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Age and age-related diseases have been suggested to decrease entropy of human
gait kinematics, which is thought to make older adults more susceptible to falls. In
this study we introduce a new entropy measure, called phase-dependent generalized
multiscale entropy (PGME), and test whether this measure improves fall-risk prediction
in community-dwelling older adults. PGME can assess phase-dependent changes in
the stability of gait dynamics that result from kinematic changes in events such as heel
strike and toe-off. PGME was assessed for trunk acceleration of 30 s walking epochs in a
re-analysis of 1 week of daily-life activity data from the FARAO study, originally described
by van Schooten et al. (2016). The re-analyzed data set contained inertial sensor data
from 52 single- and 46 multiple-time prospective fallers in a 6 months follow-up period,
and an equal number of non-falling controls matched by age, weight, height, gender,
and the use of walking aids. The predictive ability of PGME for falls was assessed using
a partial least squares regression. PGME had a superior predictive ability of falls among
single-time prospective fallers when compared to the other gait features. The single-time
fallers had a higher PGME (p < 0.0001) of their trunk acceleration at 60% of their step
cycle when compared with non-fallers. No significant differences were found between
PGME of multiple-time fallers and non-fallers, but PGME was found to improve the
prediction model of multiple-time fallers when combined with other gait features. These
findings suggest that taking into account phase-dependent changes in the stability of
the gait dynamics has additional value for predicting falls in older people, especially for
single-time prospective fallers.

Keywords: accelerometry, complexity, gait assessment, physical activity, aged, fall prediction, fall risk, accidental
falls
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INTRODUCTION

Falls among older persons are an important cause of loss of
independence, reduced quality of life, and admission to hospitals
or nursing homes. At a European level, the annual costs of falls
among older persons are estimated to be 30 billion euro (Stevens
et al, 2006). Early prediction of falls amongst community-
dwelling older persons would provide increased opportunities for
fall prevention.

More than 400 risk factors for falls have been reported (e.g.,
Deandrea et al., 2010). Most risk factors have been assessed
in laboratory settings or in clinical test situations, and fall risk
assessment systems have been developed to serve as screening
tools for fall risk (Oliver et al., 1997; Raiche et al., 2000; Tromp
et al., 2001; Nandy et al., 2004). Several clinical tests of balance
and mobility performance, such as the Timed Up and Go, sit-
to-stand and alternate step tests, have been suggested as part
of fall risk screening tools (Bohannon, 2006; Tiedemann et al.,
2010). However, most of these clinical tests and screening tools
suffer from ceiling effects, reflect the performance of the older
person at a specific moment in time, or are based on self-reports
(Cofre et al., 2014). Falls in older persons are experienced during
activities of daily life, most frequently during walking or in
transitions to walking (Becker et al.,, 2012; Robinovich et al.,
2013). Accordingly, metrics of daily-life walking have been shown
to improve early fall prediction in community-dwelling older
persons beyond the ability of clinical screening tools for fall risk
(Weiss et al., 2013; Rispens et al., 2015; van Schooten et al., 2016).
These metrics can be assessed by analysis of 3D acceleration data
from body-worn sensors that could be self-managed by the older
adults through smart technology (Shany et al., 2012).

Aging is considered to be related to reduction of complexity
and irregularity in multiple physiological systems (Lipsitz and
Goldberger, 1992), suggesting reduced ability of physiological
processes to adapt to various stressors. More specifically, loss
of irregularity in movement variability in daily-life walking
could be a predictor of falls, as it reflects an older person’s
inability to adapt to perturbations in their daily-life environment.
Previous studies have shown that stability and complexity
metrics of trunk acceleration signals of daily-life walking, such
as Lyapunov exponents and entropy measures, improve fall
prediction compared to conventional measures such as the
amount and intensity of the walking activity (Rispens et al., 2015;
van Schooten et al., 2016).

In addition to improving fall risk assessment based on
complexity and stability metrics, spectral analysis suggests that
the information important for fall risk assessment is contained
in frequency ranges of >2.5Hz of the trunk acceleration signal,
indicating changes in the intra-step modulation of the trunk
acceleration (Weiss et al., 2013). However, the limitation of
spectral analysis is the lack of a direct relationship to the stability
and complexity metrics assessed in nonlinear analyses of the
trunk dynamics. Moreover, few of the nonlinear and spectral
analyses yield phase-dependent metrics that are able to assess
changes in the structure of signal variability within the gait
cycles (Ihlen et al, 2015). Combining spectral analysis and
analysis of stability and irregularity is important to develop

new measures for more precise fall prediction models. Thus,
in this study we aimed to introduce a new entropy measure of
daily-life walking, called phase-dependent generalized multiscale
entropy (PGME), that combines nonlinear analysis, spectral
decomposition, and phase-dependent analysis of the trunk
acceleration data. Subsequently, we tested whether including
these features improved the prediction of falls in community-
dwelling older adults.

METHODS

Participants and Data Collection

Inertial sensor data, previously reported by van Schooten
et al. (2016), were re-analyzed in the present study (see
acknowledgments). The data consisted of 1 week of
accelerometer data at baseline from 303 community-dwelling
older persons, and prospective fall assessment by monthly
telephone interviews in a 12-month follow-up period. Fifty-eight
participants experienced a single fall and 46 two or more falls
(multiple falls) in the 6-month follow-up period that was
considered in the present study. Single- and multiple-time
fallers were matched by gender, age, weight, height, and use
of walking aids to the remaining 199 non-fallers. Summary of
the selected participants’ characteristics is provided in Table 1.
The 3D-acceleration was sampled at 100 Hz by a small inertial
sensor worn with a belt over the lower back (DynaPort Hybrid,
McRoberts, The Hague, Netherlands; 87 x 45 x 14mm, 74 g);
the sensor had a range and resolution of £6g and +1mg,
respectively. This study was carried out in accordance with the
recommendations of the medical ethical committee of the VU
Medical Hospital (protocol 2010/290). All subjects provided
written informed consent in accordance with the Declaration
of Helsinki. The protocol was approved by the medical ethical
committee of the VU Medical Hospital. The reader is referred to
van Schooten et al. (2016) for further details about participants
and protocols.

Preparation of Data

The following procedure was used to identify daily-life walking:
First, the 3D accelerations for walking bouts with >3 s duration
were identified by a commercially available activity detection
algorithm (McRoberts BV, the Hague, Netherlands). Secondly,
3D accelerations for walking bouts with duration of >30s were
included in further analysis. Thirdly, all included walking bouts
were converted into equal sized 30 s epochs (i.e., 3,000 samples)
to provide a consistent sample size for computation of entropy
measures. Fourthly, all included epochs were visually checked
and non-walking activity was excluded. Inclusion criteria for
walking epochs were: (1) distinct impact peaks in vertical (V)
and/or anterioposterior (AP) direction of the acceleration signal,
(2) distinct cyclical acceleration pattern in V and/or AP direction,
and (3) criteria 1 and 2 were satisfied for at least 80% of
the epoch, where max 20% was considered as gait initiation,
turning or transitional micro-breaks. These inclusion criteria
were developed from visual inspection of fast, normal and slow
walking from a validation study for activity detection in older
persons (Bourke et al., 2017). Seventy-one percent of the total of
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TABLE 1 | Demographic variables and clinical tests of the single- and multiple
time fallers and their matched non-fallers.

Fallers Matched non-fallers p-value*
SINGLE-TIME FALLERS
Gender (% female) 51 51 1
Age (years, mean + SD) 76.1 £ 6.8 759+ 6.7 0.91
Height (cm, mean + SD) 170.8 £ 9.2 170.6 +8.3 0.74
Weight (kg, mean + SD) 73.2+12.9 72.7+£12.3 0.33
Assisted living (%) 3.8 5.6 0.58
Residential care (%) 1.9 3.8 0.48
Walking aid (%) 18.9 18.9 1
MMSE (median/range) 28/9 28/9 0.85
>1 falls in past 6 months (%) 47.2 34.0 0.05
MULTIPLE-TIME FALLERS
Gender (%) 48.8 48.8 1
Age (yrs, mean+SD) 75.5 + 6.7 752+ 6.4 0.99
Height (cm, mean+SD) 1709 £ 8.2 1716 +7.8 0.16
Weight (kg, mean + SD) 75.6 £10.8 74.6 +10.8 0.04
Assisted living (%) 9.8 4.9 0.12
Residential care (%) 0 0 1
Walking aid (%) 17.1 17.1 1
MMSE (mean =+ SD) 28/10 28/9 0.82
>1 falls in past 6 months (%) 53.7 34.2 0.005

“Note that the p-values are given for a one-sample t-test or Wilcoxon signed rank test
depending on the distribution of the data.

59762 epochs of >30 s were considered walking epochs and were
included in the further analysis.

The step cycle was identified through the following procedure:
First, the 3D-velocity was estimated by numerical integration
of the detrended acceleration signals. Secondly, the 3D-
velocity signals were detrended using a multivariate empirical
mode decomposition (MEMD) procedure that preserved intra-
step variation but removed inter-stride nonlinear trends (see
Appendix A for technical details for MEMD). Thirdly, the local
minima of the vertical velocity were identified and the step-cycle
considered as the interval between consecutive minima.

Phase-Dependent Multiscale g-order
Entropy Analysis

Entropy defines the average level of irregularity in a time series.
The irregularity of the dynamics of a time series can be defined
by the Kolmogorov-Sinai entropy, but estimation of this metric
requires long time series with a low level of noise, which
cannot be obtained in physiological time series (Kolmogorov,
1958; Sinai, 1959; Kantz and Schreiber, 2004). More recently,
approximate entropy (Pincus, 1991), sample entropy (Richman
and Moorman, 2000) and permutation entropy (Bandt and
Pompe, 2002) have been proposed as measures of irregularity of
short, noisy time series from physiological processes. Multiscale
extensions of both sample entropy and permutation entropy
have been developed, which are able to assess the irregularity
of time series at multiple scales or frequencies (Costa et al,
2002; Li et al,, 2010; Wu et al.,, 2014). The multiscale entropy

makes it possible to investigate the high frequency intra-step
modulation of trunk acceleration signals of walking. However,
all entropy metrics above have the following fundamental
shortcomings when applied to physiological processes: (1) they
do not decompose the dynamics into multiple scales or do
so based on multiple coarse grained versions of the dynamics,
making the results difficult to interpret because no unique
version of the dynamics is analyzed. (2) they assume that the
entropy metrics are invariant to phase transitions common
in physiological processes such as daily life walking, although
there is no empirical validation for this assumption. (3) they
are based on the Boltzman-Gibbs-Shannon concept of entropy,
which assumes that no phase transitions and emerging behavior
are present (Shannon, 1948), although phase-transitions and
emergent behaviors through complex interactions of sub-systems
are a rule rather than an exception in physiological processes such
as daily-life walking (Ihlen et al., 2017).

The present study introduces a phase-dependent generalized
multiscale entropy (PGME) that solves the shortcomings
described above. PGME is defined by the following four-step
procedure for the analysis of the 3D acceleration data of daily-life
walking (see flow chart in Figure 1):

Reconstruction of Trunk Dynamics

The trunk dynamics during daily-life walking are reconstructed
by the 3D acceleration data for the included 30 s walking epochs,
as follows:

A AP ML V. _AP ML _V
XJ—[“;' 4 ’aj’aj+l’aj+l’aj+l:| ey

_[Ap ML Vv AP ML V AP ML _V
Yj = [aj a5 A p G > Gy p Aiop Ao aj+2l] )

where a is the acceleration signal in anteriorposterior (AP),
mediolateral (ML), and vertical (V) directions, and where the
subscript j is the time sample index. The lag size [ in Equations
(1, 2) was estimated for each 30-s epoch by the inflection point
in the average mutual information (AMI) function, where AMI
decreased with >0.01 per sample. These choices of state spaces
have been shown to optimize the classification of fallers and
non-fallers in a previous study (Ihlen et al., 2016b).

Multivariate Empirical Mode Decomposition (MEMD)
of the Trunk Dynamics

The trunk dynamics reconstructed in step 1 are decomposed
by MEMD into multiple intrinsic mode functions (IMFs) by a
five-step iterative shifting procedure (see Appendix A for further
technical details). IMFs are defined in an iterative way from high
to low frequency modes, where the frequency range is dependent
on intrinsic properties of the dynamics. Thus, the IMFs are more
related to the physiological process than conventional Fourier
functions with their predefined frequency ranges. In contrast to
a univariate EMD, MEMD is able to detect common intrinsic
modes across all dimensions of the reconstructed dynamics (i.e.,
AP, ML, and V directions of the acceleration signal). The coarse-
grained versions dj(t) of the trunk dynamics were estimated as
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FIGURE 1 | Flow chart of the computation of phase-dependent generalized multiscale entropy (PGME). The 3D trunk acceleration signal (A) is used to reconstruct the
gait dynamics (B) according to Equation (1, 2). Note that only three-dimensional state spaces are displayed in this flow chart even though the state spaces in Equation
(1, 2) are six and nine dimensional. The reconstructed gait dynamics is decomposed by multivariate empirical mode decomposition (MEMD) where the low-pass
filtered versions dy (t) of the gait dynamics (Equation 3) are displayed in the (C) for scale k = 1 to 6 (further technical details in Appendix A in Supplementary Material).
The generalized sample entropy (SaEn) is computed for each scale by Eq. 4 and 5 (further technical details in Appendix B in Supplementary Material) for phase 0, 20,
40, 60, and 80% of the step cycle. The (D) display gSaEn in log-coordinates for scale k = 1 to 6 and each panel displays gSaEn as a function of phase of the step
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the following sum of IMFs:

M
di(t) =) di(t) (3)
k

where d(t) is the IMF for scale k < M, M is the total number of
IMFs and k = 1, 2, ..., M is the high to low frequency ordering
of the di(f). The coarse-grained versions d;(t) for k =1 return
the original dynamics and k > 1 their low-pass filtered versions.
In the present study, di(t) for k =1, 2, ..., 6 was considered
because these versions contained the phase-dependent details of
the dynamics at frequencies higher than the main periodicity of
the step cycle of about 2 Hz. The d,(f) of a 3D reconstructed state
space are illustrated in Figure 1C.

Generalized Sample Entropy (qSaEn)

A generalized sample entropy (qSaEn) was computed for each of
dy(t) defined by Equation (3). qSaEn is the g-logarithm of the
probability that for two data points in the reconstructed state
space of Equation (1) with a distance below r. Their equivalent
points in the reconstructed state space of Equation (2) also have
a distance below r. qSaEn was defined by the following equation
(Silva and Murta, 2012):

qSaEn, = logq(nx) - logq(n),) (4)

where the n, and n, are the total normalized number of points
in state space with distance below r of the reconstructed gait
dynamic of Equation (1, 2), respectively, across all i and j points
in the state space where i # j (see Equations B1-B5 in Appendix
B for technical details). The g-order logarithm was defined by the
following two functions for nx and ny, respectively:

n,lc_q — n}l,_q -1
log, (nx) = log, (ny) = g (5)
Tsallis (1988) introduced the g-order logarithm in Equation
(5) above as an extension of the logarithm in the conventional
Boltzman-Gibbs-Shannon entropy to quantify entropy in
complex systems with inhomogeneous dynamics due to phase
transitions. Values of g below 0 penalize high probabilities
that two data points have the same distance < r for both
reconstructed state space of Equations (1, 2), whereas values
of q above 0 penalize low probabilities for the same situation.
Consequently, g < 0 penalizes low information loss (i.e., regular
signals) whereas q > 0 penalizes high information loss (i.e.,
irregular signal) (see Figure2). The walking dynamics have
been shown to be phase-dependent where intrinsic properties
of the walking dynamics change within the gait cycle. The
g-order logarithm in qSaEn has the ability to penalize the level
of irregularity in different phases of the gait cycle, like toe-off
and heel strikes, thereby detecting phase-dependent changes in
irregularity not possible by the conventional sample entropy.
In the present study, we used parameter setting r = 0.3 SD,
where SD was considered as the mean standard deviation across
AP, ML, and V directions, following a procedure suggested by

ar q= 1
35F
3r -
~ q=-05
=
VD'
5) 25F
&
£ 2f q=0
o
kel
5 s q=05
@
= q=1
1k
05
olm L L L L L L L —
< n_/n >
Regular m -k Iregular
FIGURE 2 | Plot of gSaEn in Equation (4) as a g-order log-function of the
count ratio, nm/ny forq = —1, —0.5, 0, 0.5, and 1. The g-order log-function
amplifies the larger nm/ny (i.e., larger irregularity) for g < O (blue and green line)
whereas it penalize the large nm/ny for g > 0 (light blue and violet line).

Lake et al. (2002) based on the minimum relative error in the
PGME estimate. Furthermore, a g-range of —1 to 1 was chosen
for qSaEn based on previous studies on generalized sample
entropies (Silva and Murta, 2012). Further technical details on
the computation of qSaEn are found in Appendix B.

Phase-Dependent qSaEn

The phase-dependent qSaEn was defined by Eq. 4 across samples
j within 10% of the step time after 0, 20, 40, 60, and 80% of each
step cycle. The step cycle was identified by maxima of the vertical
velocity and was comparable to results from step identification
based on the autocorrelation of the acceleration signal (Moe-
Nilssen and Helbostad, 2004). The Matlab code for calculation of
the PGME, including steps 2-4 above, is provided in Appendix C.

The Predictive Value of PGME for Falls

The computation of PGME was performed on all included
walking epochs after which the median PGME was computed
across all epochs of each individual. The median PGME consisted
of an entropy metric for each of 6 temporal scales, 5 phases of
the step cycle and 21 g values. The ability of median PGME to
predict single and multiple falls in a 6-month follow-up period
was assessed by the following procedure:

Training and Test Data Generation

Eighty percent of the data set was used as a training set, whereas
20% of the data set was used as a test set. A stratified holdout
was used so that an equal proportion of fallers and non-fallers
was included in the test and training sets. In addition, the pairs
of matched fallers and non-fallers were kept in the same training
or test set. In total 500 permutation test and training sets were
generated to compute the confidence intervals for evaluation of
the fall prediction model.
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Feature Subset Generation

Three feature subsets were generated and compared: (1) PGME
features, (2) gait features and demographic variables used in van
Schooten et al. (2016), and (3) subsets 1 and 2 combined. Table 2
summarizes the gait features and demographic variables included
in subset 2. All features in each of the subsets were normalized to
Z-scores to prevent range-dependent influences of each feature.

Evaluation with Partial Least Squares (PLS)
Regression

PLS regression was used to assess the ability of the three feature
sets to predict single and multiple falls in the 6-month follow-
up period. The PLS prediction model is able to identify a low-
dimensional latent structure that predicts the fall status from
a large number of gait features. In contrast to other regression
approaches, PLS prediction models are designed to perform a
prediction model based on a large set of noisy and collinear
features without overfitting. Thus, the PLS prediction model is
suitable for the large number of gait features investigated in
the present study. The present study used a linear discriminant
analysis (LDA) with an integrated non-linear iterative partial
least squares (NIPALS) algorithm (Marigheto et al., 1998; Wold
et al,, 2001; Rosipal and Kramer, 2006). TP-loadings ranked the
features within each of the three feature subsets based on their
influence in the prediction model of single or multiple falls within
the 6-month follow-up period (Kvalheim and Karstang, 1989).

TABLE 2 | Gait features contained in feature set 2 used in the single- and
multiple-time fall prediction model.

Gait feature name Direction

Stride time -
Walking speed -
Walking distance =
Mean step length -
Stride time variability -
Stride length variability -
Stride speed variability -
Stride frequency -
Stride frequency variability -
AP, ML, V, Vector magnitude
Stride regularity (Moe-Nilssen and Helbostad, 2004) AP, ML, V, Vector magnitude

Acceleration standard deviation

Harmonic ratio (Yack and Berger, 1993; Doiet al., AR, ML, V
2013)

Index of harmonicity (Lamoth et al., 2002) AP, ML, V
Spectral range (Weiss et al., 2013) AP, ML, V
Spectral dominant frequency (Weiss et al., 2013) AP, ML, V
Spectral slope (Weiss et al., 2013) AP, ML, V
Spectral width (Weiss et al., 2013) AP, ML, V
Spectral amplitude (Weiss et al., 2013) AP, ML, V

Low frequency percentage (Rispens et al., 2015) AP, ML, V, Vector magnitude
AP, ML, V, Vector magnitude
AP, ML, V, Vector magnitude
Lyap. exponent per stride R (Rosenstein et al., 1993) AP, ML, V, Vector magnitude

AP, ML, V, Vector magnitude

Lyapunov exponent R (Rosenstein et al., 1993)
Lyapunov exponent W (Wolf et al., 1985)

Lyap. exponent per stride W (Wolf et al., 1985)

A backward feature selection method was used for the PLS
prediction model by the following four steps procedure: First,
the error; (i.e., 1-accuracy) was defined for the feature subset
leaving out one of its features. The maximum number of latent
vectors to search for in the response matrix was set at 10 vectors.
Secondly, features for which exclusion caused the lowest error
were removed from the feature subset creating a new reduced
feature subset. Thirdly, the first and second steps were repeated
until all features had been removed from the reduced subset.
Fourthly, the reduced feature set that created the smallest error
was selected in the final model. Finally, a 10-fold cross-validation
was then used to evaluate the model performance.

Prediction Model Performance

The performance of the PLS fall prediction model was assessed
for the 500 permutation test sets. The predictive ability of
single- and multiple-time fallers in a 6-month follow-up period
was assessed as the mean accuracy, sensitivity, specificity,
positive predictive value, and negative predictive value. The
95% confidence intervals were computed by a bootstrap
procedure (Efron and Tibshirani, 1986). To control for the
different number of latent vectors in the PLS regression, the
optimal fall prediction model across the three feature sets was
obtained by the Akaike’s information criterion for finite sample
size (AICc). A significant difference AAICc = AICc;—AICc;
was identified as a relative likelihood less than 0.05 (i.e.,
RL = exp([AICc; —AICc;]/2) < 0.05) (Burnham et al., 2011).
The prediction model’s performance was also compared to
the performance of 6 month fall history to gain insight into
the added value of accelerometry over simple and commonly-
used fall risk indicators. A Wilcoxon rank sum test with a
Benjamini-Hochberg correction for multiple comparisons was
performed to compare PGME metrics for each g, scale and step-
phase (Benjamini and Hochberg, 1995). All statistical analyses in
the present study were performed in Matlab version 2014a.

RESULTS

Difference in PGME Between Fallers and

Non-Fallers

Compared to matched non-fallers, single-time fallers had
significantly (p < 0.0001) lower PGME at 60% of the step cycle,
which was consistent across g = —1 to 0.5 and scale k = 1 to 4 (see
Figure 3). This difference disappeared for the higher k scales and
when the g value approached q = 1, which corresponds with the
conventional sample entropy. A significantly (p < 0.0004) lower
PGME was also found at 40% of the step cycle for g between
—1 and 0 and scale between 1 and 3, where the differences
disappeared for g > 0 and scale k > 3. No significant differences
were found for PGME of multiple-time fallers when compared to
the matched non-fallers (see Figure 4).

Feature Selection

For a single fall within the 6-month follow-up period, the
predictive ability of PGME at 60% of the step phase at scale
k =2 to 4 and g = 0.5 to 0.8 was ranked highest in the
PLS prediction model by the TP-loadings (see upper part of
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FIGURE 3 | Boxplots (upper row) and corresponding p-values (lower row) of
the median difference between PGME of single-time fallers and their matched
non-falling controls. The x-axis of each plot indicates how the median
difference or corresponding p-values changes with the step phase. The upper
and lower panels on each row (A-E) indicates how the median difference and
(Continued)

FIGURE 3 | the corresponding p-values change with the scale k = 1 to 6.
Rows (A-E) of the panels indicate how the median difference in PGME and
corresponding p-values change according to g-orders, g = —1, —0.5, 0, 0.5
and 1, of the PGME. Note that the center of the boxes represents the group
median and the upper and lower borders of the box represent the 75th and
25th percentile, respectively. The whiskers represent the most deviating values
within 1.5 times the interquartile range from the median value and the notches
represent the confidence interval of the median value.

Table 3). For prediction of a single fall, the PLS feature selection
procedure found 2 latent variables for the PGME metrics (see
upper part of Table 3), 7 latent variables for the conventional gait
features and demographic variables (see upper part of Table 4),
and 4 latent variables for all features combined. For prediction
of multiple falls within the 6-month follow-up period, the PLS
feature selection procedure found 4 latent variables for the PGME
metrics (see lower part of Table 3), 7 latent variables for the
conventional gait features and demographic variables (see lower
part of Table 4), and 3 latent variables for all features combined.
The highest ranked PGME metrics for the prediction of single
falls were contained in a single PLS latent variable, whereas
the highest ranked PGME parameters for prediction of multiple
falls were contained in four latent variables (see right column
in Table 3). These results suggest that different components
of PGME are related to the risk for single and multiple falls
within the 6-month follow-up period. The gait features with the
highest predictive ability for falls (Table 2) also differed between
the prediction of single vs. multiple falls within the 6-month
follow-up period, which indicates that different components of
trunk acceleration gait are important when predicting single vs.
multiple falls (see Table 4). The conventional sample entropy
(i.e, k = 1 and g =1) was not one of the selected parameter
settings in the PLS prediction model, which indicates that the
q-orders of PGME improve fall prediction when compared with
conventional sample entropy (i.e., PGME for g = 1).

Fall Prediction Ability of PGME

The PGME showed an improved predictive ability for a single
fall within a 6-month follow-up period when compared to
conventional gait features and demographic variables (i.e.,
feature set 2) (see Table 5). The PGME metrics contained in a
single PLS component predicted single falls with an accuracy
of 0.76 (95% CI 0.75-0.77), which was significantly better
(p < 0.001) than conventional gait features and fall history.
The AAICc and relative likelihood in Table 6 indicate that the
model based on PGME metrics only was the preferred model
to predict single falls. With an accuracy of 0.68 (95% CI 0.67-
0.69), the PGME yielded less accurate predictions of multiple
falls compared to its prediction of single falls within the 6-month
follow-up period. In contrast, conventional gait features and
demographic variables (i.e., features set 2) predicted multiple falls
more accurately than single falls, with an accuracy of 0.77 (95%
CI 0.76-0.80) (see lower part of Table 5). Nevertheless, when
taking into account the number of latent variables, the PLS model
based on the PGME metrics had an equal performance to the
PLS model based on conventional gait features and demographic
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FIGURE 4 | Boxplots (upper row) and corresponding p-values (lower row) of

the median difference between PGME of multiple-time fallers and their

matched non-falling controls. The x-axis of each plot indicates how the

median difference or corresponding p-values change with the step phase. The

upper and lower panels on each row (A-E) indicate how the median difference
(Continued)

FIGURE 4 | and the corresponding p-values change with the scale k = 1-6.
Rows (A-E) of the panels indicate how the median difference in PGME and
corresponding p-values change according to g-orders, g = —1, —0.5, 0, 0.5,
and 1, of the PGME. Note that the center of the boxes represents the group
median and the upper and lower borders of the box represent the 75th and
25th percentile, respectively. The whiskers represent the most deviating values
within 1.5 times the interquartile range from the median value and the notches
represent the confidence interval of the median value.

TABLE 3 | The top 10 ranked parameter settings of the PGME metrics in the PLS
prediction model and their latent variable number.

Rank Phase Scale k q-order Latent var #
SINGLE-TIME FALL PREDICTION

1 60% 2 0.6 1
2 60% 2 0.5 1
3 60% 3 0.7 1
4 60% 4 0.8 1
5 80% 6 0.8 1
6 40% 2 0.7 1
7 40% 2 0.5 1
8 40% 6 1.0 1
9 80% 3 0.5 1
10 60% 3 0.7 1
MULTIPLE-TIME FALL PREDICTION

1 0% 2 0.8 3
2 20% 5 0.8 4
3 60% 6 0.7 3
4 80% 5 0.1 1
5 80% 5 -0.8 1
6 20% 2 -1.0 1
7 0% 5 -0.6 3
8 40% 5 -0.8 2
9 0% 5 —0.1 1
10 60% 3 -0.5 1

None of the selected PGME were equal to conventional sample entropy (q = 1and k = 1).

variables (p = 0.05, see bottom part of Table6). The best
prediction of multiple falls was achieved based on a combination
of conventional gait features, demographic variables, and PGME
metrics and had an accuracy of 0.83 (95% CI 0.82-0.84).

DISCUSSION

The main aim of the present study was to introduce a new
entropy measure of daily-life walking, called phase-dependent
generalized multiscale entropy (PGME), that combines nonlinear
analysis, spectral decomposition, and phase-dependent analysis
of the trunk acceleration data, and to test the predictive ability
of PGME with respect to falls in community-dwelling older
adults. Our findings of a lower PGME for single-time fallers
indicates that this group has less irregular trunk acceleration
during gait compared to trunk acceleration of non-fallers at 60%
of the step cycle for g < 1. The finding of a difference at 60%

Frontiers in Aging Neuroscience | www.frontiersin.org

March 2018 | Volume 10 | Article 44


https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

Ihlen et al.

Phase-Dependent Generalized Multiscale Entropy

of the step cycle between single-time fallers and non-fallers is
consistent with a previous study indicating that local dynamic
stability at 0 and 60% distinguishes retrospective fallers from
non-fallers (Thlen et al., 2015). Furthermore, a lower irregularity
of gait dynamics for single-time fallers is consistent with a recent
report displaying lower irregularity (i.e., multiscale entropy) of
the walking dynamics in elderly fallers when compared with non-
fallers (Ihlen et al., 2016a). These studies suggest that differences
in the stability and irregularity of trunk dynamics between fallers
and non-fallers may be caused by differences in the push-off

TABLE 4 | The top 10 ranked gait features and demographic variables in the PLS
prediction model and their latent variable number.

Rank Feature name Feature type Direction Latent var #*

SINGLE-TIME FALL PREDICTION

phase, which takes place at around 60% of the step cycle. In
contrast, another study on multiscale entropy found less irregular
trunk dynamics in elderly non-fallers compared to fallers (Riva
et al., 2013). However, that study used a different state space
reconstruction method that separated between AP, ML, and V
directions. Furthermore, the lower irregularity for the single-
time fallers in the present study was found for g < 1 and
not for conventional multiscale entropy (i.e., ¢ = 1), which
indicates that the difference in irregularity between fallers and
non-fallers depends on the definition of the entropy metrics. In
line with this suggestion, the present study did show a tendency of
higher irregularity for non-fallers compared to single-time fallers
for ¢ = 1, even though this tendency was not significant (see
Figure 3E).

Even though the present study found clear differences in
PGME between single-time fallers and matched non-fallers, no
consistent differences were found between multiple-time fallers
and matched non-fallers. Almost half (47.2%) of the single-time

1 Harmonic Ratio Gait AP 1(7)

5 Number of falls (past 6 month) Other _ 5 prospective fallers had experienced falls within the 6 months

3 Low freq. percentage Gait ML 4 prior to the baseline measurements and could therefore be

4 Stride time variability Gait _ - considered as multiple-time fallers when 6 months prospective

5 Acc. standard deviation Gait ML 6 and retrospective data are combined (van Schooten et al.,

6 Stride regularity Gait ML 1 2016). Post hoc analyses indicated that single-time fallers with

. Stride freq, variabity . AP ; a history of falls had a lower irregularity compared to those

8 Low freq. percentage Gait AP 1

9 Body mass Other 4

10 Spectral dominant freq. Gait AP 1 TABLE 6 | Comparison of difference in AIC (AAICc) and relative likelihood (RL) for

MULTIPLE-TIME FALL PREDICTION the three PLS fall prediction models of single-time and multiple-time fallers.

1 Harmonic ratio Gat v 10 PGME Gait features + All combined

2 Number of falls (past 6 month) Other - 5 Demographic var.

3 Harmonic ratio Gait AP 1

4 Low frequency percentage Gait ML 3 SINGLE-TIME FALLERS

5 Spectral freg. range Gait ML 3 PGME* - 10.37 (0.006) 4.44(0.11)

6 Low frequency percentage Gait AP 3 Gait features 10.37 (0.006) - 5.93 (0.09)

7 Lyapunov W Gait AP 1) All combined 4.4 (0.11) 5.93 (0.05) -

8 Stide regularity Gait AP 12) il pz a2 R s

9 Stide regularity Gait ML 12) PGME - 6.02(0.05) 1.90 0:39)

10 Stride regularity Gait v 12) Gait features 1.90 (0.39) - 413 (0.13)
Al combined* 6.02 (0.05) 413(0.13) -

“Note that values within the brackets indicate that the gait features are equally represented

in two latent variables. Note that * indicates the best performing model.

TABLE 5 | Performance of the PLS based single- and multiple time fall prediction model.

Sensitivity Specificity Positive predictive value Negative predictive value Accuracy

SINGLE TIME FALLERS (N = 52)

PGME 0.71(0.70, 0.72) 0.80 (0.79, 0.81) 0.79 (0.78, 0.80) 0.74 (0.73, 0.75) 0.76 (0.75, 0.77)

Gait features + Demograph. var 0.61 (0.60, 0.62) 0.76 (0.75, 0.77) 0.73(0.72, 0.74) 0.66 (0.65, 0.67) 0.68 (0.67, 0.69)

Fall history: 6 months 0.47 (0.46, 0.48) 0.67 (0.65, 0.68) 0.59 (0.57, 0.60) 0.56 (0.55, 0.57) 0.57 (0.56, 0.58)

All combined 0.75(0.73, 0.76) 0.80 (0.79, 0.81) 0.80 (0.79, 0.81) 0.77 (0.76, 0.78) 0.77 (0.76, 0.78)

MULTIPLE TIME FALLERS (N = 46)

PGME 0.67 (0.66, 0.69) 0.69 (0.68, 0.70) 0.69 (0.68, 0.70) 0.69 (0.68, 0.70) 0.68 (0.67, 0.69)

Gait features + demograph var 0.79 (0.77, 0.80) 0.76 (0.75, 0.77) 0.77 (0.76, 0.78) 0.79 (0.78, 0.80) 0.77 (0.76, 0.80)

Fall history: 6 months 0.55 (0.53, 0.56) 0.65 (0.64, 0.67) 0.62 (0.61, 0.63) 0.60 (0.59, 0.61) 0.60 (0.59, 0.61)

All combined 0.83(0.82, 0.84) 0.83(0.82, 0.84) 0.84 (0.83, 0.85) 0.84 (0.83, 0.85) 0.83(0.82, 0.84)
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with no history of falls (all p < 0.005). Interestingly, the lower
irregularity was most pronounced at 60% of the stride cycle
for the single-time fallers with fall history when compared to
non-fallers, whereas the lower irregularity was most pronounced
at 40% of the stride cycle for the first-time fallers. This may
indicate differences in gait kinematics during ground contact or
push-off phase between first-time fallers and single-time fallers
with a fall history. Multiple-time fallers with a fall history had
significantly higher irregularity (p < 0.002) compared to the
multiple-time fallers with no fall history, where the difference was
most pronounced at 40% of the step cycle and for conventional
multiscale entropy (i.e,, ¢ ~ 1). Thus, the post-hoc analyses
further support the suggestion that the irregularity features of
the walking dynamics of community-dwelling older persons are
dependent on both fall history and their risk of future falls.
This dependency may be related to fear of falling and other
variables of functional decline in the older population. However,
the relationship between PGME and variables on health status in
older adults was not investigated, which might be important to
further improve the clinical interpretation of PGME.

There may be other reasons that could explain the difference
found between the variables relevant for the prediction of single
and multiple falls. The group of multiple-time fallers may contain
a higher portion of healthy and active older adults with a higher
fall risk due to higher exposure, without having impaired gait
stability. The lower irregularity in the first-time fallers could also
reflect an adaptation to decrease fall risk, which might not be
possible anymore for the multiple fallers. Nevertheless, the added
value of PGME to predict falls in combination with other gait
features indicates that this metric is a valuable addition to fall
prediction models.

The present study introduced a new entropy measure, PGME,
and showed its value for prediction of single and multiple falls in
community-dwelling older persons within a 6-month follow-up
period. However, a few limitations need to be pointed out. First,
PGME distinguished between single- and multiple-time fallers
and their matched non-fallers based on a relatively small sample
of community-dwelling older adults from a single geographical
location. The accuracy reported for the prediction of single-
and multiple falls within a 6-month follow-up period are in the
upper end of values that could be expected from a perfect fall
prediction model (Palumbo et al., 2015). Thus, it is likely that
accuracy will decrease for PGME and the other gait features
for larger samples from multiple locations. Further prospective
studies on larger samples from multiple locations are necessary
before concluding that PGME will improve individual fall
prediction in a global population of community-dwelling older
adults.

Secondly, variables of clinical tests used for fall risk
assessment, such as tests of balance and mobility performance,
were not included in the classification procedure. Inertial
sensor-based tools for unsupervised in-home testing of physical
function, including mobility and balance, could contribute to
the improvement of early fall prediction in community-dwelling
older adults (Shany et al., 2012). However, previous studies have
shown that features of daily-life walking improve fall prediction
when combined with instrumented tests of mobility performance

(Weiss et al., 2013). Nevertheless, falls have multifactorial causes
including medication, loss of muscle strength, vision, footwear,
environmental hazards, cognitive function, mental health, and
fear of falling, to mention but a few, and it is therefore likely
that a combination of outcomes of clinical tests and features
of daily-life activities will optimize fall prediction models. Even
though the inclusion of PGME might further improve the fall
risk assessment when combined with clinical tests, issues such
as cost (and maintenance cost) of accelerometers, unsupervised
device handling in an in-home setting, provision and retrieval
from patients in a clinical setting, and the potential for an easy-to-
use online estimation of PGME may be decisive for the feasibility
of the use of PGME in fall risk assessment and fall prediction
tools. Thus, further studies and cost-benefit analyses have to
be conducted to determine the usability and feasibility of these
analyses.

Thirdly, the present study used a PLS regression model for fall
prediction. This model was chosen because it has the ability to
combine a high number of features into a low number of latent
variables to prevent overfitting. The supplementary material
(Appendix D) shows the fall prediction ability of a support vector
machine (SVM) algorithm with a RELIEFF feature selection. The
SVM algorithm had a substantial decrease in its performance
for all feature sets when compared to PLS regression. Thus,
as confirmed in previous papers from our research group, PLS
regression seems to be one of the better performing models for
fall risk assessment and fall prediction (Ihlen et al., 2015, 2016b).
Further studies could use sparse PLS regression incorporating a
matrix regularization procedure in the PLS regression for a more
efficient feature selection (Chun and Keles, 2010).

Fourthly, the present study did not investigate walking speed
dependency of the PGME, although the difference between
single-time fallers and matched non-fallers may be walking speed
dependent. Previous studies have found that nonlinear measures
are speed dependent and, consequently, the phase-dependency of
PGME may change with walking speed (Jordan et al., 2007; Kang
and Dingwell, 2008; Bruijn et al., 2009). Although conventional
sample entropy has recently been shown not to vary over gait
speeds, further studies should investigate the influence of walking
speed on PGME (Huijben in revision).

Fifthly, the accuracy of the phase-dependency of PGME
is dependent on the reliability of step identification, even
more so than conventional gait quality measures. The inertial
sensor was placed on the lower back, which complicates the
identification of heel strike and toe-off events within the gait
cycle. Thus, the phase-dependency PGME in Figures 3, 4 were
not defined according to single and double support phases
within the gait cycle, but according to the local minima of the
vertical trunk velocity. Advanced step identification algorithms
might define the phase-dependent PGME according to heel
strike and toe-offs, but further validation of these algorithms
is necessary (e.g., Godfrey et al, 2015). Furthermore, as
inertial sensors become smaller and more wearable, further
studies might include additional sensors on the lower
extremities and/or insole pressure data to identify heel
strikes and toe offs and thereby single and double support
phases.
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CONCLUSION

The present study introduces a new entropy measure of daily-
life walking, called phase-dependent generalized multiscale
entropy (PGME), and assesses PGME performance in predicting
falls in community-dwelling older adults. PGME showed
superior performance in predicting a single fall in a 6-
month follow-up period. PGME indicated that single-time
fallers, but not multiple-time fallers, had significantly lower
entropy at 60% of the step cycle when compared with
non-fallers. PGME may therefore be a promising metric to
improve fall prediction amongst community-dwelling older
adults. However, external validation of PGME on larger multi-
site samples, and the relationship between PGME and gait
speed, health status, and physiological correlates have to be
assessed to further support the clinical relevance of this novel
metric.
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