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Increasing evidence suggests that functional brain connectivity is an important
determinant of cognitive aging. However, the fundamental concept of inter-individual
variations in functional connectivity in older individuals is not yet completely understood.
It is essential to evaluate the extent to which inter-individual variability in connectivity
impacts cognitive performance at an older age. In the current study, we aimed
to characterize individual variability of functional connectivity in the elderly and to
examine its significance to individual cognition. We mapped inter-individual variability
of functional connectivity by analyzing whole-brain functional connectivity magnetic
resonance imaging data obtained from a large sample of cognitively normal older
adults. Our results demonstrated a gradual increase in variability in primary regions
of the visual, sensorimotor, and auditory networks to specific subcortical structures,
particularly the hippocampal formation, and the prefrontal and parietal cortices, which
largely constitute the default mode and fronto-parietal networks, to the cerebellum.
Further, the inter-individual variability of the functional connectivity correlated significantly
with the degree of cognitive relevance. Regions with greater connectivity variability
demonstrated more connections that correlated with cognitive performance. These
results also underscored the crucial function of the long-range and inter-network
connections in individual cognition. Thus, individual connectivity–cognition variability
mapping findings may provide important information for future research on cognitive
aging and neurocognitive diseases.

Keywords: individual variability, functional connectivity, cognitive aging, fMRI, brain networks

INTRODUCTION

There is a marked heterogeneity in cognitive functioning during late adulthood and old age
(Hedden and Gabrieli, 2004; Lustig et al., 2009; Nyberg et al., 2012). Some older people
may display rapid cognitive decline or develop Alzheimer’s disease (AD), whereas others may
continue to exhibit a superior level of cognitive functioning. One of the main contributions
to this heterogeneity originates from the variability of the brain (Hedden and Gabrieli, 2004;
Reuter-Lorenz and Lustig, 2005; Bishop et al., 2010; Grady, 2012; Tomasi and Volkow, 2012;
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Karama et al., 2014), particularly in regard to functional
connectivity (Burke and Barnes, 2006; Andrews-Hanna et al.,
2007; Bishop et al., 2010; Grady, 2012; Tomasi and Volkow, 2012;
Ferreira and Busatto, 2013; Fornito et al., 2015).

Previous studies demonstrated that preserved functional
integration between distributed brain regions supports proficient
cognitive function, while functional disruption of the inter-
regional neural communication results in cognitive decline and
AD (Andrews-Hanna et al., 2007; Eyler et al., 2011; Grady,
2012; Nyberg et al., 2012; Dennis and Thompson, 2014).
Much of this evidence comes from direct comparisons of
functional connectivity between groups that are pre-defined by
neuropsychological questionnaires or clinical classifications of
mental states. For instance, elderly individuals who performed
better on a verbal fluency test demonstrated stronger connections
between the precuneus and prefrontal regions compared to that
in individuals with lower verbal fluency test performance (Yin
et al., 2015). Similarly, patients with AD exhibited disrupted
functional connectivity in the default mode and several fronto-
parietal attention networks, compared to that of healthy elderly
individuals (Wang et al., 2007, 2015; Buckner et al., 2009;
Myers et al., 2014). These “group differences” provide substantial
insights into the brain connectivity correlates of cognitive aging.
However, a fundamental issue regarding how functional brain
connectivity itself differs among older individuals remains to be
elucidated. Although many group-based investigations usually
included individual-level results, the “individual difference”
in functional connectivity remains largely uninvestigated. For
example, Betzel et al. (2014) demonstrated the trajectory of
individual functional connectivity of resting state networks
with age (Betzel et al., 2014). Similarly, there are studies that
have largely demonstrated individual-level correlations between
functional connectivity and cognitive performance in normal
elderly people (Andrews-Hanna et al., 2007; Sala-Llonch et al.,
2014; Yin et al., 2015) and patients (Wang et al., 2015). However,
it is still not clear how inter-individual variability in functional
connectivity can vary in different brain regions and to what extent
the inter-individual variability in connectivity impacts cognitive
performance at an older age.

An important reason for the bias toward group differences is
that traditional task-based neuroimaging studies are limited in
their ability to systematically quantify individual brain function
differences, given the diverse nature of the tasks used in
different studies. Resting-state functional connectivity magnetic
resonance imaging (fcMRI) that measures the intrinsic temporal
synchronization of the blood oxygen level-dependent (BOLD)
signals has been developed to delineate the neural functional
architecture in human participants who are not engaged in any
specific task. Similar to genomic and phenomic approaches,
fcMRI is recognized as a remarkably powerful tool to understand
individual variation in brain functioning (Mohr and Nagel, 2010;
Buckner, 2013; Mueller et al., 2013; Zatorre, 2013). Mueller et al.
(2013) recently measured individual differences of the resting-
state connectivity of the cortical regions in 25 healthy adults. The
authors reported higher variability in the association cortex and
lower variability in the unimodal cortices. Similarly, Gao et al.
(2014) examined the inter-individual variability of functional

connectivity during infancy (Gao et al., 2014). However, to
our knowledge, there have been no studies to date regarding
the distribution of the inter-individual differences in functional
connectivity in the brains of elderly individuals.

In the current study, we aimed to investigate two major
issues as follows: (1) we sought to delineate the inter-individual
variability map of functional brain connectivity during old age.
The fcMRI data from 108 healthy older adults were collected
during resting-state conditions. The brain was divided into
116 regions of interest (ROIs), including cortical, subcortical,
and cerebellar regions, using the automated anatomical labeling
(AAL) procedure (Tzourio-Mazoyer et al., 2002). The variation of
the individual-to-individual functional connectivity in each ROI
of these older adults were then estimated and used to generate
the brain variability map. Further, to facilitate the inspection
of the brain distribution for the inter-individual variability, the
variability was compared in 6 distinct brain systems, including
the default mode, fronto-parietal, visual, sensorimotor and
auditory, subcortical, and cerebellar networks (Ferrarini et al.,
2009; He et al., 2009); and 2) we then linked the inter-individual
variability of the connectivity to cognitive function in the elderly.
A battery of standardized neuropsychological tests was employed
to assess the cognitive function of the older participants.
The connectivity–cognition association was first examined by
calculating the correlations between each region’s connectivity
and the cognitive test performance. This allowed us to determine
whether the regions that had correlations between connectivity
and cognitive ability were concentrated in the areas with large
inter-individual variability for functional connectivity. Then, we
defined a cognitive relevance index that was calculated as the
number of cognition-correlated connections to quantify the role
of each region’s functional connectivity in cognitive functioning.
To examine the cognitive significance of the distribution of inter-
individual variability of functional connectivity, a correlation
between the value of inter-individual variability and the degree
of cognitive relevance was computed across all ROIs. This
allowed us to further determine whether regions with larger
inter-individual variability in the brain connectivity would play
a more important role in cognitive performance of the elderly.
Recent studies have suggested that the long-range and inter-
network regional connections function critically in cognitive
processing and cognitive aging (Tomasi and Volkow, 2012; Park
and Friston, 2013; Fjell et al., 2015). Therefore, to better describe
the relationship between variability in connectivity to cognitive
significance, we also investigated whether this relationship was
more specific to the long-range and inter-network connections.

MATERIALS AND METHODS

Participants
A total of 108 cognitively normal, older volunteers
(70.3 ± 5.7 years; range: 60–80 years of age; 50 men and 58
women) were recruited from communities near the Institute
of Psychology-Chinese Academy of Sciences. All participants
met the following inclusion criteria: age ≥60 years; a score ≥ 21
on the Beijing Version of the Montreal Cognitive Assessment
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(Yu et al., 2012); a score ≤ 16 on the Activities of Daily
Living (Lawton and Brody, 1969); right-handed; and free
of stroke, heart disease, diabetes mellitus, neurological and
psychiatric disorders, and traumatic brain injury. The images
were collected under resting-state conditions using a 3.0-T
Siemens Trio scanner (Erlangen, Germany), located at the
Beijing MRI Center for Brain Research. Functional imaging
consisted of 33 T2∗-weighted echo-planar image (EPI) slices
(time repetition (TR) = 2000 ms, time echo (TE) = 30 ms,
flip angle = 90◦, field of view (FOV) = 200 mm × 200 mm,
thickness= 3.0 mm, gap= 0.6 mm, acquisition matrix= 64× 64,
and in-plane resolution = 3.125 × 3.125). We collected 200
functional volumes for each participant. T1-weighted anatomical
images were collected using a magnetization-prepared rapid
gradient echo (MPRAGE) sequence (176 slices, acquisition
matrix = 256 × 256, voxel size = 1 mm × 1 mm × 1 mm,
TR = 1900 ms, TE = 2.2 ms, and flip angle = 9◦) for
co-registration with the functional images. Of the total
number of participants, 85 participants completed a battery
of neuropsychological assessments, which included the Digit
Forward Span (DFS) and Digit Backward Span (DBS) (Gong,
1992), the Paired Associative Learning Test (PALT) (Xu and
Wu, 1986), the Trail Making Test (TMT) Parts A and B (Reitan,
1986), and the Verbal Fluency Test (VFT) (Rosenberg et al.,
1984).

Five participants were excluded due to poor image quality
or gross structural abnormalities. Six participants were excluded
because of excessive head movements (more than 2.0 mm
maximum translation or 2.0◦ rotation) during the scan. Nine
participants were excluded because of bad registration quality
during the visual inspection for the normalization. Thus, the
final statistical analysis included fMRI data from 88 older adults
(70.2 ± 5.6 years; range: 60–80 years of age; 40 men and 48
women). Of these, 76 individuals (70.7 ± 5.5 years; range:
60–80 years of age; 35 men and 41 women) completed the
neuropsychological assessments and provided behavioral data.

The institutional review board of the Institute of Psychology
of Chinese Academy of Sciences approved the current study. All
participants provided written informed consent prior to their
participation in the experiments.

Image Preprocessing
Data pre-processing was performed using the Statistical
Parametric Mapping program1 (SPM8) and the Data Processing
Assistant for Resting-State fMRI2 (DPARSF). This included
the following: removal of the first 5 volumes, corrections for
the intra-volume acquisition time differences between the
slices using the Sinc interpolation, corrections for the inter-
volume geometrical displacement due to head motion using a
6-parameter (rigid body) spatial transformation, a normalization
to the standard Montreal Neurological Institute (MNI) space
(resampling voxel size, 3 mm × 3 mm × 3 mm) using the
DARTEL approach (Ashburner, 2007), spatial smoothing with a
4-mm full width at a half maximum Gaussian kernel to decrease

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.rfmri.org

the spatial noise, and de-trending and temporal band-pass
filtering (0.01–0.08 Hz) to reduce the effects of low-frequency
drifts and high-frequency physiological noise (Lowe et al.,
1998). To remove the head motions for each participant, we
performed a nuisance regression of the head motion, using
a Friston 24-parameter model (6 head motion parameters,
6 head motion parameters one time point before, and the
12 corresponding squared items) (Friston et al., 1996) with
scrubbing (Satterthwaite et al., 2013; Yan et al., 2013a,b; Power
et al., 2014). We calculated the mean framewise displacement
(FD), which was derived using the Jenkinson’s relative root mean
square (RMS) algorithm (Jenkinson et al., 2002). This was used
as a covariate in the group analyses of the connectivity–cognition
correlations to further control for any residual effects of head
movement (Yan et al., 2013a,b; Power et al., 2014). In addition,
we performed a nuisance regression of the global signal (the
average voxel signal within the SPM apriori mask (brainmask.nii)
thresholded at 50%, and the white matter and cerebrospinal fluid
signals, which were calculated by averaging the voxel signals
within the SPM apriori masks (white.nii and csf.nii, respectively)
thresholded at 99%. The residual volumes were retained for use
in the following functional connectivity analysis.

Measuring the Inter-Individual Variability
of Functional Connectivity
To create the regions for the functional connectivity analyses,
we parcellated the brain into 116 ROIs, including 90 cerebral
regions and 26 cerebellar regions, based on the AAL atlas
(Tzourio-Mazoyer et al., 2002). To ensure that only the gray
matter voxels within the AAL ROIs were included in the
analyses, these ROIs were multiplied by the SPM’s gray matter
mask, which was thresholded at 20%, to further remove white
matter, cerebrospinal fluid, and other non-brain tissue voxels.
The mean time series of each ROI was calculated. Pearson’s
linear correlation coefficients (r values) were computed between
each ROI pair of the averaged time series and subsequently
transformed to Fisher z values, which yielded a 116 × 116
correlation matrix for each participant. For a given AAL ROI Ri
(i = 1, 2, . . . 116), the functional connectivity of the participant,
Sm (m = 1, 2, . . . 88), was denoted as a 1 × 115 correlation
coefficient vector, FC(Sm)i, in which each element corresponded
to its correlation with each of the remaining 115 regions.
To quantify the inter-individual variability at Ri, the inter-
individual similarity, FCSi was first calculated as the mean (E) of
the correlation values between any two functional connectivity
vectors of the 88 older participants:

FCSi = E[corr(FC(Sm)i, FC(Sn)i],

where m, n= 1, 2, . . . 88, and m6=n.
The inverted similarity (1–FCSi) was thus defined as the inter-

individual variability (FCVi) of the functional connectivity at Ri
(Mueller et al., 2013). This calculation was repeated for allRi ROIs
to derive the spatial distribution of the inter-individual variability
of the functional connectivity across the entire brain.

Further, we investigated the inter-individual variability for
distinct functional systems in the older participants. Previous
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functional connectome analyses of the brain architecture
indicated the existence of a hierarchical modularity, which is
typically represented as intrinsic functional networks (Ferrarini
et al., 2009; He et al., 2009; Park and Friston, 2013; Turk-Browne,
2013). Here, we associated the 90 cerebrum regions with five
networks, including the sensorimotor and auditory network,
visual network, fronto-parietal network related to attention and
executive function, default-mode network, and the subcortical
network (He et al., 2009), and another 26 regions to the cerebellar
network. The inter-individual variability values were averaged
across the regions from the same functional network. A one-
way analysis of variance (ANOVA) with network as a factor
(six networks) followed by post hoc pair-wise comparisons were
performed to investigate the differences in the inter-individual
variability between the different functional networks (Bonferroni
corrected for 15 comparisons, threshold at 0.05/15≈ 0.0033).

Linking Inter-Individual Functional
Variability to Cognitive Ability
First, we calculated the correlations between functional
connectivity and cognitive ability. Individual cognitive
performance was assessed using four functional domains,
including working memory (indexed by the average z-score of
DFS and DBS), episodic memory (the z-score of PALT), executive
function (inverted z-score of TMT B-A), and vocabulary (the
z-score of VFT). In addition, the composite average z-score on
all tests was considered a measure of individual global cognitive
function. Correlation analyses between each functional domain
and the global measure and connectivity of all ROI pairs were
performed in a subset of participants (n= 76). With an emphasis
on the overall trend of the connectivity–cognition relationship,
we used a liberal threshold of p < 0.01 to map the correlation
patterns between the cognitive measures and interregional
connectivity of all ROI pairs. Age, sex, education level, and
the mean head motion FD were considered covariates during
the connectivity–cognition correlation analyses. In addition, to
further describe the relationship between individual cognition
levels to the connectome measures, the number of long-range
(Euclidean distance >75 mm between the centroids of the
connected regions in stereotactic space), short-range (Euclidean
distance ≤ 75 mm) (Achard et al., 2006; Liang et al., 2013), intra-
network (connections within the 6 networks mentioned above),
and inter-network (connections between the six networks)
connections that were significantly related to each cognitive
measure were calculated.

Then, to quantify the significance of the functional
connectivity of each region with individual cognitive ability
in elderly individuals, a cognitive relevance index was defined.
It was measured as the number of connections (including the
total connections, long-/short-range connections, and inter-
/intra-network connections, respectively) that was significantly
correlated with all cognitive variables at each ROI.

Finally, to evaluate the cognitive significance of inter-
individual variability in connectivity, we examined the
correlation between the values of inter-individual variability
and the values of cognitive relevance across all the AAL ROIs
(p < 0.05). We were interested in examining whether a larger

inter-individual variability in the brain connectivity would be
more cognitively relevant.

Evaluating Potential Confounding
Factors
First, global signal regression (GSR) is a controversial step
that may significantly affect the results and conclusions. Recent
studies have suggested that GSR can decrease dependence on
motion, remove artifactual variance, and provide increased tissue
sensitivity (Fox et al., 2009; Satterthwaite et al., 2013; Yan
et al., 2013a; Power et al., 2014). However, other studies have
demonstrated that GSR may introduce undesirable negative
correlations (otherwise largely absent from the connectivity data)
that alter inter-individual differences (Fox et al., 2009; Gotts et al.,
2013; Saad et al., 2013). In view of these conflicting reports,
we included the results without GSR (nGSR) as Supplementary
Material for the present study.

Second, different AAL regions vary in regional noise and
volume, both of which may potentially drive the inter-individual
variability distribution. To rule out these possibilities, we
calculated the temporal signal-to-noise ratio (SNR), which was
measured as the average signal across time divided by standard
deviation across time for each voxel, and averaged the SNR
of voxels within each ROI. We also calculated the number of
voxels for each ROI to index the volume of each AAL region.
A correlation analysis (p < 0.05) between the SNR/volume and
the inter-individual variability values of the ROIs was examined.

Third, although its size in relation to the entire brain is small,
recent studies mapping the cerebellar topographical organization
suggest that the cerebellum is functionally heterogeneous
(Buckner, 2013). Therefore, cerebellar ROIs may be more prone
to contain functionally diverse gray matter compared to that of
other ROIs. To rule out this potential confound, a connectivity
atlas of the cerebellum, which was adopted by a previous study
(Buckner et al., 2011) with large data set (N = 1000) to calculate
the functional connectivity of different cerebellar regions with
neocortical network, was used to perform an additional analysis.
We chose the 17-network parcellation atlas of the cerebellum.
The voxels assigned to the same network were considered as one
ROI; thus, the 17 ROIs from Buckner et al. (2011) were used to
replace the 26 AAL cerebellar ROIs, and to recalculate the inter-
individual functional variability in the brain. This allowed us to
rule out the possibility that high functional heterogeneity in the
cerebellum may influence the variability estimation.

Finally, to further confirm the robustness of the result with
regard to functional inter-individual variability in the elderly,
we validated the result by analyzing an independent replication
resting-state fMRI dataset (N = 49; 12 men and 37 women;
67.1 ± 4.8 years; range: 60–76 years of age). The data were
acquired using a Philips Achieva 3.0-T MRI scanner (Philips
Healthcare, Andover, MA) at the MRI Center of the First Hospital
of Hebei Medical University of China. Functional images were
collected using an EPI sequence with TR= 2000 ms, TE= 30 ms,
flip angle= 90◦, FOV= 200 mm× 200 mm, thickness= 3.6 mm,
matrix = 112 × 112; in-plane resolution = 1.786 × 1.786,
33 axial slices, and 200 volumes. T1-weighted MPRAGE
image was collected with the following parameters: 176 slices;
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matrix = 256 × 256; voxel size = 1 mm × 1 mm × 1 mm;
TR = 1900 ms; TE = 2.2 ms; flip angle = 9◦. The individual
variability of functional connectivity in this dataset was estimated
using the same procedure as described above.

RESULTS

Inter-Individual Variability in Functional
Brain Connectivity
The exploration of the whole-brain functional connectivity
in 116 AAL regions indicated a highly uneven distribution
pattern for inter-individual variability in the 88 older participants
(Supplementary Figure 1). There was an overall tendency that
the inter-individual functional variability increased from the
primary areas to the subcortical structures and association cortex
to the cerebellum across the whole brain. The mean variability
in the cerebellum (0.72 ± 0.10) was significantly larger (two-
sample t-test, p < 0.0001) than that in the cerebral regions
(0.59 ± 0.07). In the cerebrum (Figure 1A), the inter-individual
difference in functional connectivity was higher in the frontal
and parietal cortices; pre- and post-central gyri; anterior, middle
and posterior cingulated gyri; parahippocampus; hippocampus;
and amygdala and lower in the occipital, temporal, and other
subcortical regions.

The analyses in the six specific functional systems (Figure 1B)
further highlighted a gradual increase in the functional variability
from the visual, subcortical, and sensorimotor and auditory
networks to the default and fronto-parietal networks, and to
the cerebellar network. The ANOVA revealed a significant main
effect of network in the functional variability (p < 0.001).
The post hoc comparisons demonstrated that the mean inter-
individual variability in the cerebellar network was significantly
larger (p < 0.001) than that of each of the other five networks
at a Bonferroni-corrected threshold of p = 0.0033 (0.05/15).
The fronto-parietal network exhibited a trend toward a higher
variability compared with the visual network (p < 0.01) and
subcortical network (p < 0.05).

Connectivity–Cognition Correlation
Figure 2 shows the Pearson correlations of the connectivity of
all ROI pairs with individual global cognitive function and the
four specific cognitive domains (p < 0.01, uncorrected). The
largest number of connections from the superior and orbital
prefrontal cortex and the cerebellum consistently correlated
with individual scores in global cognition and in the four
specific cognitive domains. Further, the functional connectivity
of the following connections were related to the four cognitive
measures: (1) from the middle, anterior, and posterior cingulate;
hippocampus; parahippocampus; amygdala; and precentral
gyrus for working memory (DFS and DBS); (2) from the
middle temporal pole, middle temporal gyrus, postcentral
gyrus, precuneus, thalamus, parahippocampus, hippocampus,
anterior and posterior cingulate, and putamen for episodic
memory (PALT); (3) from the middle temporal gyrus, middle
temporal pole, anterior cingulate, inferior parietal lobule, and
parahippocampus for executive function (TMT B-A); and (4)

from the fusiform, supramarginal gyrus, angular gyrus, middle
temporal gyrus, middle temporal pole, and hippocampus for
vocabulary (VFT).

Long-range and inter-network connectivity accounted for a
considerable proportion of connections that predicted individual
cognition (Figure 2B). There were more long-range connections
than short-range connections (56.7% vs. 43.3% in total), which
correlated with both global measures and specific measures,
except for the vocabulary score. Moreover, inter-network
connections accounted for 87.3% of all the connections that
correlated with the cognitive measures in the whole brain, and
consistently preponderated over the intra-network connections
when the six functional networks were separately analyzed
(Figure 2C). We also summarized the total number of inter-
network connections that correlated with the four specific
cognitive measures for each network. Interestingly, we found that
the six networks were in the same variability rank order, except
for the subcortical network, which moved up to second place
(Figure 3).

Finally, we calculated the cognitive relevance, which was
indexed by the number of connections that were significantly
correlated with the cognitive measures, for each AAL ROI. The
distribution map for the cognitive relevance (Figure 4A) was
similar to the inter-individual functional connectivity variability
map (Figure 1A). The correlation analysis revealed that the value
of the inter-individual functional variability was significantly
correlated with the cognitive relevance across the 116 ROIs
(Pearson correlation r = 0.29, p = 0.001; Figure 4B). Regions
with higher inter-individual functional connectivity variability
demonstrated more connections that correlated with cognitive
performance. More interestingly, when examining the number
of long-/short-range and inter-/intra-network connections, the
value of the inter-individual variability significantly correlated
with the degree of cognitive relevance for the long-range (Pearson
correlation r = 0.32, p < 0.001; Figure 4C) and inter-network
(Pearson correlation r= 0.30, p= 0.001; Figure 4D) connectivity
across all ROIs. There was no significant correlation between
the inter-individual variability and the short-range (Pearson
correlation r = 0.10, p = 0.27) or intra-network (Pearson
correlation r = 0.16, p = 0.09) connectivity cognitive relevance
measures in the brains of elderly individuals.

Impact of Potential Confounds
First, we re-calculated the functional inter-individual variability
without removing the global signal in the preprocessing.
Variability maps, estimated with (Figure 1) and without
(Supplementary Figures 1, 2) GSR, demonstrated a highly
similar pattern (Pearson correlation r = 0.92, p < 0.0001).
The cerebellum retained the largest mean inter-individual
variability compared to that of cerebral regions (two-sample
t-test, p < 0.0001). The network-level variability also consistently
demonstrated significant statistical difference for the functional
variability among the networks (p < 0.001), with gradually
increased variability occurring in the subcortical network, then
the primary networks (i.e., visual, sensorimotor, and auditory
networks), to the association networks (i.e., default and fronto-
parietal networks), and to the cerebellar network (Supplementary
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FIGURE 1 | Inter-individual difference in functional brain connectivity in elderly individuals. (A) Distribution of inter-individual functional variability in the cerebrum. The
inter-individual variability values for the 90-automated anatomical labeling (AAL) cerebral regions were mapped onto the cortical surfaces using varied colors.
(B) Inter-individual variability in functional networks. The left axial map shows the inter-individual variability in the functional connectivity for 116 AAL regions, which
are rendered as color-coded nodes, according to the functional networks (He et al., 2009). The nodes are located at the center of these regions, and the nodal size
is proportional to the level of the inter-individual variability. The right histogram plots the averaged inter-individual variability values and the standard errors for the
functional networks, which are displayed as color-coded bars in the corresponding color applied to the nodes.

Figure 2B). However, as expected, the GSR largely affected
the connectivity–cognition correlations, such that the GSR
preprocessing introduced more negative correlations (Figure 2)
than the nGSR preprocessing (Supplementary Figure 3). As
an overall trend, this was consistent with the GSR results
regarding the inter-network connectivity, especially for the

connections from the superior and orbital prefrontal cortex,
hippocampus, and the cerebellum predominating individual
cognitive ability. It is important to note that the retention of
the global signal diminished the correlation between the long-
range connections and cognition, with a larger proportion of
the long-range connections only found in the global measure
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FIGURE 2 | Correlations between functional connectivity and the cognitive measures of global ability, working memory (DFS and DBS), episodic memory (PALT),
executive function (TMT B-A), and vocabulary ability (VFT). (A) Maps showing significant correlations between the connectivity and cognitive ability (p < 0.01). The
connections that positively correlated with cognition are shown in red, whereas the connections that negatively correlated with cognition are shown in green. The
thickness of the connections is proportional to the connectivity–cognition correlation coefficients. (B) The bars show the total number of short-range and long-range
connections, as well as the intra-network and inter-network connections that are correlated with each cognitive domain. (C) The bars show the total number of
connections within each functional network (transparent bars) and the total number of connections with other networks (non-transparent bars) that are correlated
with each cognitive domain.

and vocabulary score. In addition, in the nGSR condition, the
relationship between the value of the inter-individual functional
connectivity variability and the cognitive relevance across all
ROIs disappeared (Pearson correlation r = –0.13, p = 0.17;
Supplementary Figure 4).

Next, we calculated the correlation between the regional
SNR/size and the inter-individual functional connectivity
variability values across all ROIs, to exclude the possibility
that the ranking of the regional inter-individual variability
was primarily driven by potential noise and size effects. The
rank of the inter-individual variability derived with GSR was
not influenced by the regional noise or size (p > 0.05). The
supplementary nGSR result of the inter-individual variability,

however, correlated significantly with the regional SNR (Pearson
correlation r = 0.34, p < 0.01).

Third, to rule out the possibility that high functional
heterogeneity in the cerebellar ROIs influenced the variability
estimation, we used the 17-network parcellation atlas of the
cerebellum (Buckner et al., 2011) to replace the 26 cerebellar AAL
ROIs, which allowed us to perform an additional analysis of the
inter-individual functional connectivity variability. Consistent
with our findings using the cerebellar AAL ROIs, the additional
analysis demonstrated that 5 of the 17 cerebellar ROIs ranked
highly for the inter-individual functional variability in the brain.
The mean variability of the 17 cerebellar ROIs (0.66 ± 0.12) was
significantly larger (two-sample t-test, p = 0.0001) than that of
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FIGURE 3 | Bar graph shows the ascending order of the total number of
cognition-related inter-network connections for each functional network.

the cerebral ROIs (0.58 ± 0.07). No significant differences were
found for the inter-individual functional connectivity variability
in the cerebellum between the two different atlases (two-sample
t-test, p= 0.09).

Finally, the robust validation analysis in an independent
dataset further confirmed the distribution of inter-individual
functional connectivity variability in the brains of elderly
people. The distribution patterns in both datasets were
highly similar (Pearson correlation r = 0.61, p < 0.0001).
Further, the cerebellum had maximal inter-individual
variability (0.72 ± 0.11), and the cerebrum demonstrated
gradually increased inter-individual variability from the visual
(0.61 ± 0.06), subcortical (0.62 ± 0.05), and sensorimotor
and auditory (0.63 ± 0.09) networks to the fronto-parietal
(0.64± 0.09) and default (0.69± 0.09) networks.

DISCUSSION

There is fairly extensive research regarding the relationship
between changes in brain connectivity and a broad range
of cognitive decline and neuropsychiatric symptoms in aging
populations (Hedden and Gabrieli, 2004; Reuter-Lorenz and
Lustig, 2005; Andrews-Hanna et al., 2007; Wang et al.,
2007, 2015; Bishop et al., 2010; Grady, 2012; Tomasi and
Volkow, 2012; Ferreira and Busatto, 2013; Li et al., 2013,
2015; Fornito et al., 2015). Although these studies strongly
supported the notion that brain connectivity is an important
determinant of cognitive aging, the contribution of person-
to-person variation remained unclear. Thus, the present study

FIGURE 4 | Relationship between inter-individual variability and the cognitive relevance of functional connectivity. (A) The cognitive relevance map of AAL cerebral
regions. Each AAL regions of interest (ROI) was color coded as the total number of connections that are correlated with four specific cognitive domains. (B–D) The
scatter plots show the correlation between the inter-individual variability and cognitive relevance as indexed by the total number of cognition-related connections (B),
long-range connections (C), and inter-network connections (D) across 116 AAL ROIs, respectively. Each dot represents one ROI from AAL.
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aimed to bridge the gap in knowledge of how individual
variability of functional connectivity and the inter-individual
differences affect the cognitive ability of elderly individuals. Our
novel study systematically mapped the distribution of individual
functional variability on a whole-brain scale, which facilitated
understanding of how inter-individual variability differs between
different brain areas in the older adults. Further, we demonstrated
that the inter-individual variability mapping has important
cognitive significance. These findings may thus contribute a
valuable reference or evidence for future cognitive aging studies.

Inter-Individual Functional Variability in
Elderly Individuals
Functional connectivity in the cerebral cortex indicated that there
was higher inter-individual variability in the frontal and parietal
cortices, and the pre- and post-central gyri, while there was
lower variation in the occipital and temporal regions in elderly
individuals. The cortical variability generally aligned with the
results from Mueller et al. (2013) who conducted a study of the
inter-individual differences in cortical connectivity in 25 healthy
adults. In the current study, we expanded this previous work to
include a global analysis of the brain in a large sample of older
adults. Our findings indicate that inter-individual variability
was the largest in the cerebellum, followed by the association
regions that largely constitute the fronto-parietal and default
mode networks, as well as some subcortical regions, especially
the hippocampal formation. Primary regions, including visual
and sensorimotor networks, and other subcortical structures
exhibited minimal variability among individuals.

It is not surprising that the functional connectivity in the
prefrontal and parietal cortices and the relevant fronto-parietal
and default mode networks demonstrated major individual
variations in the cortex, because extensive evidence suggests these
association regions and network connections are the selective
targets of aging effects (Andrews-Hanna et al., 2007; Grady, 2012;
Tomasi and Volkow, 2012; Ferreira and Busatto, 2013). The
cerebellum has not been substantially investigated in most aging
studies. However, there is increasingly converging evidence to
suggest that the cerebellum is connected to cerebral association
regions, including the prefrontal and posterior parietal cortices,
and subcortical structures, including the vestibular nuclei and
basal ganglia. Therefore, the cerebellum can contribute to
a wide variety of functional domains and neuropsychiatric
diseases (Stoodley and Schmahmann, 2009; Bostan et al., 2013;
Buckner, 2013). Wagner et al. (2017) recently observed that
the cerebellar granule cells could encode reward expectation,
suggesting that the cerebellum was involved in cognitive
processing (Wagner et al., 2017). Further, in a recent review
of multidisciplinary findings, Sokolov et al. (2017) suggested
a cerebro-cerebellar loop to explain the involvement of the
cerebellum in higher cognitive functions, including attention,
language, memory, and social cognition (Sokolov et al., 2017).
We identified that the largest inter-individual variability resides
in the cerebellum, further indicating that it is a noteworthy
region for future aging studies. Additional potential studies
include the exploration of how the cerebellum is mediated by
the prefrontal and parietal regions in the association functional

networks, which would provide a better understanding of its role
in aging.

Several potential causes may underlie the distribution of the
inter-individual variability in the brain functional connectivity of
older individuals. First, the hemodynamic MRI signal is triggered
by the metabolic demands of neuronal activities (Heeger and
Ress, 2002). The variability map of functional connectivity
is consistent with the previous metabolic topography of
normal aging, as investigated by positron emission tomography;
this technique demonstrated covariant metabolic changes in
the prefrontal cortex, lateral temporal and parietal cortices,
cerebellum, and basal ganglia (Moeller et al., 1996; Chiaravalloti
et al., 2014). Thus, we speculated that the inter-individual
variability in the functional connectivity had a physiologically
reasonable metabolic basis. Second, our findings may be, in part,
a functional consequence of the individual heterogeneity in brain
structure morphology that occurs with aging. MRI volumetric
studies have demonstrated heterogenic aging patterns across
structures regarding neuroanatomical volume loss (Jernigan
et al., 2001; Walhovd et al., 2005). Jernigan et al. (2001) observed
that the cerebellum exhibited the same striking degree of gray
matter reduction with aging as the frontal lobes, and exhibited
a more accelerated volume loss than the hippocampus (Jernigan
et al., 2001). In addition, other anatomical profiles, such as its
cortical folding, thickness, and white matter fiber tracts, may
also contribute to the individual differences in the functional
correlations (Kanai and Rees, 2011; Mueller et al., 2013; Karama
et al., 2014). For example, diffusion tensor imaging of white
fiber tracts demonstrated that the variability of aging effects
was also regionally complex; this was indicated by a gradient
increase in the white matter deficits from the posterior to
anterior cortex segments, but also by a greater impairment
in the cerebellum (Davis et al., 2009; Bennett et al., 2010).
Third, the diverse dynamics and heterogeneous distributions of
neurons, as well as the selective vulnerability of synapses and
neurons during aging, may also promote individual differences
in functional connectivity (Morrison and Hof, 1997; Zhao et al.,
2008; Bishop et al., 2010; Urban and Tripathy, 2012; Mejias
and Longtin, 2014). Although the cerebellum only accounts
for approximately 10% of the total brain weight, it accounts
for half of its neurons. Thus, the cerebellum would naturally
exhibit more variations due to its densely packed neuronal
assembly. Finally, genetic and plasticity factors play critical
roles in the inter-individual variability in brain connectivity
(Mueller et al., 2013; Toro et al., 2014). Genes determine the
individual differences in the evolutionarily recent association
cortex, specifically in the prefrontal region (Thompson et al.,
2001), where the gene expression patterns exhibit substantially
greater heterogeneity in middle-old aged populations (Lu et al.,
2004; Bishop et al., 2010). Furthermore, the prefrontal cortex
and cerebellum are the final structures to achieve maturity,
but are also the first structures to undergo involution in
later life (Wang and Zoghbi, 2001; Hogan et al., 2011). This
protracted development and prolonged degeneration processes
can continue to accumulate deeper and more complex inter-
individual variations via environment- and lifestyle-dependent
neural plasticity.
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Cognitive Relevance of the
Inter-Individual Connectivity Variability
The connectivity–cognition correlation suggested that the
connections that are related to cognitive ability lay mainly
in regions with large inter-individual connectivity differences,
including the prefrontal cortex, hippocampal formation, inferior
parietal gyrus, middle temporal pole, middle temporal gyrus,
and cerebellar regions. The prefrontal, parietal, and temporal
regions are the uppermost components of the fronto-parietal
and default mode networks, which support high-level cognition.
Numerous molecular and neuroimaging studies have repeatedly
confirmed their role in cognitive aging, such as in memory,
attention, and executive function decline (Hedden and Gabrieli,
2004; Burke and Barnes, 2006; Andrews-Hanna et al., 2007;
Bishop et al., 2010; Grady, 2012; Nyberg et al., 2012; Tomasi
and Volkow, 2012; Ferreira and Busatto, 2013; Karama et al.,
2014). The hippocampal formation is also particularly vulnerable
to the aging process. Here, we demonstrated that the functional
connectivity of the hippocampus and parahippocampus is
correlated with all four cognitive measures, including working
memory (DFS and DBS), episodic memory (PALT), executive
function (TMT B-A), and vocabulary (VFT). Our results are
consistent with a recent meta-analysis of 114 fMRI studies of
older adults, which suggested a set of regions that are remarkably
involved in cognitive aging; these included the frontal gyrus,
parahippocampal gyrus, fusiform gyrus, precentral gyrus, and
functional networks, especially the fronto-parietal and default
networks (Li et al., 2015).

Long-range and inter-network connections appeared to
dominate cognitive ability differences among older adults. Long-
range connections are well-known for their key role in efficient
brain-wide information processing and functional integration
of diverse cognitive functions (Jbabdi et al., 2013; Park and
Friston, 2013). Previous evidence demonstrated that the long-
range connections in the default and fronto-parietal attention
networks are selectively vulnerable to aging and are susceptible
to early Alzheimer’s disease, compared to that of the short-
range connections (Andrews-Hanna et al., 2007; Tomasi and
Volkow, 2012; Li et al., 2013; Wang et al., 2013; Sala-Llonch
et al., 2014). Recently, Fjell et al. (2015) found extensive changes
in inter-network functional connectivity across multiple cortical
networks that were related to a decline in episodic memory with
aging (Fjell et al., 2015). It is also interesting to note that although
the subcortical network ranked lower for the average inter-
individual variability, some specific regions with larger inter-
individual differences, including the hippocampal formation,
thalamus, caudate, and amygdala, have considerable connections
to regions in other networks that are involved in cognition.
Therefore, this may suggest that this network, specifically some
specific regions, needs to be considered as having a role in
cognitive function through its interactions with other cortical and
cerebellar networks.

Importantly, we found larger inter-individual variation of
functional connectivity was significantly correlated with higher
cognitive relevance, in terms of the number of cognition-
correlated connections. This relationship suggested that the

functional connectome was a major root of individual behavior
differences. Moreover, we demonstrated that the correlation
between the inter-individual variability and the cognitive
relevance of functional connectivity was specific to long-
range and inter-network connections. Given the role of long-
range and inter-network connections in cognitive performance,
this finding further indicated that regions and networks with
large inter-individual variability deserve attention in future
studies. Thus, these results provide a new perspective for
understanding cognitive aging. Currently, most studies are
conducted by first assigning participants to different groups,
and then exploring differences in the averaged brain activity
signals among the groups. In these studies, inter-individual
differences in brain function are essentially neglected, or
simplified to group differences (Mohr and Nagel, 2010), limiting
the full understanding of cognitive aging. Here, the mapping
of the inter-individual functional connectivity variability and its
correlation with cognition suggested regions and connections,
which are typically overlooked but important to cognitive
aging studies. For example, the cerebellum showed the largest
inter-individual variability and was correlated with diverse
cognitive domains. In fact, several studies investigating the role
of the cerebellum in aging has emerged. Increasing evidence
has indicated that the cerebellum is involved in frontally
based functional decline in elderly individuals (Sullivan and
Pfefferbaum, 2006; Hogan et al., 2011; Bernard and Seidler,
2014). Future studies should investigate how the prefrontal
cortex interacts with the cerebellum, subcortical areas, and
other cortical regions to contribute to the inter-individual
differences seen with aging. This would be particularly important
to distinguish the connectivity–cognition associations that are
specific to aging from the inherent general relationships
across the lifespan. For example, previously the prefrontal
cortex has been overwhelmingly emphasized in cognitive aging.
However, a previous molecular genetic expression study (Erraji-
Benchekroun et al., 2005) and a recent cortical thickness study
(Karama et al., 2014) have stressed that the prefrontal cortex is
in fact linked closely with diverse cognitive abilities throughout
the human life-span. The mapping of inter-individual variability
thus brings a new perspective to future studies that seek
key areas affected by cognitive aging. It will also be exciting
to investigate inter-individual connectivity variability and its
cognitive importance over time to further understand inter-
individual differences in the trajectories of cognitive aging and
specific diseases, such as AD.

Limitations
A few limitations of the present study must be noted. First,
given the complex and controversial involvement of the GSR
in fcMRI studies, we included results both with and without
GSR. The GSR was expected to influence the results. The
inter-individual variability rank estimated from data with GSR
appeared to be more sensitive to the noise than the nGSR
results, despite a similar inter-individual ROI variability ranking
with both strategies. In addition, the GSR produced negative
biased correlations between the individual connectivity and
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cognitive measures and magnified the proportion of long-range
connections that were correlated with performance, compared to
that of the nGSR results. However, both suggested an important
role for the inter-network connections in cognitive aging. The
influence of the regression of global signal in the present result
needs to be carefully considered. Second, we noted that as the
present study was confined to the estimation of the distribution
of inter-individual functional variability of older adults, intra-
individual variations were not considered. Variations in the
intra-individual functional connectivity may be caused by
measurement instability due to technical noise or changes of
mental and biological states (Mueller et al., 2013). A recent
study conducted by Chen et al. (2015) depicted the pattern
of intra-individual functional variability in the brain of young
adults with the use of ten repeated fMRI measurements. Another
factor is the temporal moment-to-moment variation within an
individual’s BOLD signal, which has also been suggested to
have predictive significance in relation to cognitive function and
various clinical conditions (Garrett et al., 2013). It is necessary
for future studies to investigate the distribution characteristic
of these intra-individual variations and examine their cognitive
correlations with aging and to further investigate how these
variations may interact with inter-individual variability. Third,
we acknowledge that the connectivity–cognition correlation was
not corrected for multiple comparisons. This is because the focus
of this study was not to report which regional connections were
significantly correlated with cognitive performance. We used a
threshold of p < 0.01 (corresponding to r > 0.30) to define
the cognitive relevance index for each region, which helped
disclose an overall relationship between functional connectivity
variability and cognitive association across all brain areas. The
definition of “cognitive relevance index” in our study was similar
to that of other fMRI connectivity measurements, such as
“functional connectivity density” or “degree centrality,” which
is usually calculated as the number of correlated connections
at a liberal correlation coefficient threshold (e.g., r = 0.25),
without multiple corrections on the correlations between mass
voxels (Buckner et al., 2009; Weng et al., 2016). Fourth, the
AAL atlas we used to calculate functional connectivity was
defined on the basis of anatomical features. Although the use
of an alternative connectivity atlas of cerebellum did not change
the cerebellar rank in inter-individual variability, the influence
of the ROI definition from using the AAL cannot be fully
excluded. As the division of brain regions, as well as their
functional characteristics, remains controversial, future studies
of data-driven parcellation of brain regions and networks would
present more precise estimation of inter-individual variability
in elderly individuals. Finally, the current study was focused
on mapping a general profile of inter-individual variability
in an older population. No attempt was made to examine

factors, such as the age of participants, that influence inter-
individual variability. Thus, further studies are required to
investigate the effect of age, as well as other environmental
or genetic factors, that can influence individual functional
variability.

CONCLUSION

In the current study, we delineated a map of inter-individual
variability in whole-brain functional connectivity for older adults.
These results revealed gradually increased variability from the
primary regions (including the visual, sensorimotor, and auditory
networks), to specific subcortical structures, particularly the
hippocampal formation, and the prefrontal and parietal cortices
that largely constitute the default mode and fronto-parietal
networks, and the cerebellum. The connectivity–cognition results
further stressed a crucial function for long-range and inter-
network connections in inter-individual cognitive performance.
Moreover, the associations between inter-individual variability
and the cognition relevance of functional connectivity provide
a new perspective for investigating the mechanisms underlying
cognitive aging and relevant diseases.
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