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Amnestic MCI (aMCI) and non-amnestic MCI (naMCI) are considered to differ in etiology

and outcome. Accurately classifying MCI into meaningful subtypes would enable early

intervention with targeted treatment. In this study, we employed structural magnetic

resonance imaging (MRI) for MCI subtype classification. This was carried out in a

sample of 184 community-dwelling individuals (aged 73–85 years). Cortical surface

based measurements were computed from longitudinal and cross-sectional scans. By

introducing a feature selection algorithm, we identified a set of discriminative features, and

further investigated the temporal patterns of these features. A voting classifier was trained

and evaluated via 10 iterations of cross-validation. The best classification accuracies

achieved were: 77% (naMCI vs. aMCI), 81% (aMCI vs. cognitively normal (CN)) and

70% (naMCI vs. CN). The best results for differentiating aMCI from naMCI were achieved

with baseline features. Hippocampus, amygdala and frontal pole were found to be most

discriminative for classifying MCI subtypes. Additionally, we observed the dynamics of

classification of several MRI biomarkers. Learning the dynamics of atrophy may aid

in the development of better biomarkers, as it may track the progression of cognitive

impairment.

Keywords: mild cognitive impairment, longitudinal data, early diagnosis, MRI, biomarker, feature selection,

machine learning

INTRODUCTION

Mild cognitive impairment (MCI) is thought to be a transitional stage between cognitively normal
and dementia (Petersen, 2004). Previous studies have shown that neuroimaging biomarkers are
potential predictors of cognitive impairment (Shi et al., 2010; Cuingnet et al., 2011; Davatzikos
et al., 2011; Falahati et al., 2014; Trzepacz et al., 2014; Bron et al., 2015; Jung et al., 2016; Lebedeva
et al., 2017). Many researchers have developed and implemented machine learning systems which
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use neuroimaging biomarkers for more accurate identification of
individuals with MCI or dementia (Cui et al., 2012a; Shao et al.,
2012; Lebedev et al., 2014; Min et al., 2014; Moradi et al., 2015;
Yun et al., 2015; Cai et al., 2017; Guo et al., 2017). Early diagnosis
is an essential step in the prevention and early treatment of MCI
and dementia.

MCI is clinically heterogeneous with different risks of
progression to dementia. Clinical subtypes of MCI have been
proposed to broaden the concept, and included prodromal
forms of a variety of dementias (Petersen, 2004). MCI is
termed “amnestic MCI” (aMCI) when memory loss is the
predominant symptom. Almost 10% to 15% aMCI individuals
tend to progress to clinically probable Alzheimer’s disease (AD)
annually (Grundman et al., 2004). Additionally, MCI is termed
“non-amnesticMCI” (naMCI) when impairments are in domains
other than memory. Individuals with naMCI were more likely to
convert to dementia other than AD, such as vascular dementia or
dementia with Lewy bodies (Tabert et al., 2006). The progression
of different MCI subtypes to a particular type of dementia has
yet to be clearly delineated. On the other hand, MCI does not
necessarily lead to dementia, since some studies suggested that
MCI subjects have higher rates of reversion to normal cognition
than progression to dementia (Brodaty et al., 2013; Pandya et al.,
2016). A population-based study found that the reversion rate
is lower in aMCI compared with naMCI (Roberts et al., 2014).
Reliably identifyingMCI of different subtypes would enable more
efficient clinical trials and facilitate better targeted treatments.

Longitudinal measurements of Magnetic Resonance Imaging
(MRI) in MCI and dementia may provide crucial predictors
for tracking the disease progression of dementia (Misra et al.,
2009; Risacher et al., 2010; Liu et al., 2013; Mayo et al., 2017).
However, only a few studies used longitudinal data for automated
classification of MCI and dementia (McEvoy et al., 2011; Li et al.,
2012; Zhang et al., 2012a; Ardekani et al., 2017; Huang et al.,
2017). Zhang et al. proposed an AD prediction method using
longitudinal data which achieved greater classification results
than using baseline visit data (Zhang et al., 2012a). Huang et al.
presented a longitudinal measurement of MCI brain images
and a hierarchical classification method for AD prediction.
Their method using longitudinal data consistently outperformed
the method using baseline data only (Huang et al., 2017).
Despite these efforts, employing machine learning technique
with longitudinal MRI features for MCI subtypes classification is
rarely studied. And an additional aspect of research when using
longitudinal MRI measurements is to identify the biomarkers
that remain significant during the time course.

In this study, we used machine learning technique to classify
MCI subtypes by employing cross-sectional and longitudinal
MRI features. We reported nine independent classification
experiments, whereby we compared two groups in each
experiment: aMCI vs. cognitively normal (CN), naMCI vs. CN,
naMCI vs. aMCI, using features measured at baseline, two-
year follow-up, and longitudinally. The longitudinal features
were employed by calculating the means and changes of the
cross-sectional measurements. Clinical classifications at two-year
follow-up were used as the comparison. The features used for
classification were cortical surface based, including sulcal width,

cortical thickness, cortical gray matter (GM) volume, subcortical
volumes and white matter hyper-intensity (WMH) volume. We
compared the classification performance using cross-sectional
features and longitudinal features. In addition, we performed
feature selection and analyzed the temporal patterns of the
selected biomarkers.

MATERIALS AND METHODS

Participants
Participants were members of the Sydney Memory and Aging
Study (MAS), a longitudinal study of community-dwelling
individuals aged 70–90 years recruited via the electoral roll
from two regions of Sydney, Australia (Sachdev et al., 2010).
Individuals were excluded at baseline if they had a previous
diagnosis of dementia, mental retardation, psychotic disorder
including schizophrenia or bipolar disorder, multiple sclerosis,
motor neuron disease, developmental disability, or progressive
malignancy. The study was approved by the Ethics Committees of
the University of New SouthWales and the South Eastern Sydney
and Illawarra Area Health Service.Written informed consent was
obtained from each participant.

Diagnosis
Participants were diagnosed with MCI using the international
consensus criteria (Winblad et al., 2004). Specifically, the
presence of cognitive impairment as determined by performance
on a neuropsychological measure of at least 1.5 standard
deviations below published normative values for age and/or
education on a test battery covering five cognitive domains
(memory, attention/information processing, language, spatial
and executive abilities), a subjective complaint of decline in
memory or other cognitive function either from the participant
or informant, and normal or minimally impaired instrumental
activities of daily living attributable to cognitive impairment
(total average score <3.0 on the Bayer Activity of Daily Living
Scale, Hindmarch et al., 1998).

MCI were classified into two subtypes (aMCI or naMCI)
according to cognitive impairment profiles (Petersen, 2004).
Participants with no impairments on neuropsychological tests
were deemed to have normal cognition. In this study, we included
individuals who had MRI scans from both baseline and 2-year
follow-up (wave-2), and a wave-2 diagnosis of either cognitively
normal or MCI. Demographic characteristics were detailed in
Table 1. A total of 184 participants met these criteria, including
115 cognitively normal (CN), 42 aMCI, and 27 naMCI. The MRI
measurements used in the present study have been previously
published (Liu et al., 2013).

Image Acquisition
MRI scans were obtained with a 3-T system (Philips Medical
Systems, Best, The Netherlands) using the same sequence for
both baseline and follow-up scans: TR = 6.39 ms, TE = 2.9 ms,
flip angle = 8◦, matrix size = 256 × 256, FOV = 256 × 256 ×

190 mm, and slice thickness= 1 mm with no gap, yielding 1× 1
× 1 mm3 isotropic voxels.
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TABLE 1 | Demographic characteristics of the sample.

Time point Diagnostic group No. of subjects (male) Age mean (SD) Years of Edu mean (SD) MMSE score mean (SD)

Baseline Total 184 (91) 77.48 (4.40) 11.79 (3.60) 28.16 (1.32)

CN 117 (56) 77.12 (4.43) 11.93 (3.53) 28.39 (1.23)

aMCI 40 (28) 78.36 (4.11) 11.81 (3.96) 27.58 (1.32)

naMCI 27 (7) 77.76 (4.65) 11.14 (3.42) 28.00 (1.44)

Wave-2 Total 184 (91) 79.38 (4.40) 11.79 (3.60) 28.40 (1.41)

CN 115 (53) 78.78 (4.15) 12.06 (3.42) 28.83 (1.16)

aMCI 42 (30) 81.26 (4.98) 11.87 (4.16) 27.64 (1.59)

naMCI 27 (8) 79.03 (3.72) 10.49 (3.27) 27.78 (1.40)

CN, cognitively normal; aMCI, amnestic mild cognitive impairment (MCI); naMCI, non-amnestic MCI; Edu, education, MMSE, Mini-mental state examination.

Image Processing
Sulcal Measures

Cortical sulci were extracted from the images via the following
steps. First, non-brain tissues were removed to produce images
containing only GM, white matter (WM) and cerebrospinal
fluid (CSF). This was done by warping a brain mask defined
in the standard space back to the T1-weighted structural MRI
scan. The brain mask was obtained with an automated skull
stripping procedure based on the SPM5 skull-cleanup tool
(Ashburner, 2009). Individual sulci were identified and extracted
using the BrainVisa (BV, version 3.2) sulcal identification pipeline
(Rivière et al., 2009). A sulcal labeling tool incorporating 500
artificial neural network-based pattern classifiers (Riviere et al.,
2002; Sun et al., 2007) was used to label sulci. Sulci that were
mislabeled by BV were manually corrected. For each hemisphere,
we determined the average sulcal width for five sulci: superior
frontal, intra-parietal, superior temporal, central, and the sylvian
fissure. Sulcal width was defined as the average 3D distance
between opposing gyral banks along the normal projections to
the medial sulcal mesh (Kochunov et al., 2012). The five sulci
investigated in the present study were chosen because they were
present in all individuals, large and relatively easy to identify
after facilitating error detection and correction, and located on
different cerebral lobes. For each hemisphere, we calculated the
global sulcal index (g-SI) as the ratio between the total sulcal area
and outer cortical area (Penttilae et al., 2009). We calculated the
g-SI of each brain with no manual intervention using BV.

Cortical Thickness, GM Volume

We computed average regional GM volume, average regional
cortical thickness using the longitudinal stream in FreeSurfer
5.1 (http://surfer.nmr.mgh.harvard.edu/) (Reuter et al., 2012).
This stream specifically creates an unbiased specific within-
subject template space and image using robust, inverse consistent
registration (Reuter and Fischl, 2011; Reuter et al., 2012).
Briefly, this pipeline included the following processing steps,
skull stripping, Talairach transforms, atlas registration, spherical
surface maps, and parcellation of cerebral cortex (Desikan et al.,
2006; Reuter et al., 2012). We applied Desikan parcellation
(Desikan et al., 2006) which resulted 34 cortical regions of interest
(ROIs) in each hemisphere. We visually inspected registration

and segmentation. Scans were excluded if they failed visual
quality control, resulting in an unequal number of scans available
for different brain structures. We calculated both the cortical
thickness and the regional volumes for every cortical regions of
the Desikan parcellation.

Subcortical Volume

Subcortical brain structures were extracted using FSL’s FIRST
(FMRIB Image Registration and Segmentation Tool, Version
1.2), a model-based segmentation/registration tool (Patenaude
et al., 2011). We included the following left and right subcortical
structures: thalamus, caudate, putamen, pallidum, hippocampus,
amygdala, and nucleus accumbens. Briefly, the FIRST algorithm
modeled each participant’s subcortical structure as a surface
mesh, using a Bayesian model incorporating a training set of all
images. We conducted visual quality control of FSL results using
ENIGMA protocols (http://enigma.ini.usc.edu/). Three slices of
each of coronal, sagittal and axial planes were extracted from each
linearly transformed brain. For comparison, an outline of the
templates was mapped onto the slices. We confirmed that the size
of the participant brain corresponded with that of the template,
verified that the lobes were appropriately situated, and confirmed
that the orientation of the participant matched the template.

WMHs

WMHs were delineated from coronal plane 3D T1-weighted and
Fluid Attenuated Inversion Recovery (FLAIR) structural image
scans using a pipeline described in detail previously (Wen et al.,
2009). For each hemisphere, we calculated WMH volumes of
eight brain regions: temporal, frontal, occipital, parietal, ventricle
body, anterior horn, posterior horn, and cerebellum.

We obtained neuroimaging measurements of all participants
at baseline and wave-2. The changes and the means values of
thosemeasurements were considered as the longitudinal features.
There were altogether 178 MRI measurements for baseline and
wave-2 feature sets, which included 12 sulcal measurements,
68 thickness measurements, 68 volume measurements, 14
subcortical measurements, and 16 WMH measurements. With
the means and the changes, the longitudinal feature set included
356 MRI measurements.
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Feature Selection
The aims of feature selection were to maximize the performance
of classification by identifying the most discriminative features,
and help in understanding the neuropathological basis of
neurocognitive impairments such as MCI and dementia.
Supervised feature selection methods were often divided into
three categories, namely “filter,” “wrapper,” and “embedded,”
respectively (Mwangi et al., 2014). A particular problem of those
methods was that when they were applied in the neuroimaging
fields, where the number of features largely exceeded the number
of examples, the cross-validation based error estimates usually
led to results with extremely large variances (Dougherty et al.,
2010; Tohka et al., 2016).We proposed a feature selectionmethod
in this study to reduce the variances by integrating the filter
and the wrapper procedures within the subsampling iterations.
The optimal feature subset consisted of the features which were
most frequently selected in all the subsamples of data. The
discriminative abilities of the features were assessed in terms of
the selection frequencies.

Figure 1 shows the flowchart of the feature selection
procedure used in our study. We first randomly subsampled
the training set 100 times. During each subsampling iteration,

FIGURE 1 | Illustration of the feature selection procedure. This procedure

integrate filter and wrapper methods within the subsampling procedure. The

optimal features consisted of the features which were most frequently selected

in all the subsamples of data. The final optimal feature set was determined by

validating classification performance on the training data. We used feature

ranking with ANOVA F-value as the filtering process, and the recursive feature

elimination algorithm as the wrapping process. A single experiment within a

cross-validation (CV) iteration is depicted. SVM = support vector machine.

data were divided into two subsets of equal size, subset A and
subset B. Subset A was processed by a filter to select features. The
selected features were then applied to subset B. The subset B was
processed by a wrapper to further reduce the number of features.
After the subsampling processes, features were subsequently
ranked in order of selection frequencies. The final optimal feature
set was then determined by validating classification performance
on the training data, using features chosen on the basis of
frequency rank thresholds.

In the filter stage, ANOVA (analysis of variance) F-value
were used to rank features on the basis of correlations with
their diagnostic label. The top 100 features were selected at
this stage. Then in the wrapping stage, the recursive feature
elimination algorithm (Guyon et al., 2002) was used to further
remove less informative features. Among the top 100 features,
20 were retained in this stage. The selection frequencies could
be 100 at maximum or 0 at minimum. To mitigate the curse-
of-dimensionality problem, the final feature set was limited with
less than 10 features, and a variation section was established for
the feature set to achieve the best validation performance. Given
a frequency rank threshold Nf (Nf ǫ [10, 9, 8]), we randomly
split the training data into 2 subgroups: one for training a SVM
(Vapnik, 1995) classifier with top Nf features, and the other for
validation. The kernel for the SVM is the radial basic function
(rbf). This step was repeated 5 times, and the recall scores were
computed (the recall score is the ratio Tp/(Tp + Fn), where
Tp is the number of true positives and Fn is the number of
false negatives). We chose the recall score as the criteria to
minimize the impact of sample proportion imbalance. The top Nf
features with the highest average recall score became the optimal
feature set. We also evaluated the selected features using 2-tailed
t-test.

Classification and Validation
The imbalance of the sample could lead to a suboptimal
classification performance. This study investigated a population-
based sample, consisting of more cognitively normal individuals
than MCI. There was also a large difference between the sample
sizes of different MCI subtypes. We addressed this problem by
using the data-resampling technique (Chawla et al., 2002; Dubey
et al., 2014). An overview of the procedure is shown in Figure 2.
We used a combination of oversampling and undersampling
(Batista et al., 2004). K-means clustering (Macqueen, 1967)
algorithm was used for oversampling, where new synthetic data
were generated by clustering the minority class data. Briefly, Ns
samples were clustered into Ns/3 clusters, and Ns/3 centroids
were generated. Then these centroids and the original samples
were combined for the next iteration of oversampling. The
oversampling procedure was repeated until the size of minority
class was 2/3 the size of the majority class. K-Medoids clustering
(Hastie et al., 2001) algorithm was used for undersampling,
where actual data points from the majority class were chosen
as the cluster centers. The final training set was a combination
of the oversampled minority class data and the undersampled
majority class data. While resampling the training set, the test
set remained the same. The training set was resampled 3 times
to reduce the bias due to random data generation. Then the
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FIGURE 2 | Overview of the proposed classification model. In this model, a training set and a test set were derived from the dataset using data points from both

majority and minority classes (shown in the left rectangle of the figure). A combination of oversampling and undersampling technique was applied to the training set to

generate a resampled training set. The training set in each cross-validation iteration was resampled three times to reduce the bias due to random dataset generation.

Then feature selection was applied to select the most discriminative features. Then the classification model was trained on the dimension-reduced training set, and

evaluated on the test set.

feature selectionmethod was applied on those resampled training
sets, thus producing 3 learning models. These models were
combined using majority voting, where the final label of an
instance was decided based on the majority votes received from
all the models.

We chose Voting Classifier for classification (Maclin and
Opitz, 1999). A Voting Classifier combines conceptually different
machine learning classifiers and uses a majority vote or the
average predicted probabilities (soft vote) to predict the class
labels. The advantage of Voting Classifier is to balance out
the individual weaknesses of a set of equally well performing
models. We chose SVM (rbf kernel), Logistic Regression (LR)
(Cox, 1958), and Random Forest (RF) (Breiman, 2001) as the
estimators of the Voting Classifier. All the estimators were
with default settings of parameters. Specific weights (1:4:1)
were assigned to SVM, LR and RF via the weights parameter.
The weights were selected experimentally to aim at a better
sensitivity score. We started with the equal weights (1:1:1),
and changed the weights to obtain the best results. The
predicted class probabilities of each classifier were collected,
multiplied by the weights of classifiers, and averaged. The final
class label was then derived from the class label with the
highest average probability. As different features had different
scales, we standardized all the training data within a 0–1
range, and the same procedure was then applied to the test
data.

We evaluated our method using stratified Shuffle Split
cross-validation procedure, also known as Monte Carlo cross-
validation (Berrar et al., 2007), which returned stratified
randomized folds by preserving the percentage of samples for
each class. The cross-validation procedure was repeated 10 times
with a fixed 9:1 train-test ratio. The final classification results
represented the average of these 10 independent experiments.We
applied four metrics to assess the performance of the model: the
accuracy, the specificity, the sensitivity, and the area under the
receiver operating characteristic curve (AUC). AUC is a better
measure than accuracy in imbalanced data sets and real-world
applications (Huang and Ling, 2005; Bekkar et al., 2013).

It was important to note that we obtained a unique set of
selected features in each training set. The training set in each
cross-validation iteration was resampled 3 times, thus producing
3 resampled training sets. In each training set, the maximum
possible selection frequency of one feature was 100. Considering
the feature selection and data-resampling steps within the 10-
iteration cross-validation procedure, the final maximum possible
selection frequency of each feature was 3× 100× 10= 3,000.

All the data processing and analyzing were performed using
Python libraries Numpy 1.10.4 (Walt et al., 2011) and Scipy 0.17.0
(Jones et al., 2001) on Python 2.7.11 (Anaconda 4.0.0–64 bit,
http://www.continuum.io/). All the machine learning methods
were performed using the library Scikit-Learn 0.17.1 (Pedregosa
et al., 2011).
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RESULTS

MCI Subtypes Classification
As shown in Table 2, in the classification of aMCI and CN,
compared with using baseline features, using longitudinal
features improved the performance to accuracy of 73%,
sensitivity of 53%, specificity of 80%, and AUC of 0.75; the
results of using longitudinal features were not superior to
that using wave-2 features. Identifying naMCI from CN was
relatively difficult considering the poor sensitivity value and
AUC; the results of using longitudinal and cross-sectional
features were comparable and without significant difference.
In the classification of naMCI vs. aMCI, compared with using
longitudinal features, using baseline features achieved better
performance; the results of using wave-2 features were not
significantly different from using longitudinal features.

Discriminative Features
The discriminative ability of the features used in this study
were assessed by examining the frequency with which they were
selected. We listed the top 10 most frequently selected features
in each MCI subtype classification experiment (see Tables 3–5).
In the comparison of aMCI vs. CN, thickness of right frontal
pole, left superior temporal, volume of right thalamus, and right
hippocampus were more discriminative than the rest of features
(see Table 3). In the classification of naMCI vs. aMCI, thickness
of right rostral middle frontal, right pericalcarine, right frontal
pole, and volume of right rostral anterior cingulate were more
discriminative than the others (see Table 5). Regardless of cross-
sectional (baseline and wave-2) or longitudinal, all the features
mentioned above were listed in the top-10 feature list. In the
naMCI vs. CN comparison, volume of left temporal pole and
right amygdala were also discriminative (see Table 4).

The top-10 selected features were analyzed to identify the
temporal patterns. Several features measured at different time
points showed dynamic discriminative powers. Figures 3–5
shows the selection frequencies of the stable features measured
at each time point. A feature may be identified as stable when this

feature was selected at all the baseline, wave-2, and longitudinally.
The selection frequencies of the stable features for aMCI vs. CN
classification are shown in Figure 3. We observed that thickness
of right frontal pole was a stable biomarker, since its selection
frequencies were close between different time points. The
selection frequencies of several biomarkers changed visibly over
time, including volume of right thalamus, right hippocampus,
and thickness of left superior temporal. In the classification of
naMCI vs. CN (see Figure 4), only a few features were stable.
We observed that the volume of right amygdala provided more
useful information at baseline. Volume of left temporal pole and
right rostral cingulate carried more information at baseline. In
the classification of naMCI vs. aMCI (see Figure 5), volume of
right rostral middle frontal and thickness of right pericalcarine
thickness were selected more often at baseline, while volume
of right frontal pole were more discriminative at wave-2. And
volume of right rostral anterior cingulate provided important
information at all-time points.

Furthermore, some features were selected in the top-10
feature list at either baseline or wave-2, such as the right g-SI
index, sucal width of superior frontal (see Table 3); thickness
of left lateral occipital, WMH volume of right cerebellum (see
Table 4); thickness of right lateral occipital, and WMH volume
of right frontal (see Table 5). On the other hand, some features
were selected only in longitudinal cases, such as sulcal width
of right superior temporal, thickness of left inferior temporal
(see Table 3); volume of right entorhinal and right posterior
cingulate, thickness of left posterior cingulate and temporal
pole (see Table 4); thickness of left precentral, volume of right
entrohinal (see Table 5). Most of these longitudinal features were
the differences (changes value) between the measures of two time
points.

DISCUSSION

Our study examined classification of MCI subtypes in
community-dwelling elderly using cross-sectional and

TABLE 2 | Classification results of MCI subtypes: features measured at baseline, wave-2 and longitudinally are used and compared.

Task No. of minority class No. of majority class Method Accuracy (%) Sensitivity (%) Specificity (%) AUC

aMCI vs. CN aMCI = 42 CN = 115 Baseline 0.64 0.42 0.71 0.68

Wave-2 0.81* 0.68 0.85 0.74

Longitudinal 0.73 0.53 0.80 0.75

naMCI vs. CN naMCI = 27 CN = 115 Baseline 0.67 0.37 0.75 0.57

Wave-2 0.65 0.30 0.74 0.58

Longitudinal 0.70 0.23 0.82 0.60

naMCI vs. aMCI naMCI = 27 aMCI = 42 Baseline 0.77* 0.70* 0.82 0.84*

Wave-2 0.71 0.57 0.82 0.70

Longitudinal 0.61 0.40 0.78 0.71

wave-2, 2-year follow-up; MCI, mild cognitive impairment; CN cognitively normal; aMCI, amnestic MCI; naMCI, non-amnestic MCI; AUC, area under the receiver operating characteristic

curve.

*Significantly different from the method using longitudinal features; results are from t-test (p < 0.05).
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TABLE 3 | Selected features for the classification of aMCI vs. CN.

Task Baseline feature Frequency pa Wave-2 feature Frequency pa Longitudinal feature Frequency pa

aMCI vs. CN Right frontal pole

thickness

2,658 0.001 Right frontal pole

thickness

2,786 <0.001 Right frontal pole

thickness

2,715 <0.001

Right thalamus

volume

2,136 0.006 Right hippocampus

volume

2,105 <0.001 Right thalamus

volume

2,470 0.001

Left superior

temporal thickness

1,620 0.001 Right thalamus

volume

1,775 0.001 Right hippocampus

volume

2,071 0.001

Right hippocampus

volume

1,344 0.005 Left superior temporal

thickness

1,144 0.005 Left superior temporal

thickness

1,212 0.002

Right g-SIc 1,265 0.003 Left sucal width of

superior frontal

1,062 0.002 Right sucal width of

superior temporalb*

1,036 0.027

Right transverse

temporal thicknessc
755 0.013 Right sucal width of

superior frontalc
963 0.001 Right pericalcarine

thickness

876 0.004

Right pericalcarine

thickness

736 0.005 Right amygdala

volumec
963 0.073 Left precentral

thicknessb*

869 0.035

Right rostral anterior

cingulate volumec
693 0.128 Right pericalcarine

thickness

958 0.006 Left inferior temporal

thickness*

827 0.019

Right paracentral

thicknessc
637 0.022 Right accumbens

volumec
660 0.011 Right paracentral

thicknessb*

819 0.012

Left posterior cingulate

volumec
545 0.134 Left medial orbitofrontal

thicknessc
633 0.045 Right sulcal width of

superior frontal

722 0.002

A feature measured at baseline, wave-2 or longitudinally is defined as baseline feature, wave-2 feature or longitudinal feature, respectively. The first 10 most frequently selected features

and their selection frequencies are listed. The maximum possible selection frequency of each feature is 3000. The features with selection frequencies above 1500 are in bold. wave-2,

2-year follow-up; MCI, mild cognitive impairment; CN, cognitively normal; aMCI, amnestic MCI.
aResults for comparisons of positive subjects and negative subjects using t-tests.
bChanges measurements, the rest longitudinal features are means measurements.
cFeatures that were selected at a single time point (either at baseline or wave-2).

*Features that were selected only in longitudinal case.

longitudinal MRI measurements. Our classification framework
implemented a data-resampling step to reduce the effect of
the class-imbalance, and a feature selection step in which
maximally most discriminative feature subsets were identified.
The results suggested that individuals with aMCI could be
differentiated from CN and naMCI with MRI-based biomarkers,
but identifying naMCI from CN was still a challenge. Identifying
aMCI from CN using longitudinal features achieved better
performance than that using baseline features, but the results
were not superior to that using wave-2 features. The best
performance of differentiating aMCI from naMCI was achieved
with baseline features. In addition, we analyzed and identified
the dynamics of the biomarkers.

The subtlety of brain changes in MCI challenges the image-
based classification. Previous studies reported using machine
learning to differentiateMCI from cognitively normal (Wee et al.,
2011, 2012; Zhang et al., 2011, 2017; Cui et al., 2012b; Liu et al.,
2015, 2017). Cui et al. used combined measurements of T1-
weighted and diffusion tensor imaging (DTI) to distinguish aMCI
from CN, achieved a classification accuracy of 71%, sensitivity
52%, specificity 78%, and AUC 0.70 (Cui et al., 2012b). Our
performance (accuracy 81%, sensitivity 68%, specificity 85%,
and AUC 0.74) is better than their study. The approach of
Wee et al. was a kernel combination method that utilized DTI
and resting-state functional magnetic resonance imaging (Wee
et al., 2012). Although their classification accuracy of 96.3% is
higher than ours, the inclusion of multi-modality imaging could

restrict their use in clinical settings, and the small sample size
of fewer than 30 participants may also make their results less
robust. Considering the heterogeneity of MCI, we performed
MCI subtypes classification, and the results demonstrated that
aMCI and naMCI could be accurately separated with MRI
biomarkers. And the results showed that the various groups
demonstrated different patterns of atrophy on MRI. However,
differentiating naMCI from CN was difficult considering the low
sensitivities (see Table 2). The serious imbalance of classes could
result in this poor performance, although we had performed
data-resampling to mitigate the difference of the sample sizes.
Compared with aMCI, naMCI individuals are more likely to
revert to normal cognition (Roberts et al., 2014; Aerts et al.,
2017). The MCI individuals who reverted might have different
underlying mechanisms (Zhang et al., 2012b). In addition, higher
estimates of MCI incidence in clinic-based studies (Petersen,
2004, 2010) than in population-based studies suggested that the
rate of reversion to normal cognition may be lower in the clinic
setting than in population-based studies (Koepsell and Monsell,
2011; Lopez et al., 2012) such as ours.

Longitudinal patterns of atrophy identified in MRI
measurements can be used to elevate the prediction of cognitive
decline (Rusinek et al., 2003; Risacher et al., 2010). McEvoy
et al. investigated whether single-time-point and longitudinal
volumetric MRI measures provided predictive prognostic
information in patients with aMCI. Their results showed that
the information regarding the rate of atrophy progression
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TABLE 4 | Selected features for the classification of naMCI vs. CN.

Task Baseline feature Frequency pa Wave-2 feature Frequency pa Longitudinal feature Frequency pa

naMCI vs. CN Right WMH volume of

cerebellum c

2,240 0.014 Left lateral occipital

thickness c

2,087 0.002 Right entorhinal

volumeb*

2,866 <0.001

Left temporal pole

volume

2,227 0.072 Right rostral middle

frontal thickness

1,670 0.024 Right amygdala

volume

1,852 0.001

Right amygdala volume 2,027 0.002 Left temporal pole

volume

1,636 0.086 Right posterior

cingulate volumeb*

1,608 0.008

Right rostral middle

frontal thickness

1,757 0.008 Right amygdala volume 1,527 0.003 Left lateral occipital

thickness

1,434 0.002

Right rostral anterior

cingulate volume

1,718 0.011 Right sucal width of

superior frontal c
1,259 0.017 Left temporal pole

volume

1,256 0.074

Left middle temporal

thickness c
1,316 0.002 Left pericalcarine volume c 1,218 0.012 Left posterior cingulate

thicknessb*

891 0.022

Right inferior parietal

thickness c
953 0.002 Right rostral anterior

cingulate volume

993 0.026 Left amygadala

volumeb*

746 0.117

Right thalamus volume c 833 0.005 Right putamen volume c 754 0.001 Left temporal pole

thicknessb*

630 0.054

left transverse temporal

volume c
778 0.182 Right supramarginal

volume

602 0.263 Left middle temporal

thickness

613 0.007

Right supramarginal

volume

638 0.108 Left sulcal width of

superior temporal c
515 0.134 Right WMH volume of

cerebellum

578 0.378

A feature measured at baseline, wave-2 or longitudinally is defined as baseline feature, wave-2 feature or longitudinal feature, respectively. The first 10 most frequently selected features

and their selection frequencies are listed. The maximum possible selection frequency of each feature is 3000. The features with selection frequencies above 1,500 are in bold. wave-2,

2-year follow-up; CN, cognitively normal; naMCI, non-amnestic MCI.
aResults for comparisons of positive subjects and negative subjects using t-tests.
bChanges measurements, the rest longitudinal features are means measurements.
cFeatures that were selected at a single time point (either at baseline or wave-2).

*Features that were selected only in longitudinal case.

over a 1-year period improved risk prediction compared with
using single-time-point MRI measurement (McEvoy et al.,
2011). Huang et al. used longitudinal changes over 4 years
of T1-weighted MRI scans to predict AD conversion in MCI
subjects. Their results showed that the model with longitudinal
data consistently outperformed the model with baseline data,
especially achieved 17% higher sensitivity than the model with
baseline data (Huang et al., 2017). In our study, the results
showed that the longitudinal features failed to provide additional
information for identifying aMCI and naMCI compared with
cross-sectional features. In the classification of aMCI vs. CN,
the accuracy with longitudinal features was nearly 10% higher
than the accuracy with baseline features, but was not superior to
the accuracy with wave-2 features (Table 2). The performance
of using longitudinal features was comparable to using cross-
sectional features at baseline and wave-2 for distinguishing
naMCI from CN. In addition, the highest performance of
distinguishing naMCI from aMCI was achieved with baseline
features (see Table 2). This might because the progression of
naMCI showed no coherent pattern of atrophy. The patterns
of atrophy differ among aMCI and naMCI, and subjects with
naMCI showed scattered patterns of gray matter loss without
any particular focus (Whitwell et al., 2007). All the subjects
of our study were community-dwelling. It was likely that the
naMCI subjects had atrophy patterns closer to those of CN
at baseline, but over the time the patterns progressed to more
MCI-like at wave-2. Our results also indicated that features
selected for identifying naMCI were unstable over time, which

might be because clinical classification of naMCI can be based
on impairment individually or in combination across a range
of non-amnestic cognitive domains (language, visuo-spatial,
processing speed, or executive abilities).

Longitudinal research has observed the dynamics of
biomarkers (Trojanowski et al., 2010; Sabuncu et al., 2011;
Eskildsen et al., 2013; Zhou et al., 2013). Some features provided
significant information at all-time points while some other
features were shown to be useful at a specific time point.
Eskildsen et al. demonstrated that prediction accuracies of
conversion from MCI to AD can be improved by learning the
atrophy patterns that were specific to the different stages of
disease progression (Eskildsen et al., 2013). They found that
medial temporal lobe structures were stable biomarkers across
all stages. Hippocampus was not discriminative at 36 months
prior to AD diagnosis, but was included in all prediction cases of
later stages. In addition, biomarkers were mostly selected from
the cingulate gyrus, which is well known to be affected in early
AD (Eskildsen et al., 2013). Histological studies suggest that the
integrity of entorhinal cortex is among the first affected, which
is then only later followed by an atrophy of the hippocampus
(Braak et al., 1993).In our study, we also found that volume of
the right hippocampus was more discriminative at wave-2 (see
Figure 3, Table 3), which would complemented the histological
findings. Furthermore, the thalamic volume was discriminative
and stable over time (see Figure 3, Table 3), which was consistent
with a previous study that the structure and function of thalamus
determined severity of cognitive impairment (Schoonheim
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TABLE 5 | Selected features for the classification of naMCI vs. aMCI.

Task Baseline feature Frequency pa Wave-2 feature Frequency pa Longitudinal feature Frequency pa

naMCI vs. aMCI Right rostral middle

frontal thickness

2,643 <0.001 Right rostral anterior

cingulate volume

2,754 <0.001 Right rostral anterior

cingulate volume

2,598 <0.001

Right rostral anterior

cingulate volume

2,538 <0.001 Right frontal pole

thickness

2,634 <0.001 Right rostral middle

frontal thickness

2,502 <0.001

Right pericalcarine

thickness

2,241 0.001 Right rostral middle

frontal thickness

2,190 <0.001 Right frontal pole

thickness

2,478 <0.001

Right frontal pole

thickness

1,815 <0.001 Right pericalcarine

thickness

1,551 0.005 Right pericalcarine

thickness

1,830 0.002

Right g-sic 1,539 0.004 Left transverse

temporal volumec
1,131 0.028 Right lateral occipital

thickness

1,062 0.001

Right lateral occipital

thicknessc
1,023 <0.001 Right wmh volume of

frontalc
1,071 0.122 Right entorhinal

volumeb*

1,029 0.010

Right transverse

temporal thicknessc
750 0.014 Left rostral middle

frontal volumec
813 0.037 Left transverse

temporal thickness

867 0.009

Left inferior temporal

thicknessc
687 <0.001 Right insula thicknessc 678 0.037 Left inferior temporal

thickness

666 0.001

Right parsorbitalis

thicknessc
666 0.002 Right frontal pole

volumec
573 0.054 Left precentral

thickness*

639 0.001

Right transverse

temporal thicknessc
480 0.011 Right sulcal width of

superior temporalc
552 0.026 Right g-SI 591 0.011

A feature measured at baseline, wave-2 or longitudinally is defined as baseline feature, wave-2 feature or longitudinal feature, respectively.

The first 10 most frequently selected features and their selection frequencies are listed. The maximum possible selection frequency of each feature is 3,000. The features with selection

frequencies above 1500 are in bold. Key: wave-2, 2-year follow-up; aMCI, amnestic MCI; naMCI, non-amnestic MCI.
aResults for comparisons of positive subjects and negative subjects using t-tests.
bChange measurement, the rest longitudinal features are mean measurements.
cFeatures that were selected at a single time point (either at baseline or wave-2).

*Features that were selected only in longitudinal case.

FIGURE 3 | The selection frequencies of the stable features for aMCI vs. CN

classification. The baseline, wave-2 or longitudinal frequency are the selection

frequencies of the feature measured at baseline, wave-2 or longitudinally,

respectively. The selection frequency (between 0 and 3,000) of each feature is

indicative of the discriminative power for classification. Thickness of right

frontal pole is stable across time. Volume of right thalamus and left superior

temporal provides more information in former time point, while the volume of

right hippocampus is more discriminative in later time point. rFP, right frontal

pole thickness; rTH, right thalamus volume; lST, left superior temporal

thickness; rHI, right hippocampus volume; rPE, right pericalcarine thickness.

et al., 2015). Volume of left posterior cingulate and right rostral
anterior cingulate were more discriminative at baseline for
identifying aMCI and naMCI from CN (see Tables 3, 4), while
volume of right rostral anterior cingulate was a stable biomarker
for naMCI vs. aMCI classification over time (see Figure 5,
Table 5). Zhou et al. used the baseline MRI features to predict
MMSE (The Mini–Mental State Examination, Folstein et al.,
1975) and ADAS-Cog (Alzheimer’s Disease Assessment Scale
cognitive subscale, Rosen et al., 1984) scores in the next 4 years
(Zhou et al., 2013). They observed that the average cortical
thickness of left middle temporal, left and right entorhinal, and
volume of left hippocampus were important biomarkers for
predicting ADAS-Cog scores at all-time points. Cortical volume
of left entorhinal provided significant information in later stages
than in the first 6 months. Several biomarkers including volume
of left and right amygdala provided useful information only at
later time points (Zhou et al., 2013). In our study, cross-sectional
(both baseline and wave-2) volume of right entorhinal was not
an important biomarker for the classification of naMCI vs. CN,
but the longitudinal volume change of right entorhinal (see
Table 4) was discriminative. Volume of right amygdala was
discriminative at all-time points for naMCI vs. CN classification
(see Figure 4, Table 4). The dynamics of biomarker could
potentially aid in developing stable imaging biomarkers and in
tracking the progression of cognitive impairment.

The use of same dataset for feature selection and classification
is termed “double-dipping,” which will lead to distorted
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FIGURE 4 | The selection frequencies of the stable features for naMCI vs. CN

classification. The baseline, wave-2 or longitudinal frequency are the selection

frequencies of the feature measured at baseline, wave-2 or longitudinally,

respectively. The selection frequency (between 0 and 3,000) of each feature is

indicative of the discriminative power for classification. Volume of left temporal

pole is a more important biomarker in former time point. When measured

longitudinally, volume of right rostral anterior cingulate and thickness of right

middle frontal are not selected in the first 10 feature list. The right amygdala

volume is stable over time. lTP, left temporal pole volume; rA, right amygdala

volume; rRAC, right rostral anterior cingulate volume; rRMF, right rostral middle

frontal thickness.

descriptive statistics and artificially inflated accuracies
(Kriegeskorte et al., 2009; Pereira et al., 2009; Eskildsen
et al., 2013; Mwangi et al., 2014). Due to the limited samples
in neuroimaging studies, carelessly designed training, testing
and validation schemes, the risk of double-dipping is high.
Eskildsen et al. used cortical regions potentially discriminative
for predicting AD. They found that by inclusion of test subjects
in the feature selection process, the prediction accuracies were
artificially inflated (Eskildsen et al., 2013). In our experiments,
training datasets and test datasets were adequately separated
using cross-validation procedure. The training set in each
cross-validation iteration were used for data-resampling, feature
selection and classifier training, while the test set were only used
for validating classification performance.

The main limitation of the present study was the limited
sample size. Our method required longitudinal data, thus
limiting the subjects with MRI scans at both time points.
Secondly, this study investigated a population-based sample,
consisting of more cognitively normal individuals than MCI.
There was also a difference between the sample sizes of aMCI and
naMCI. The findings need to be replicated in other data sets.

CONCLUSION

In conclusion, the present study investigated MCI subtypes
classification in a sample from community-dwelling elderly
using both cross-sectional and longitudinal MRI features.

FIGURE 5 | The selection frequencies of the stable features for naMCI vs.

aMCI classification. The baseline, wave-2 or longitudinal frequency are the

selection frequencies of the feature measured at baseline, wave-2 or

longitudinally, respectively. The selection frequency (between 0 and 3,000) of

each feature is indicative of the discriminative power for classification. Volume

of right rostral middle frontal and thickness of right pericalcarine are more

discriminative in former time point, while volume of right frontal pole is more

discriminative in later time point. And volume of right rostral anterior cingulate

provide important information at all-time points. rRMF, right rostral middle

frontal thickness; rRAC, right rostral anterior cingulate volume; rPE, right

pericalcarine thickness; rFP, right frontal pole volume.

Our experiments suggested that longitudinal features were
not superior to the cross-sectional features for MCI subtypes
classifications. Dynamics of the biomarkers were analyzed and
identified. Future studies with longer follow-up and more
measurement occasions may lead to the better understanding of
the trajectories for cognitive impairment.
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