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Alzheimer’s disease (AD), a neurodegenerative disorder, is most common cause of
dementia witnessed among aged people. The pathophysiology of AD develops as a
consequence of neurofibrillary tangle formation which consists of hyperphosphorylated
microtubule associated tau protein and senile plaques of amyloid-β (Aβ) peptide in
specific brain regions that result in synaptic loss and neuronal death. The feeble buffering
capacity of endoplasmic reticulum (ER) proteostasis in AD is evident through alteration in
unfolded protein response (UPR), where UPR markers express invariably in AD patient’s
brain samples. Aging weakens UPRER causing neuropathology and memory loss in AD.
This review highlights molecular signatures of UPRER and its key molecular alliance that
are affected in aging leading to the development of intriguing neuropathologies in AD.
We present a summary of recent studies reporting usage of small molecules as inhibitors
or activators of UPRER sensors/effectors in AD that showcase avenues for therapeutic
interventions.

Keywords: Alzheimer disease, neurodegenerative diseases, endoplasmic reticulum stress (ER), aging, UPR
(unfolded protein response)

INTRODUCTION

Alzheimer’s disease (AD), the most common form of dementia faced by more than 40 million
people worldwide, significantly affect morbidity and mortality in aged people (Alzheimer’s
Association, 2016; Fiest et al., 2016; Scheltens et al., 2016; Cass, 2017). The most vulnerable
group falling as target is above 65 years, which puts aging as the crucial risk factor associated
with development of the disease (Alzheimer’s Association, 2016; Fiest et al., 2016; Scheltens
et al., 2016; Cass, 2017). AD is a progressively neurodegenerative disorder, characterized by
cognitive alterations and behavioral changes that owe to synaptic impairment and loss of
neurons (Alzheimer’s Association, 2016; Scheltens et al., 2016). Mutations in genes encoding
APP (amyloid precursor protein), presenilin 1 and 2 (PS1 and PS2 respectively), as well as
ε4 allele of Apolipoprotein E are reported to be linked to rare familial and early development
of AD (Selkoe, 2001a,b; Scheltens et al., 2016). AD leads to the formation of neurofibrillary
tangles having hyperphosphorylated microtubule associated tau protein and senile plaques of
amyloid-β (Aβ) peptide in specific brain regions, result in brain inflammation, astrogliosis
and microglial proliferation (Citron, 2002; Selkoe, 2004a,b; Cleary et al., 2005; Haass and
Selkoe, 2007; Atwood and Bowen, 2015; Minter et al., 2016; Sami et al., 2017). Gradual
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accumulation of Aβ peptide attributed to β- and γ-secretases
action on the APP, results in synaptic loss and neuronal death
(Chyung et al., 2005; Tatarnikova et al., 2015).

The expression pattern of neurodegenerative pathologies
shows distinct molecular signatures, such as misfolded Aβ

aggregation and tau protein hyperphosphorylation in the
brain (Jiang et al., 2010; Atwood and Bowen, 2015; Sami
et al., 2017). How this load of protein aggregates disrupt the
neuronal function is still a mystery to medical science? In
this review, we have tried to focus on the role of ER stress
and the ensuing unfolded protein response (UPRER) imposed
on the neuronal cell due to misfolded protein aggregates. Also,
we have discussed various therapeutic interventions targeting
the molecules involved in UPR pathways aiming at averting the
neuropathologies of AD.

ER STRESS AND UPRER

Adversities in the endoplasmic reticulum (ER)
microenvironment like nutrient deprivation, changes in
redox potential, calcium homeostasis, hypoxia and accumulation
of unfolded/misfolded protein triggers the UPRER (Schroder and
Kaufman, 2005; Moneim, 2015). UPRER is a highly conserved
signaling cascade in all eukaryotes involved in the cellular
homeostasis (Ellgaard and Helenius, 2003; Mori, 2009; Walter
and Ron, 2011) through transcriptional remodeling of ER
proteostasis pathways (Lee et al., 2003; Yamamoto et al.,
2007; Shoulders et al., 2013; Genereux et al., 2015). The ER
lumen harbors various molecular chaperones like the Glucose
Regulated Protein 78 kDa (GRP78) that are recruited to
misfolded nascent peptides for aiding in their proper folding
(Bertolotti et al., 2000; Shen et al., 2002). A plethora of studies
have reported UPRER upregulation in the brain samples of
Alzheimer’s patients (Hamos et al., 1991; Hoozemans et al.,
2005, 2009).

The UPRER embodies a complex network comprised of three
stress-responsive transmembrane proteins, Protein Kinase RNA
like ER kinase (PERK), Inositol Requiring Element 1 (IRE1) and
Activating Transcription Factor 6 (ATF6; Figure 1; Schroder and
Kaufman, 2005; Walter and Ron, 2011; Minakshi et al., 2017;
Rahman et al., 2017). PERK, a type 1 transmembrane kinase
protein, gets trans-autophosphorylated and homodimerized after
activation, thereby promoting phosphorylation of serine residues
on cytoplasmic eIF2α (eukaryotic initiation factor 2 alpha;
Harding et al., 1999; Bertolotti et al., 2000; Ma et al., 2002;
Marciniak et al., 2006). Despite the general translational halt
induced by the phosphorylated eIF2α (eIF2α-P), certain specific
mRNAs bearing internal ribosome entry site (IRES), like the
Activating Transcription Factor 4 (ATF4) mRNAs continues to
be translated (Harding et al., 2000a; Baumeister et al., 2005).
ATF4 regulates genes for various foldases, chaperones, regulatory
proteins of the redox and autophagy, cholesterol metabolism etc.
(Harding et al., 2003; Fusakio et al., 2016). CCAAT enhancer-
binding (C/EBP) protein homologous protein (CHOP) is also
a direct target of ATF4 and represents the pro-apoptotic
component of the UPRER (Han et al., 2013). In a study,

wild type mice subjected to tunicamycin injection showed
higher degrees of apoptosis in their renal epithelium as
compared to CHOP knockout mice (Marciniak et al., 2004;
Onuki et al., 2004). PERK also induces the activation of
another transcription factor nuclear factor (erythroid derived
2)-like 2 (Nrf2) independent of eIF2α, which regulates the
antioxidant response (Cullinan et al., 2003; Cullinan and Diehl,
2004).

IRE1 is the most evolutionarily conserved ER stress
transducer (Tirasophon et al., 1998), which upon activation,
undergoes dimerization and trans-autophosphorylation, leading
to the activation of its cytosolic endoribonuclease activity
that splices a 26-nucleotide intron from the mRNA encoding
transcription factor X box binding protein 1 (XBP1) forming
XBP1(S) (Yoshida et al., 2001, 2003). The XBP1(S) upregulates
genes involved in ER protein maturation and ER-associated
degradation (ERAD; Lee et al., 2003; Acosta-Alvear et al.,
2007). Cells lacking XBP1 are more sensitive to hypoxia-induced
apoptosis (Romero-Ramirez et al., 2004). Upon activation,
IRE1 also activates c-Jun N-terminal kinase (JNK) through
tumor necrosis factor receptor-associated factor 2 (TRAF2);
Zeng et al., 2015). IRE1-mediated JNK activation has been
demonstrated to trigger autophagy under ER-stress (Urano et al.,
2000).

ATF6 is a type II transmembrane protein, with a basic
leucine zipper (bZIP) domain (Yoshida et al., 1998). During the
imposed stress, luminal domain of ATF6 loses its association
with GRP78, triggering the translocation of ATF6 into the Golgi
apparatus where two intramembrane Golgi specific proteases,
site 1 protease (S1P) and site 2 protease (S2P), process it.
The N-terminal cleaved product p50ATF6 of full length ATF6
(p90ATF), then acts as a transcription factor, which upregulates
several genes, including GRP78, Protein Disulfide Isomerase
(PDI), XBP1 and CHOP (Haze et al., 1999; Walter and Ron,
2011).

UPRER IN ALZHEIMER’S DISEASE

In neuronal pathophysiology, the activation of UPRER can have
paradoxical affects. During stress condition, activation of UPRER

could reactivate proteostasis; thereby rescuing the neurons
by escalating the rate of protein folding through molecular
chaperones, or may trigger neurodegeneration and neuronal
collapse through the expression of apoptotic markers.

Evidences support the presence of abundant
hyperphosphorylated tau protein and ER stress markers in
the neurons of the cortex in postmortem brain samples of AD
patients (Scheper and Hoozemans, 2015). It is presumed that
ER stress is a cell death mechanism triggered by Aβ, and is
linked to changes in ER calcium homeostasis (Cornejo and
Hetz, 2013). Under the influence of Aβ imposed ER stress,
Ca2+ leaching from ER is taken up by mitochondria leading
to activation of apoptotic death of neurons (Fonseca et al.,
2013). The presenilins are responsible for passive ER Ca2+

outflow. Documents support that aging neurons fail to maintain
tight Ca2+ homeostasis across plasma membrane and ER
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(Supnet and Bezprozvanny, 2010). Such effects paved
the way for ‘‘calcium hypothesis of brain aging and AD’’
(Khachaturian, 1989). Rise in prolonged imbalanced Ca2+

invites ROS accumulation and mitochondrial dysfunction
resulting in neuronal death (Supnet and Bezprozvanny, 2010).
ER stress may display binary role in AD, firstly modulating
the production kinetics of amyloid plaques and secondly
altering the cognitive functions in a distinct way (Halliday and
Mallucci, 2015). Neurons of AD patients were also characterized
by GRP78 induction in temporal cortex and hippocampus
and phosphorylation of PERK (p-PERK; Hoozemans et al.,
2005).

Active protein synthesis is a hallmark feature of synaptic
plasticity and consolidation of memory (Costa-Mattioli et al.,
2009). PERK signaling and protein translation control was
linked to the cognitive impairment observed in AD models
(Devi and Ohno, 2013, 2014). Impairment of cognitive functions
due to the reduction in synaptic protein synthesis is displayed
during increased phosphorylation of eIF2α (Costa-Mattioli et al.,
2005, 2009; Jiang et al., 2010). Mitigating the expression of
PERK improves cognitive function and synaptic plasticity in
an AD model (Devi and Ohno, 2014). Moreover, targeting
other eIF2α kinases like General Control Nonderepressible-2
(GCN2) and dsRNA-dependent protein kinase R (PKR) was
also witnessed not only to improve learning and memory
processes (Devi and Ohno, 2013), but also reduced inflammation
(Lourenco et al., 2013). These results significantly indicate
that genetic manipulation of PERK improved cognitive ability
of cells to survive under stress conditions induced by Aβ

deposition.
The activation of UPRER in early stages of AD could

be protective through activation of autophagy. However,
sustained UPRER activation may be detrimental to the neurons
(Hoozemans et al., 2005; Nijholt et al., 2011). The expression
of XBP1 in Drosophila where the AD-associated Aβ peptide
was expressed in neurons, led to reduced neurotoxicity,
supporting the cytoprotective role of XBP1 (Casas-Tinto
et al., 2011). In Caenorhabditis elegans (C. elegans) models
expressing aggregation-prone mutant tau variants, XBP-1 was
identified to be playing a similar protective role (Kraemer
et al., 2006; Loewen and Feany, 2010). However, reports also
suggest that IRE1 interacts with PS1 leading to activation
of proapoptotic signaling by JNK (Shoji et al., 2000). The
JNK3 (member of JNK family) localized in brain, is highly
expressed in brain tissue and cerebrospinal fluid sample from
AD patients (Gourmaud et al., 2015) and the activation of
JNK3 exacerbates stress perpetuating AD pathology (Yoon and
Jo, 2012).

AGING, UPRER AND ALZHEIMER’S
DISEASE

Aging is the single most important risk factor for AD. Decline
in the UPRER with advancing age marked by the oxidative
damage of ER chaperones, leads to disempowering of protein
folding capacity (Rabek et al., 2003; Nuss et al., 2008). Studies

report that the levels of GRP78 were low in murine cortex, in
rat hippocampus, cortex, cerebellum, as well as in a multitude
of organs (Paz Gavilán et al., 2006; Hussain and Ramaiah,
2007; Naidoo et al., 2008). Transcription of PERK mRNA were
lowered in the aging rat hippocampus, while an increment was
reported in the expression of growth arrest and DNA damage
protein 34 (GADD34), because it escapes the effect of eIF2α-
P translational inhibition (Paz Gavilán et al., 2006). Studies
on C. elegans revealed that the activation of IRE1 branch of
the UPRER diminishes during the fertile period of adulthood,
manifesting in lowered immunity against ER stress (Taylor and
Dillin, 2013). The implication of IRE1/XBP1 tier in aging was
proven in C. elegans where IRE1 defect reduced life span (Chen
et al., 2009).

MITOCHONDRIA, OXIDATIVE STRESS
AND ALZHEIMER’S DISEASE

Under the imposed stress, apart from UPRER coming to the
rescue, the herald of mitochondrial UPR (UPRmt) ensuing after
accumulation of unfolded peptide load is well documented.
The pathway focuses on invigorating folding and degradation
of misfolded peptides in mitochondrial matrix through the
execution of retrograde transcriptional activation (Arnould et al.,
2015). AD being a multifactorial malady, the accumulation
of Aβ not only affects ER but also mitochondria. There are
accumulating evidences, which support deposition of Aβ in
mitochondrial matrix disrupting signaling of the organelle
thereby leading to neurodegeneration (Kawamata and Manfredi,
2017). Impairment in the production and functionalities
of metabolic enzymes preferentially of TCA cycle disturbs
energy metabolism of the brain. Mitochondrial dysfunction
causes depletion of cellular ATP pool and enhanced ROS
production, which is well implicated in the pathogenesis of
AD (Swerdlow et al., 2014; Hoekstra et al., 2016). Besides,
impairment of mitochondrial turnover and function in brain,
aging potentiates oxidative stress, leading to significant decrease
in the cytochrome C oxidase activity that is associated with
rise in oxygen radicals in different regions of postmortem
AD brain (Figure 2; Hirai et al., 2001; Mosconi et al.,
2007; Krishnan et al., 2012). A strong correlation of the
cognitive decline with increase in oxidative stress is observed
in AD patients (Revel et al., 2015). Incidence of aberrant
Aβ processing ensues after the oxidation of mitochondrial
DNA (mtDNA) under stressful circumstances (Volgyi et al.,
2015).

Aberrations in mtDNA have been well studied in AD. In an
elegant study by Aliev et al. (2013) mtDNA-proliferation and
deletion has been reported in AD tissues. Furthermore, the report
also illustrates abnormal mitochondrial function in damaged
hippocampal neurons in human AD as well as transgenic AD
models. In another study using in situ hybridization, Aliev et al.
(2008) detected a 5 kB deletion in mtDNA under oxidative stress
in abnormal neurons. Such mitochondrial anomalies were also
reported to help in AD pathogenesis in Aβ transgenic mice (Aliev
et al., 2008).
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FIGURE 1 | Targeting unfolded protein response (UPR) to manage Alzheimer’s disease (AD) with specific molecules. PERK/eIF2α: the phosphorylation of eIF2α shuts
down global translation in the cell but for gene-specific translation upregulation of mRNA with internal ribosome entry site (IRES), for example β-site APP cleaving
enzyme-1 (BACE1), the β-secretase enzyme (Ohno, 2014). Arctigenin, targets eIF2α-P thereby downregulating BACE1, consequently protects neurons from
amyloid-β (Aβ) toxicity. ISRIB, affects eIF2B leading to inhibition of eIF2α-P, which comprehensively restores protein translation and hence enhances long term
memory. PERK can be directly inhibited by GSK2606414, leading to halt in tau phosphorylation. Ca2+ leakage induced activation of glycogen synthase kinase-3β

(GSK-3β) can be checked by GSK-3β inhibitor I, which prevents Aβ induced phosphorylation of tau. IRE1/XBP1: Quercetin, activates endoribonuclease activity of
IRE1 inhibiting tau hyperphosphorylation. The c-Jun N-terminal kinase (JNK) inhibitor, SP600125, inhibits Ca2+ leakage and inhibits Aβ-induced c-Jun
phosphorylation.

In a study proving the existence of interlink between
mitochondrial dysfunction and AD, the pharmacological/genetic
targeting of mitochondrial translation process not only increased
life span of GMC101 (model of Aβ proteotoxicity), but
also showed reduction in beta-amyloid aggregation in worms
and transgenic mouse models of AD (Sorrentino et al.,
2017). Treatment of the mitochondrial division inhibitor-1
(mdiv-1) that inhibits mitochondrial fragmentation, thereby
rescuing mitochondrial distribution, improves mitochondrial
function in CRND8 (AD mouse model) neurons (Reddy
et al., 2017; Wang et al., 2017). Treatment with mdivi-1
also causes a decrease in extracellular amyloid deposition
and Aβ1–42/Aβ1–40 ratio (Wang et al., 2017). Additionally,
SIRT-3, a sirtuin localized to inner mitochondrial membrane,
has been found associated with enhancement in the levels of
glutathione (Onyango et al., 2002; Someya et al., 2010). As
downregulation of SIRT-3 was found to be having a retrograde
effect on p53 mediated mitochondrial and neuronal damage in

AD, its modulation by therapeutics was found to ameliorate
mitochondrial pathology and neurodegeneration in AD (Lee
et al., 2018).

DERANGEMENT OF GLUCOSE
METABOLISM IN ALZHEIMER’S DISEASE:
THE FALLIBLE UPRER

Among the many observed hallmarks of AD, positron emission
tomography (PET) revealed a deranged glucose metabolism
in brain regions. Aging registers diminished brain glucose
utilization that surges in AD (Ivançevi ć et al., 2000). Various
reports suggest that UPRER is linked to abnormal glucose
metabolism and insulin resistance (Hetz et al., 2015). Type
2 diabetes mellitus (T2DM) has been mechanistically linked
to AD pathogenesis, where higher insulin resistance poses a
greater risk of AD with reduced glucose uptake in the brain
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FIGURE 2 | Mitochondrial dysfunction in AD: various stress insults like aging and oxidative stress disrupt client protein folding in mitochondria thereby invoking
mitochondrial UPR (UPRmt). Numerous events line up; there is mitochondrial DNA (mtDNA) proliferation and deletion, misfolded Aβ overload and ROS generation.
This leads to the condition of mitochondrial dysfunction and to rescue the ailing cell UPRmt is stimulated. The effect of mitochondrial dysfunction leads to
development of neuropathologies associated with AD (Aliev et al., 2008, 2013; Onyango et al., 2016).

as well as memory loss (Willette et al., 2015; Wijesekara
et al., 2017). In addition, there is decline in key neuronal
glucose transporters, GLUT1 and GLUT3, as shown in AD
mouse models (Ding et al., 2013). The exact molecular
mechanism underlying the effect of glucose uptake in AD
model is not completely understood, but evidences suggest
a close link between AD and insulin signaling. Apart from
controlling glucose metabolism, insulin also regulates neural
development with respect to learning and memory (Ying et al.,
2017).

The lowering in glucose concentration due to lack of active
transporters (GLUT1 and GLUT3) instates mitigating effect on
hexosamine pathway (HBP), due to which O-GlcNAcylation
is compromised with hyperphosphorylation on tau protein
(Liu et al., 2009). XBP1(S) is shown to directly target the
rate limiting enzyme of HBP, glutamine fructose-6-phosphate
aminotransferase (GFAT1; Wang et al., 2014), as XBP1(S)
transgenics showed rise in O-GlcNAcylation (Wang et al., 2014).
The situation of insulin resistance established in aging has also
been shown to increase HBP flux (Einstein et al., 2008). A gain-
of-function mutation in GFAT1 of C. elegans showed significant

induction of ERAD and autophagy favoring longevity (Denzel
et al., 2014).

Protein aggregation is a consequence of AD which is a
result of abnormal proteostasis in the cell (Kaushik and Cuervo,
2015). An increase in the UPRER driven protein homeostasis
was observed with the overexpression of GLUT1 as this
promoted downregulation of expression of GRP78. GRP78,
being the negative regulator of the UPRER, binds ATF6 and
IRE1 thereby continuing them in an inactive state. One
interesting study showed that flies (with increased glucose
transport) when fed with the drug metformin showed mitigated
levels of GRP78 with ensuing gain in lifespan, additionally the
expression of GLUT1 and its association with the beginning
of UPRER exerted neuroprotective effect (Niccoli et al.,
2016).

TARGETING UPRER TO MANAGE AD

The involvement of ER stress and hence the UPRER in
neuropathologies exposes the molecules of the pathway as
attractive targets for therapeutic interventions. Here, we have
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compiled reports from studies that have targeted molecules of
UPRER for managing the deterioration caused by AD (Figure 1).

eIF2α and PERK in AD
There are accumulating evidences that support increased
phosphorylation of PERK and eIF2α in AD (Chang et al.,
2002; Page et al., 2006; Kim et al., 2007). The processing
of highly expressed single-pass transmembrane protein in
brain, the amyloid precursor protein, leads to the generation
of neurotoxic Aβ during neuropathogenesis. Reports suggest
that the secretase β-site APP cleaving enzyme-1 (BACE1),
increases APP cleavage as a result of eIF2α phosphorylation
leading to the production of Aβ in neurons (O’Connor et al.,
2008). The PERK tier of UPR when suppressed leads to the
alleviation of synaptic plasticity and memory loss in AD (Ma
et al., 2013). The administration of arctigenin, a bioactive
product from Arctium lappa (L.), has been known to inhibit
BACE1 translation through dephosphorylation of eIF2α-P (Zhu
et al., 2013). The phosphorylation of eIF2α is central to
integrated stress response (ISR) that modulates UPR (Harding
et al., 2000b) and formation of memory proteins (Costa-
Mattioli et al., 2005). ISR inhibitor (ISRIB) interferes with
ISR by affecting eIF2B activity whose competitive inhibitor
is eIF2α-P (Krishnamoorthy et al., 2001; Sekine et al., 2015;
Bogorad et al., 2017). This comprehensively reverses the effect
of eIF2α-P, which resulted in the restoration of translation and
hence long term memory enhancement in rodents (Sidrauski
et al., 2013, 2015). The genetic deletion of eIF2 kinases,
PERK, GCN2 and dsRNA-dependent protein kinase (PKR)
ameliorate synaptic plasticity and memory in AD models
(Ma et al., 2013). The transient translational halt induced
by PERK-P/eIF2α-P was challenged by GSK2606414, a PERK
inhibitor, because of which tau phosphorylation could be
checked, resulting in the amelioration of neurodegeneration
(Axten et al., 2012; Radford et al., 2015). The development
of AD manifested by Aβ accumulation forces tau hyper
phosphorylation in sync with increased activity of glycogen
synthase kinase-3β (GSK-3β) in the cortical neurons (Takashima
et al., 1993, 1996; Tomidokoro et al., 2001; De Felice et al.,
2008; Resende et al., 2008). Resende et al. (2008) showed that
Aβ oligomers cause ER stress linked calcium leakage which
in turn leads to GSK-3β activation, the later when inhibited
by GSK-3β inhibitor I, led to the prevention of Aβ induced
phosphorylation of tau.

IRE1/XBP1 in AD
The advantageous effects of XBP1 on memory was proven
in neural-specific XBP1 knockout mice featuring impaired
learning and synaptic plasticity deficit, where injections of adeno-
associated viruses delivered XBP1(S) resulted in establishing
long-term hippocampus memory (Martínez et al., 2016). In
accordance with this finding, another study reinforced the neuro-
protective role of XBP1 in AD mice (Casas-Tinto et al., 2011;
Cisse et al., 2017). Nonetheless, a flavonol, called quercetin,
activated endoribonuclease activity of IRE1 and inhibited tau
hyperphosphorylation (de Boer et al., 2006; Suganthy et al.,
2016). In cases of familial AD, deletions or mutations in

presenilin genes accentuate ER Ca2+ leakage. The JNK inhibitor,
SP600125, when challenged in PS1/PS2 double knockout mouse
embryonic fibroblast, caused inhibition of Ca2+ leakage (Das
et al., 2012). The neuroinflammation exhibited in AD through
tau phosphorylation mediated by the kinase activity of JNK
was inhibited by SP600125, consequently inhibiting Aβ-induced
c-Jun phosphorylation (Vukic et al., 2009; Zhou et al., 2015).

FUTURE DIRECTIONS AND CONCLUDING
REMARKS

ER, being a central organelle in nerve cells, coordinates with the
cellular homeostasis by managing translation/modification of
proteins and Ca2+ equilibrium, thereby maintains the proper
signaling in brain. The disruption in neuronal physiology
is quite evident in age-related AD where ER dysfunctions
are prominently expressed in the form of imbalance in
proteostasis. Advancements in studies based on AD models
have clearly shown how we can intervene the molecular pillars
of UPRER and its associated signaling cascades to manage
neurodegeneration in age-related AD. The present review
is an attempt to revise functional relevance of the studies
conducted in the field of management of age-related AD
through therapeutic interventions on the UPRER pathway and
its associate’s molecules. Studies reinforce that the strategies
where intervening the molecules, which are involved in
transposing effects of aging on neurodegeneration, will cause
reduction in probability of AD pathology. The manifestation
of ER proteostasis is a direct indication of healthy nervous
system. Progression in AD witnesses glucose hypo-metabolism
in brain, reduction in glucose transporters in neurons and
endothelial cells of blood brain barrier in direct proportion
with the amount of neurofibrillary tangles. Type 2 diabetics
with higher insulin resistance are at a greater risk of AD.
Recent reports elucidate that managing UPRER can exert
neuroprotective effect in AD (Smith and Mallucci, 2016).
Additionally, as evidenced in the study by Sorrentino et al.
(2017), the recapitulation of mitochondrial function through
activation of UPRmt can impede plaque formation. Aliev
et al., also demonstrated link between cancer and AD where
mtDNA over-proliferation and deletion induces cell cycle
dysregulation prompting oncogenic pathway (Aliev et al.,
2013). We have supporting literature that underpins the
reversal of AD pathology by anticancer drugs (Cramer
et al., 2012). Aiming at therapeutic intervention, the ailing
mitochondria can be challenged with specific antioxidants
like MitoQ, acetyl-L-carnitine and R-alpha lipoic acid to
alleviate AD (Aliev et al., 2011; Volgyi et al., 2015). One
remarkable study on astrocytes underpins the protective
role of conditioned medium of human mesenchymal stem
cells (CM-hMSCA) sourced from adipose tissue against
neuropathologies (Baez-Jurado et al., 2017). The state of
astrocyte mitochondrial dysfunction has been proven to
be a start point for neuronal death (Baez et al., 2016).
Pharmacological targeting of astrocytes has been proposed
to be a potential way in therapeutics of AD (Baez et al.,

Frontiers in Aging Neuroscience | www.frontiersin.org 6 February 2018 | Volume 10 | Article 30

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Rahman et al. UPR in Alzheimer’s Diseases

2016). A transcriptomic analysis in astrocytes has put
forward a conglomeration of various algorithms for strategic
approaches in therapeutics of neuropathologies (Barreto et al.,
2017).

We still need extensive and efficient model systems where
the molecular intricacies of weakened UPRER in aging-
induced neuropathology in AD can be ventured upon,
so that pharmacological as well as genetic tools could
underscore the significance of UPRER as well as UPRmt in aged
brain.
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