlated with
cognitive function in LLD groups. Different from other articles
in brain structural change and memory, which show mainly
difference in default mode network (Chang et al., 2015; Yin
et al,, 2016), our finding suggested that the memory deficits
in LLD patients is relevant with the disruption of the right
CCN and corticostriatal circuits. In the current study, this
NBS’s subnetwork is mostly belonging to feeder and local
connections. It is established that CCN and corticostriatal
circuits are involved in cognitive control and emotional behavior
(Tadayonnejad and Ajilore, 2014). And cognitive theory showed
that disruption in executive dysfunction can impair the act of
remembering (Buckner, 2004; Elderkin-Thompson et al., 2006).
And cognitive control is in the central part of executive function.
Previous studies indicated that memory and cognitive control
are relevant at some extent. This effect will enlarge as the
subject was distracted by irrelevant events or engage in mutiple-
task, and lead to memory deficits (Wais et al., 2010; Richter
and Yeung, 2012). Furthermore, depression patient is easy to
distract by surrounding environment, especially by negative
stimuli (Maalouf et al., 2012). Thus, it is reasonable to conduct
that cognitive control as an important part of executive function,
its impairment may result in memory deficits, especially in

depressive subject. In conclusion, our NBS finding indicated that
right CCN and corticostriatal circuit’s disruption, which would
cause impaired cognitive control according to establish evidence,
is correlated with memory deficits in LLD. In our consideration,
this result may be caused by the negative effect of cognitive
control on recollection, which was enlarged under the disease
state of LLD.

Compared to HC, LLD-IM patients had increased local
connective average strength. This finding reminds us of
the increased fractional anisotropy in the subjects with a
genetically high risk for schizophrenia, which indicated there are
compensatory effects in white matter for the high genetic risk
of schizophrenia (Kim et al.,, 2012). Similar findings can also
be seen in major depressive disorder (Wang et al., 2014) and
posttraumatic stress disorder (Li et al., 2016). Therefore, it is
reasonable to speculate that an increase in the local connections
of LLD-IM patients in the current study could also have a
compensatory change against the disease effects of LLD. This
change could be the reason LLD-IM patients still maintain
memory capacity to some degree.

According to a weight rich-club analysis study among at-risk
mental state subjects by Schmidt et al. (2017). The identified
rich-club nodes included the dorsal and ventral striatum, the
globus pallidus, and the amygdala. Although different from
Schmidt’s study, who used FreeSurfer software to parcellate the
brain into 82 cortical and subcortical regions, we found nearly
the same rich-club nodes that were mentioned above by using
FSL to parcellate the brain into 90 cortical and subcortical
regions, except for the bilateral olfactory was found in ours.
Our finding was different from other rich-club study findings
(van den Heuvel and Sporns, 2011; Daianu et al., 2015), and
the established rich-club nodes in these studies included the
superior parietal, precuneus, superior frontal cortex, putamen,
hippocampus, and thalamus. Similar to the views of Schmidt
et al. different identification of richness factors and weight
normalization methods could be the most likely explanations for
this discrepancy.

Disruption in the global network properties in LLD patients
has been shown in previous articles (Bai et al., 2012; Li et al,,
2015), but none of them were focused on the effects of cognitive
function in LLD patients, which was relevant to the integrity
of white matter in LLD (Sexton et al., 2012; Li et al., 2017).
Similar to previous articles (Bai et al., 2012; Gong and He, 2015;
Li et al,, 2017), global network properties, such as the shortest
path length, connective strength, efficiency and fault tolerant
efficiency, were disrupted in LLD-MD patients compared to
LLD-IM patients and HC individuals, while groups did not differ
in the clustering coefficient and small world properties in our
study. Density of network was significantly decreased in LLD-
IM compared with LLD-MD and HC groups. The shortest path
length, connective strength and efficiency are related to the inter
regional effective integrity in the network and the ability for
information transmission between remote regions. In the present
study, impairment of these properties in LLD-MD patients
indicated the relative inefficiency of connection. Additionally,
compared to LLD-IM patients and HC individuals, impaired
fault tolerant efficiency reflected the increasing vulnerability of
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the network in LLD-MD patients. Similar to recent findings in
the LLD connectome (Li et al., 2017), global network properties
had a slightly positive correlation with processing speed and
memory in the current study, which showed that impaired global
network properties can reflect cognitive function to some extent.
Furthermore, density of network was significantly decreased in
LLD-IM compared with LLD-MD and HC groups. Despite the
density of LLD-IM’s network was lower than LLD-MDs, the
connective strength of LLD-IM was still stronger than LLD-MD.
Indicated that the LLD-IM have more effective connections than
LLD-MD, while the density increase in LLD-MD may due to the
compensatory effects of the disease state of memory deficit. But
this conduction needs further research to verify.

A network with positive assortativity tends to have central
nodes with high interconnection (Newman, 2002), which is
similar to the rich-club coefficient to some extent. In the current
study, positive assortativity was found in all participants. In
addition, LLD patients have lower assortativity than HC, which
was consistent with our rich-club organization findings. These
results not only support the existence of rich-club organization
findings in the white matter network, but also indicate that the
disease effects of LLD might primarily disrupt interconnection
among central nodes. Moreover, assortativity was positively
correlated with processing speed as other global network
measures in this study. Not only fault tolerant efficiency but also
higher assortativity was represented for greater resilient to target
node insults in the network (Cisler et al., 2016). Accompanied by
the other global network property findings mentioned above, our
results suggested that disrupting the integrity and vulnerability
of the brain network can be the hallmark of information transfer
impairment during cognitive processes in LLD patients.

There are some limitations to this study besides the limited
sample size. (1) Different parcellation resolutions might lead
to different findings on graph analytical findings in the human
brain (Fornito et al, 2010). However, to avoid the “fiber
crossing problem” in deterministic tractography (Bai et al,
2012), probabilistic tractography was used to map the brain fiber
connectivity in the current study, which is too computationally
intensive to use high resolution analysis to verify the findings
in an AAL90 atlas. Because of the limitations of a large
data-processing capacity, we could not use a high resolution
analysis in this study. (2) In the current study, we did not
group the LLD patients into episodes or remission stage by
HRSD. Although the effects of depressive episodes on cognitive
function have been proven in an earlier study, which called
this phenomenon “depressive pseudodementia” (Bulbena and
Berrios, 1986), those effects did not influence our findings.
HRSD is a psychological test to evaluate a subject’s emotional
state for the prior month, which has limited influence on
white matter changes. Additionally, subjects who were unable
to cooperate with the neuropsychological battery were excluded
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