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This review focuses on research in the areas of epidemiology, neuropathology, molecular
biology and genetics that implicates herpes simplex virus type 1 (HSV-1) as a causative
agent in the pathogenesis of sporadic Alzheimer’s disease (AD). Molecular mechanisms
whereby HSV-1 induces AD-related pathophysiology and pathology, including neuronal
production and accumulation of amyloid beta (Aβ), hyperphosphorylation of tau
proteins, dysregulation of calcium homeostasis, and impaired autophagy, are
discussed. HSV-1 causes additional AD pathologies through mechanisms that promote
neuroinflammation, oxidative stress, mitochondrial damage, synaptic dysfunction,
and neuronal apoptosis. The AD susceptibility genes apolipoprotein E (APOE),
phosphatidylinositol binding clathrin assembly protein (PICALM), complement receptor
1 (CR1) and clusterin (CLU) are involved in the HSV lifecycle. Polymorphisms in these
genes may affect brain susceptibility to HSV-1 infection. APOE, for example, influences
susceptibility to certain viral infections, HSV-1 viral load in the brain, and the innate
immune response. The AD susceptibility gene cholesterol 25-hydroxylase (CH25H) is
upregulated in the AD brain and is involved in the antiviral immune response. HSV-1
interacts with additional genes to affect cognition-related pathways and key enzymes
involved in Aβ production, Aβ clearance, and hyperphosphorylation of tau proteins. Aβ

itself functions as an antimicrobial peptide (AMP) against various pathogens including
HSV-1. Evidence is presented supporting the hypothesis that Aβ is produced as an
AMP in response to HSV-1 and other brain infections, leading to Aβ deposition and
plaque formation in AD. Epidemiologic studies associating HSV-1 infection with AD and
cognitive impairment are discussed. Studies are reviewed supporting subclinical chronic
reactivation of latent HSV-1 in the brain as significant in the pathogenesis of AD. Finally,
the rationale for and importance of clinical trials treating HSV-1-infected MCI and AD
patients with antiviral medication is discussed.

Keywords: Alzheimer’s disease, amyloid beta, dementia, herpes simplex virus, neurodegeneration,
neuroinflammation, pathogen, tau

INTRODUCTION

Alzheimer’s disease (AD) is an inflammatory neurodegenerative disease characterized by
progressive decline in cognitive abilities, behavioral abnormalities, and the loss of ability to
function at work or in activities of daily living. Cognitive impairment may involve deficits in short
term memory, language, visuospatial tasks, and/or executive function (McKhann et al., 2011).
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AD is the leading cause of dementia. It is estimated that
47 million people worldwide have dementia, with the prevalence
expected to rise significantly as the population ages (Prince
et al., 2016). Early-onset AD (EOAD) presents in younger
patients prior to age 60 or 65 years and comprises approximately
1%–6% of all AD cases. About 60% of these patients are
classified as familial EOAD, having multiple relatives diagnosed
with the disease. Approximately 13% of these cases show an
autosomal dominant pattern of inheritance (Alonso Vilatela
et al., 2012). The autosomal dominant form of EOAD is caused
by overproduction of amyloid beta (Aβ) due to mutations in one
of three genes: APP, PSEN1 or PSEN2. APP encodes for amyloid
precursor protein while the PSEN genes encode presenilins
I and II respectively (Naj and Schellenberg, 2017). Sporadic
or late-onset AD (LOAD) accounts for the majority of AD
cases (approximately 95%), and usually occurs after the age of
60–65 years. LOAD appears to have a multifactorial etiology
involving complex interactions between environmental factors
and multiple susceptibility genes, including the ε4 allele of the
apolipoprotein E (APOE) gene (Alonso Vilatela et al., 2012;
Naj and Schellenberg, 2017). Factors associated with increased
risk of AD include age, cerebrovascular disease, stroke, diabetes,
dyslipidemia, head injury, hypertension, smoking and obesity
(Mayeux and Stern, 2012). A significant body of evidence also
implicates pathogen involvement in sporadic AD (Balin et al.,
2008; Miklossy, 2011a; Harris and Harris, 2015; Itzhaki et al.,
2016).

The AD pathogen hypothesis states that pathogens
are causative factors in the development of sporadic or
LOAD. Pathogens interact with genetic and environmental
factors to initiate accumulation and/or formation of Aβ,
hyperphosphorylation of tau proteins, and inflammation in the
brain. This leads to neuronal cell dysfunction, neurodegeneration
and dementia (Harris and Harris, 2015). The hypothesis is
supported by research data implicating brain infections by
herpes simplex virus type 1 (HSV-1; Itzhaki et al., 1997; Itzhaki,
2014, 2016; Steel and Eslick, 2015), Chlamydophila pneumoniae
(Balin et al., 1998, 2008; Gérard et al., 2006), Borrelia burgdorferi
and other spirochetes (Miklossy, 2011a,b), and fungi (Alonso
et al., 2014a,b, 2015; Pisa et al., 2015a,b) in the pathogenesis of
AD. These pathogens are prevalent in AD brains and can evade
the host immune system forming latent or chronic infections.
Neuronal cell infection by HSV-1, C. pneumoniae and Borrelia
burgdorferi induce amyloid beta (Aβ) deposition in vitro and/or
in mouse brain models (Little et al., 2004; Miklossy et al.,
2006a; Wozniak et al., 2007). Neuronal cell infection by either
HSV-1 or B. burgdorferi results in hyperphosphorylation of
tau proteins (Miklossy et al., 2006a; Wozniak et al., 2009a).
Pathogens can directly and indirectly induce neuroinflammation
as well as neuronal dysfunction and death, which are important
aspects of AD pathophysiology (Athmanathan et al., 2001;
Boelen et al., 2007; Balin et al., 2008; Zambrano et al., 2008;
Miklossy, 2011a; Harris and Harris, 2015). Additional microbes
associated with AD include Helicobacter pylori (Kountouras
et al., 2009; Roubaud Baudron et al., 2013; Wang X. L. et al.,
2014), cytomegalovirus (CMV; Strandberg et al., 2003; Lurain
et al., 2013), human herpes virus 6 (Carbone et al., 2014),

Epstein-Barr virus (Carbone et al., 2014), and the oral pathogens
P. gingivalis and T. forsythia (Kamer et al., 2009).

This review focuses on the involvement of HSV-1 as a
causative cofactor in sporadic AD. HSV-1 is prevalent in aged
normal and AD brains (Jamieson et al., 1991, 1992). When
present in the brains of APOE-ε4 allele carriers, the virus is
associated with increased risk of AD (Itabashi et al., 1997; Itzhaki
et al., 1997; Lin et al., 1998). Evidence is presented involving
molecular mechanisms whereby HSV-1infection promotes AD
pathogenesis.

PATHOLOGICAL HALLMARKS OF
ALZHEIMER’S DISEASE

The hallmark pathological features of the AD brain include
senile plaques and neurofibrillary tangles (NFTs). Senile plaques
are extracellular and contain Aβ which is formed by cleavage
of the integral neuronal cell membrane glycoprotein amyloid-
β precursor protein (AβPP) by the enzymes β-secretase
and γ-secretase. Within this amyoidogenic pathway, the
extracellular domain of AβPP is cleaved by β-secretase, which
releases the N-terminal soluble fragment sAPPβ into the
extracellular space. The enzyme γ-secretase then cleaves the
intramembranous C-terminal fragment (βCTF), also known
as C99, to form Aβ and APP intracellular domain (AICD).
Within the non-amyoidogenic pathway, Aβ is not formed
because AβPP is cleaved by α-secretase, releasing a soluble
protein known as sAPPα into the extracellular space. The
remaining intramembranous C-terminal fragment C83 is cleaved
by γ-secretase to form P3 and AICD (Stanga et al., 2010;
Cárdenas-Aguayo et al., 2014). The two main isoforms of
amyloid beta are Aβ1–42 and Aβ1–40. Lower levels of Aβ in the
brain appear to be neurotrophic, supporting various homeostatic
processes including neurogenesis, synaptic plasticity, antioxidant
activity, calcium homeostasis and redox sequestration of metal
ions (Cárdenas-Aguayo et al., 2014). Increased Aβ production
and/or decreased clearance results in Aβ accumulation. Elevated
levels of Aβ1–42 isoforms can aggregate to form insoluble
oligomers and fibrillary configurations leading to the formation
of senile plaques (De-Paula et al., 2012).

NFTs are located within neurons and are composed of
abnormally hyperphosphorylated tau proteins (De-Paula et al.,
2012; Rajmohan and Reddy, 2017). Tau proteins contribute to
microtubule assembly and stabilization, which is important for
cytoskeleton structure and axonal transport of vesicular and
organelle structures by motor kinesin or motor dynein (Kolarova
et al., 2012). Tau proteins are also important in regulation of
synaptic plasticity and synaptic function (Mondragón-Rodríguez
et al., 2013). Under physiologic conditions, phosphorylation
of tau proteins by kinases is balanced by dephosphorylation
by phosphatases, which maintains the equilibrium required for
binding of tau proteins to microtubules. Glycogen synthase
kinase-3β (GSK3β), protein kinase A (PKA), cyclin-dependent
kinase 5 (cdk5), and calcium/calmodulin-dependent kinase
II (CaMK-II) are important enzymes that phosphorylate
tau proteins (Kolarova et al., 2012). When tau proteins
are hyperphosphorylated, however, conformational changes
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occur. This leads to formation of paired helical filaments
(PHFs) and/or NFTs and associated microtubule destabilization,
synaptic damage, and neurodegeneration (De-Paula et al.,
2012).

Additional cellular processes implicated in AD pathogenesis
include dysregulation of calcium homeostasis (Bezprozvanny
and Mattson, 2008), impaired autophagy (Nixon, 2007; Boland
et al., 2008; Nixon and Yang, 2011), oxidative stress (Bonda
et al., 2010; Scheff et al., 2016; Tönnies and Trushina, 2017),
mitochondrial dysfunction (Wang X. et al., 2014), synaptic
dysfunction (Lassmann et al., 1992; Masliah et al., 2001; Reddy
et al., 2005) and neuroinflammation (Wyss-Coray and Rogers,
2012). At the tissue level, pathologic findings include neuronal
cell loss, cerebral atrophy, and amyloid angiopathy (Takahashi
et al., 2017). At the systems level, AD is associated with damage
to the blood brain barrier (BBB; Montagne et al., 2015), cerebral
artery atherosclerosis, and cerebral hypoperfusion (Lathe et al.,
2014).

NEUROINFLAMMATION AND
ALZHEIMER’S DISEASE

As part of the innate immune system, microglia patrol the brain
as resident macrophages, providing defense against pathogen
invasion. Pattern recognition receptors, such as toll-like
receptors (TLRs) located on microglia cell membranes, interact
with pathogen associated molecular patterns (PAMPs), such as
bacterial lipopolysaccharide (LPS), peptidoglycan, lipoproteins,
flagellin, viral or bacterial nucleic acids leading to microglial
production of proinflammatory molecules (Miklossy, 2011a).
In pathologically affected regions of the AD brain, microglia
upregulate cell surface receptors related to phagocytosis and
other aspects of immune response. In addition to TLRs, these
include major histocompatibility complex class II (MHCII)
receptors, cytokine and chemokine receptors, the receptor
for advanced glycation end products (RAGE), scavenger
receptors and complement receptor 3 (Wyss-Coray and Rogers,
2012).

The microglial-mediated inflammation present in AD
brains involves increased levels of proinflammatory cytokines
such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and
tumor necrosis factor-α (TNF-α; Ho et al., 2005). Activated
microglia also produce chemokines including RANTES, CXCL8,
macrophage inflammatory protein 1α (MIP-1α), MIP-1β,
and monocyte chemotactic protein 1 (MCP1); complement
molecules such as C1q, C3, C4 and C9; and reactive oxygen
species (ROS; Wyss-Coray and Rogers, 2012). Chemokines and
complement factors have been found to be upregulated in AD
brains (Veerhuis et al., 1996; Xia and Hyman, 1999; Lue et al.,
2001). Studies support ROS as a mediator of inflammation-
related neuronal damage and AD pathogenesis (Manoharan
et al., 2016; Tönnies and Trushina, 2017).

Aβ and fibrillary Aβ activate microglial RAGE receptors or
CD36 and scavenger receptors respectively, causing production
of proinflammatory cytokines and ROS (Block et al., 2007).
Upregulation of IL-1β is associated with increased levels of
neuronal AβPP and the astrocyte inflammatory protein s100β

in AD brain studies (Griffin et al., 1998). IL-1β drives the
neuronal production of APP with subsequent increase in Aβ

(Griffin, 2013). This describes a hypothesized vicious cycle of
neuroinflammation with resultant neuronal dysfunction and
cellular death. Release of cytosolic compounds, membrane
breakdown products, and excess glutamate by injured neurons
further activates microglia and accelerates the process, leading
to chronic neurodegeneration (Gao and Hong, 2008; Chami and
Checler, 2012; Cai et al., 2014).

Evidence involving the adaptive immune system supports
the hypothesis that peripherally activated IFN-γ-producing
T cells infiltrate the brain in response to an AD-related
chemotactic gradient and impaired BBB. As proposed,
subsequent T cell-mediated microglial activation results in
Aβ production, neuroinflammation, and neurodegeneration
(Lynch, 2014). Animal studies demonstrate that peripherally
produced proinflammatory cytokines, including IL-1β, IL-6
and TNFα, are transported across the BBB with subsequent
cytokine/brain interactions. The author suggests this as a
potential mechanism of neuropathology and brain dysfunction
(Banks, 2005). Peripherally injected human IL-1α has been
shown to cross the BBB and induce memory impairment in mice
(Banks et al., 2001).

THE HSV-1 ALZHEIMER’S DISEASE
HYPOTHESIS

In 1982 Ball (1982) proposed that latent HSV-1 in the trigeminal
ganglia might reactivate and ascend through known anatomic
nerve fiber connections into the limbic areas of the brain most
affected by AD pathology. HSV-1 infection with subclinical
chronic encephalitis was hypothesized as causative in AD
(Ball, 1982). Itzhaki et al. (1997, 2008) have proposed that
recurrent reactivation of latent HSV-1 in the brain results
in ‘‘limited local damage’’ to neurons through direct and
indirect toxic effects of the virus. Acute HSV-1 encephalitis
(HSE) induces limbic pathology involving the hippocampus,
temporal lobes and frontal lobes-the same areas affected in
AD. HSE patients are known to have chronic cognitive and
behavioral symptoms similar to those seen in AD (Ball, 1982;
Itzhaki, 2011). Other viral diseases associated with tau pathology
and neurodegeneration include the measles virus in subacute
sclerosing panencephalitis (McQuaid et al., 1994) and HIV
infection in HIV-associated neurocognitive disorders (HANDs;
Anthony et al., 2006; Soontornniyomkij et al., 2012; Brown et al.,
2014; Mocchetti et al., 2014).

Evidence from animal studies also supports HSV-1 entry into
the brain through the olfactory bulb with the virus ascending
along nerve pathways into limbic system structures significantly
affected in AD, including the entorhinal cortex and hippocampus
(McLean et al., 1993; Mori et al., 2005). HSV-1 DNA has
been detected in olfactory bulb samples by PCR in the human
brain (Baringer and Pisani, 1994). Olfactory receptor neurons
synapse with mitral cell neurons of the olfactory bulb, which then
project to the entorhinal cortex, amygdala, and hippocampus
(Mori et al., 2005). The olfactory bulb and tract demonstrate
neurodegenerative pathology early in AD (Kovács et al., 2001;
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Christen-Zaech et al., 2003), as does the entorhinal cortex (Braak
et al., 1993). Clinically impaired olfactory function is associated
with increased incidence of MCI and AD (Schubert et al., 2008;
Roberts et al., 2016; Woodward et al., 2017). Thus, HSV-1
infection of the olfactory system and subsequent brain infection
parallels early AD pathological and clinical findings.

Lathe and Haas (2017) found increased expression of host
cell viral entry receptors for HSV-1 glycoproteins gD and gB
within the hippocampus using gene expression profiling from
the microarray based Allen Human Brain Atlas and Human
Brain Transcriptome database. The hippocampus demonstrated
significantly increased gene expression of host cell viral entry
receptor proteins PVRL1, TNFRFS14 and MYH9 when tested
across the whole human brain. The authors suggest that these
findings contribute to the susceptibility of the hippocampus to
HSV-1 infection.

HSV-1 IS PREVALENT IN ELDERLY BRAINS
AND INCREASES THE RISK OF AD IN
APOE-ε4 CARRIERS

Latent HSV-1 was found by polymerase chain reaction (PCR)
in a high proportion (70%–100%) of sporadic AD brains and
normal elderly brains involving areas of brain typically affected
in AD, including the hippocampus, temporal and frontal lobes
(Jamieson et al., 1991). These findings have been confirmed
by several studies (Jamieson et al., 1992; Bertrand et al., 1993;
Itzhaki et al., 1997; Lin et al., 1998; Cheon et al., 2001). HSV-1
was absent in younger brains (Jamieson et al., 1992). Marques
et al. (2001) and Hemling et al. (2003) found HSV-1 in very
low percentages of brains studied. Wozniak et al. (2005) found
HSV-1 immunoglobulin G (IgG) in cerebrospinal fluid from
52% of AD patients and 69% elderly controls, and noted that
the difference was not statistically significant. However, this
finding does indicate that HSV-1 DNA is prevalent in elderly
brains as a complete functional genome and replicates in the
brain (Wozniak et al., 2005). Itzhaki et al. (1997) and Lin et al.
(1998) demonstrated that HSV-1 infection in postmortem elderly
brains in combination with the presence of the APOE-ε4 allele
of the APOE gene increases the risk of AD by a factor of 12,
with the coexistence of both factors accounting for over half the
AD subjects in the study. The Itzhaki et al. (1997) results were
corroborated by Itabashi et al. (1997).

HSV-1 PREVALENCE, STRUCTURE AND
LIFE CYCLE

HSV-1 is a member of the Herpesviridae family of viruses.
The virus is neurotropic and is highly prevalent in the
adult population (Itzhaki and Wozniak, 2008). Worldwide, an
estimated 3.7 billion people (67%) have HSV-1 infection (Looker
et al., 2015; World Health Organization, 2017). Prevalence
generally varies by country, region and subgroup and increases
with age (Smith and Robinson, 2002), with several studies
demonstrating 80%–95% prevalence in populations age 50 or
older from different countries or regions (Shen et al., 2015; Korr

FIGURE 1 | Electron microscopy image showing two herpes simplex virions.
The nucleocapsid is seen in the center of each virion with surrounding
tegument and viral envelope. Reprinted from Kaye and Choudhary (2006),
copyright 2006, with permission from Elsevier.

et al., 2017; Marchi et al., 2017; Nasrallah et al., 2018). After initial
infection, the virus establishes latency within sensory ganglia,
such as the trigeminal ganglion (TG) of the peripheral nervous
system (Perng and Jones, 2010). Infection is life-long as the
virus evades the host immune system. Periodic episodes of viral
reactivation and replication result in active lytic lesions known as
herpes labialis or cold sores (Itzhaki, 2011).

HSV-1 is an enveloped virus composed of a core double
stranded 152 kB DNA genome, which is surrounded by
an icosahedral shaped nucleocapsid (Figure 1; Kaye and
Choudhary, 2006). The tegument contains 26 viral proteins and
is located between the capsid and the viral envelope. These
proteins are required for the HSV viral lifecycle, including viral
DNA transport to the host nucleus, viral gene transcription, and
subversion of various host cellular processes. The viral envelope
consists of a lipid bilayer dotted with various glycoproteins.
Viral glycoproteins C (gC) and B (gB) are involved in viral
attachment to the heparin sulfate proteoglycan (HSPG) receptor
of the host cell. Interactions between HSV-1 glycoproteins gD,
gB, and gH/gL with host cellular receptor proteins are necessary
for viral entry into the host cell (Kukhanova et al., 2014). After
fusion of the virus to the host cell, the tegument proteins and
nucleocapsid enter the cytoplasm. A specific tegument protein
shuts off host cell protein synthesis. The nucleocapsid moves
from host cytoplasm to the nucleus where viral DNA is released
and circularizes (Itzhaki and Wozniak, 2006).

The virus has two distinct lifecycles. During the productive
lifecycle, new virions are produced leading to host cell death.
During the latent lifecycle, the viral genome persists within
the host cell with no virions formed. Viral genes are classified
as immediate-early (α-genes), early (β-genes), or late (γ-genes;
Itzhaki and Wozniak, 2006). During the productive lifecycle
these genes express α proteins which regulate the viral genome,
β proteins which are involved in viral DNA synthesis, and
γ-proteins which are viral structural proteins (Pereira, 1996).
After viral protein expression, nucleocapsids are reassembled in
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the host nucleus with tegument proteins attached to the outer
surface of the capsid. The nucleocapsid obtains part of the
host nuclear envelope upon exit from the host nucleus. Viral
particles then migrate through the cytoplasm by way of the Golgi
apparatus and/or endoplasmic reticulum and traverse the cell
membrane to exit the cell (Itzhaki and Wozniak, 2006).

After acute infection of oral, nasal, or ocular mucosal
epithelium, the virus enters the sensory neuron and moves via
retrograde transport inside the axon to reach the cell body,
which is located within the sensory ganglia, where the virus
establishes latency (Perng and Jones, 2010; Pires de Mello et al.,
2016). During latency, viral gene expression ceases except for
latency-associated transcripts known as LATs, which facilitate
the establishment of latency and inhibit host cell apoptosis
(Perng and Jones, 2010). Immunosuppression, diseases, and
other stressors can induce periodic reactivation of the virus
from latency (Held and Derfuss, 2011). A cell-mediated immune
response by CD8+ T lymphocytes, in part mediated by secretion
of IFN-γ, inhibits viral reactivation from latency within infected
TG (St. Leger and Hendricks, 2011; Nicoll et al., 2012).
Age-related impairment of the T cell immune system is known as
immunosenescence, and is associated with increased peripheral
reactivation of herpesviridae infections including HSV-1 in the
elderly (Koch et al., 2006; Stowe et al., 2007, 2012). Sawtell
(1998) reviews evidence which suggests reactivation of HSV-1
occurs in only a small number of latently infected neurons
during a reactivation event. The author cites animal studies
demonstrating that during reactivation only a few neurons within
peripheral ganglia express lytic viral proteins or Infected-cell
protein 0 (ICP0) RNA.

MOLECULAR MECHANISMS: HSV-1
INDUCES AD PATHOPHYSIOLOGY AND
PATHOLOGY

Neuronal Cells Infected by HSV-1 Produce
Aβ and Demonstrate Altered AβPP
Metabolism
Human cultured neuronal cells infected with HSV-1 in vitro
produce Aβ1–42 and Aβ1–40 with a corresponding decrease
in amyloid beta precursor protein (AβPP). In addition,
HSV-1-infected neuronal cells demonstrate upregulation of
β-secretase and nicastrin (a protein component of the γ-secretase
complex). Both enzymes are involved in processing AβPP to
Aβ within the amyoidogenic pathway (Wozniak et al., 2007).
Non-transgenic BALB/c mice infected with HSV1 developed
brain deposition of Aβ1–42 detected by immunocytochemistry
5 days after intranasal inoculation (Wozniak et al., 2007). HSV-1
infection of human neuroblastoma cells and rat cortical neurons
activates the host cell amyoidogenic pathway, resulting in
multiple cleavages of AβPP with accumulation of intracellular
and secreted extracellular Aβ1–42, Aβ1–40, and several additional
neurotoxic Aβ-containing AβPP fragments. Quantitative
measurements of APP 695-transfected neuroblastoma cells
by ELISA demonstrated significantly increased Aβ1–42 levels
in HSV-1-infected cells compared to mock-infected controls

(Figure 2; De Chiara et al., 2010). Mechanistically, HSV-1
activates double-stranded (ds) RNA-activated protein kinase
(PKR) in neuronal cells, which results in phosphorylation
of eukaryotic initiation factor 2-α (eIF2-α), a GTP-binding
protein involved in the initiation of protein translation. This in
turn activates translation of β-secretase (Ill-Raga et al., 2011).
In a squid model, GFP-labeled HSV-1 viral particles travel
with AβPP, a receptor for kinesin, during fast anterograde
axonal transport, mechanistically linking the virus with a
key protein involved in the amyoidogenic pathway and AD
(Satpute-Krishnan et al., 2003). HSV-1 affects AβPP processing
within infected neuronal cells by reducing the level of AβPP
and increasing the level of a 55 kDa C-terminal AβPP fragment
which includes Aβ (Shipley et al., 2005). Newly synthesized
HSV-1 particles co-localize and travel with AβPP inside the
cytoplasm of live epithelial cells. HSV-1 interacts frequently with
AβPP and interferes with AβPP transport and distribution as
the virus exits the cell (Cheng et al., 2011). Thus, HSV-1 hinders
AβPP transport, alters its intracellular kinetics, and upregulates
its amyoidogenic processing, resulting in the production of Aβ.

Neuronal Cell Infection by HSV-1 Results in
Hyperphosphorylation of Tau Protein
Cultured human neuronal cells infected by HSV-1
hyperphosphorylate tau protein significantly more than
uninfected cells—by a factor of four (Figures 3, 4). HSV-1
upregulates GSK3β and PKA, which are enzymes involved
in phosphorylation of tau proteins (Wozniak et al., 2009a).
Likewise, neuroblastoma cells infected by HSV-1 develop
increased levels of hyperphosphorylated tau proteins within
their nuclei (Alvarez et al., 2012). Cultured murine neuronal
cells infected by HSV-1 undergo tau hyperphosphorylation and
neurodegenerative changes, including alterations in microtubule
dynamics, damage to the neuronal cytoskeleton, and neuronal
loss. These effects are not seen in neurons pretreated with
the antiviral medication acyclovir (Zambrano et al., 2008).
The capability of HSV-1 to induce hyperphosphorylation of
tau proteins and neurodegeneration demonstrates another
mechanistic link between HSV-1 and AD pathogenesis.

HSV-1 Induces Intracellular Aβ

Accumulation by Dysregulating Calcium
Homeostasis
Dysregulation of calcium homeostasis has been implicated in
AD pathophysiology. Influx of calcium with resultant elevated
intracellular calcium levels occurs in neuronal cells exposed
to toxic Aβ oligomers and is associated with excitotoxicity
and neuronal apoptosis in cultured cell and animal models
(Bezprozvanny and Mattson, 2008). Elevated levels of calcium
have been shown in AD triple transgenic mouse neurons,
which accumulate Aβ (Lopez et al., 2008). Altered expression
of neuronal calcium signaling genes has been shown in human
postmortem AD brains by microarray analysis (Emilsson et al.,
2006).

Piacentini et al. (2011) demonstrate that infection of rat
cortical neurons with HSV-1 results in hyperexcitability and
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FIGURE 2 | Herpes simplex virus type 1 (HSV-1) infection of neuronal cells results in accumulation of amyloid beta (Aβ). Images from confocal microscopy
demonstrate human neuroblastoma cells infected by HSV-1 at 18 h post-infection. Cells shown in the middle panels were double-labeled with anti-Aβ1–42 and
anti-Aβ1–40 antibodies. Cells shown in the lower panels were double-labeled with anti-Aβ1–42 and anti-HSV-1 antibodies. The color of the fluorescence for each
primary antibody is demonstrated in the left and middle columns. Bar graph upper right shows significant increases in intracellular and secreted extracellular Aβ1–42

by HSV-1-infected APP695-transfected neuroblastoma cells compared to mock-infected cells by ELISA (∗P < 0.05 vs. HSV-1). Figure from De Chiara et al. (2010).
Reprinted under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0).

FIGURE 3 | Co-localization of HSV-1 and abnormal tau phosphorylation as shown by immunofluorescence in HSV-1-infected cultured human glioblastoma cells.
HSV-1-infected glioblastoma cells show strong staining for HSV-1 proteins (green) by anti-HSV-1 antibody and abnormally phosphorylated tau proteins (red) by
anti-p-tau antibody AT100, with co-localization within cells seen on far right slide. Abnormal tau phosphorylation occurred in HSV-1-infected cells and not in
bystander cells. DNA is stained blue with Hoechst solution. Reprinted from Wozniak et al. (2009a), copyright 2009, with permission from IOS Press and Ruth Itzhaki.
The publication is available at IOS Press through http://dx.doi.org/10.3233/JAD-2009-0963.

depolarization of the cell membrane due to alterations in sodium
and potassium currents. This in turn leads to dysregulation of

cellular calcium influx through voltage-gated calcium channels.
Elevated intracellular calcium levels and calcium-dependent
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FIGURE 4 | Quantification of abnormal tau phosphorylation in HSV-1-infected
and uninfected cultured human neuroblastoma cells using the enzyme-linked
immunosorbent assay. HSV-1-infected cells significantly hyperphosphylated
tau protein at serine 214 compared to uninfected cells (p < 0.01). Reprinted
from Wozniak et al. (2009a), copyright 2009, with permission from IOS Press
and Ruth Itzhaki. The publication is available at IOS Press through
http://dx.doi.org/10.3233/JAD-2009-0963.

phosphorylation of AβPP result in elevated levels of Aβ in
HSV-1-infected cells. This study shows yet another parallel
between HSV-1 and AD-related pathophysiology.

HSV-1 Impairs Autophagy in Neuronal Cells
Autophagy, or degradation of intracellular proteins and
organelles in lysosome/vacuole compartments, allows for these
components to be recycled (Nixon and Yang, 2011). Impaired
autophagy has been demonstrated in the AD brain. Electron
microscopy shows abnormal, swollen neurites containing many
autophagic vacuoles, which are not found in normal brains
(Boland et al., 2008). The endosomal-lysosomal pathway is
important in AβPP processing. Studies suggest that increased
initiation of autophagy and decreased clearance of Aβ-containing
autophagic vacuoles may contribute to Aβ accumulation in the
AD brain (Nixon, 2007).

Xenophagy is the autophagic degradation of intracellular
pathogens including viruses, and is an important part of host
defense (Alexander and Leib, 2008). The lysosomal breakdown of

pathogenic components within autophagosomes and subsequent
presentation of pathogenic ligands and antigens activates the
host’s innate and adaptive immune systems (Orvedahl and
Levine, 2008). HSV-1 viral particles have been demonstrated
within lysosomes of infected human fibroblast cells (Smith
and de Harven, 1978). HSV-1 degradation also takes place in
autophagosomes of infected murine-embryonic fibroblast cells
(Tallóczy et al., 2006). Xenophagy of HSV-1 is dependent
on activation of a double stranded RNA-dependent protein
kinase R (PKR) and eukaryotic initiating factor-2-α (eIF2α)
pathway (Tallóczy et al., 2002, 2006). HSV-1 neurovirulence
factor infected cell protein 34.5 (ICP 34.5) and viral protein
Us11 function to subvert the autophagic response to viral
infection. HSV-1 Us11 blocks PKR phosphorylation of eIF2α.
Viral ICP 34.5 recruits host phosphatase PPP1CA which
dephosphorylates eIF2α. Both of these actions inhibit autophagic
degradation of HSV-1 proteins (O’Connell and Liang, 2016).
HSV-1 ICP 34.5 also inhibits autophagy by binding to Beclin 1,
which is an essential autophagy protein (Orvedahl et al., 2007;
Wilcox and Longnecker, 2016).

HSV-1 infection of human neuroblastoma cells impairs
autophagy and leads to accumulation of intracellular
autophagosomes (Santana et al., 2012a; Figure 5). HSV-1
infection was also found to decrease autophagic degradation of
Aβ, resulting in intracellular accumulation of Aβ in autophagic
compartments within neuroblastoma cells. Autophagosomes
containing Aβ in HSV-1 infected neuroblastoma cells failed to
fuse with lysosomes, resulting in a significant decrease in Aβ

secretion. Inhibition of the non-amyoidogenic AβPP processing
pathway was noted while the amyoidogenic Aβ producing
pathway remained intact (Santana et al., 2012b). This data
suggests that HSV-1 inhibition of host cell autophagy and viral-
induced alterations of AβPP processing results in intraneuronal
Aβ accumulation (Santana et al., 2012b).

HSV-1 Induces Neuroinflammation
HSV-1 infection of the brain or peripheral nervous system
provokes an innate and adaptive immune response (Nicoll
et al., 2012; Egan et al., 2013; Shives et al., 2017). Human
microglia cells infected by HSV-1 increase production of

FIGURE 5 | HSV-1 infection of human neuroblastoma cells leads to accumulation of intracellular autophagosomes. (A) Electron micrograph of mock-infected
neuroblastoma cells. (B) Electron micrographs of HSV-1-infected neuroblastoma cells at a multiplicity of infection (MOI) of 10 plaque forming units per cell (pfu/cell)
for 18 h. Micrographs show accumulation of autophagosomes (white arrowheads) induced by HSV-1. White arrows show phagophores. Numerous cytoplasmic viral
vesicles and free cytoplasmic virions are visualized (black arrows). Black arrowheads point to four-layered membrane vesicles. Note the enlarged boxed area (far
right) showing a four-layered membrane vesicle. N labels the nucleus. Scale bars = 0.5 or 1 µm. Reprinted from Santana et al. (2012a), copyright 2012, with
permission from IOS Press and Jesus Aldudo. The publication is available at IOS Press through http://dx.doi.org/10.3233/JAD-2012-112000.
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pro-inflammatory cytokines IL-1β, IL-6, IL-8 and TNF-α, along
with chemokines MIP-1α, CCL5 (RANTES) and CXCL10
(Lokensgard et al., 2001). Activated CD8+ T cells surround
human and mouse HSV-1-infected TG ganglia in an attempt to
control viral reactivation (Nicoll et al., 2012). HSV-1 infection
of mouse trigeminal ganglia resulted in expression of MHCII
antigens and cellular infiltrates containing pro-inflammatory
cytokines IL-6, TNF-α and interferon-γ (IFN-γ; Shimeld et al.,
1995, 1997). Indicators of neuroinflammation (phosphorylated
interferon regulatory factor 3 (p-IRF3), toll-like receptor-4, and
interferon α/β) and early neurodegeneration (caspase-3 cleaved
tau protein (TauC3) and phosphorylated tau protein) are
found in the trigeminal ganglia and cerebral cortices of
mice after HSV-1 reactivation from latency (Martin et al.,
2014).

Herpes simplex encephalitis in humans induces acute and
subacute inflammatory responses mediated by IFN-γ and IL-6,
and TNF-α respectively. During the late convalescent stage,
the T cell-mediated immune markers soluble IL-2 receptor and
soluble CD8 antigen may remain elevated for months to years
(Aurelius et al., 1994). Higher levels of proinflammatory response
to the virus are associated with greater clinical severity, extent
of BBB disruption, and amount of damage seen on brain MRI
(Michael et al., 2016).

HSV-1 Induces Oxidative Stress
Oxidative stress is characterized by an imbalance in oxidant-
antioxidant equilibrium, overproduction of ROS and resultant
damage to cellular macromolecules (Manoharan et al., 2016;
Tönnies and Trushina, 2017). Decreased intraneuronal levels of
the antioxidant glutathione have been found in AD hippocampal
and cortical brain samples (Limongi and Baldelli, 2016).
Oxidative stress is thought to play a highly significant role in
neurodegeneration. Oxidative damage to lipids, proteins, DNA
and RNA within neuronal cells is found in AD brains, and
occurs early in the disease (Bonda et al., 2010; Zhao and Zhao,
2013; Scheff et al., 2016). This type of stress is associated with
other aspects of AD-related pathophysiology as well, including
mitochondrial dysfunction, accumulation of redox metals,
dysregulation of calcium homeostasis, hyperphosphorylation
of tau proteins, Aβ accumulation, synaptic dysfunction,
neuroinflammation and neurodegeneration (Mondragón-
Rodríguez et al., 2013; Zhao and Zhao, 2013; Tönnies and
Trushina, 2017).

Herpes simplex encephalitis and other CNS viral infections
increase production of reactive oxygen and nitrogen species,
which contributes to oxidative stress and neuronal damage
in both animal models and human disease (Meyding-Lamadé
et al., 1998; Valyi-Nagy and Dermody, 2005). Keratitis due
to HSV-1 infection in rabbits resulted in an altered redox
state with decreased corneal intracellular levels of glutathione
(Nucci et al., 2000). Mouse microglial cells infected by HSV-1
produce elevated levels of ROS through viral stimulation
of microglial toll-like receptor 2. The subsequent redox
imbalance results in neuronal oxidative damage characterized
by lipid peroxidation in murine mixed microglial-neuronal
cultures (Schachtele et al., 2010). HSV-1-infected human

neuronal cells exposed to experimental oxidative stress in vitro
demonstrate decreased Aβ secretion and accumulation of
Aβ intracellularly. Oxidative stress interacts with the virus
to significantly enhance the effects of HSV-1-induced Aβ

accumulation and impairment of autophagy (Santana et al.,
2013).

Mitochondrial Damage and Dysfunction
Occurs in Cells Infected by HSV-1
Mitochondrial damage is thought to impair ATP production
and increase ROS production promoting oxidative stress (Wang
X. et al., 2014). Mitochondrial dysfunction occurs early in AD
(Wang et al., 2009). Damaged mitochondria are seen within
neurons from AD brain biopsies using electron microscopy
(Hirai et al., 2001). Mitochondrial damage is present in
transgenic APP and APP/PS1 mouse models (Trushina et al.,
2012) and transgenic neuronal cells in vitro which overexpress
APP (Wang et al., 2008).

HSV-1 and pseudorabies virus (PRV), another member of the
alphaherpesviridae sub-family, alter mitochondrial morphology
and interfere with axonal transport of mitochondria in rat
superior cervical ganglion neurons. During PRV infection,
there is reduced recruitment of the molecular motor kinesin-1
to mitochondria. This effect is mediated by glycoprotein B
(gB) fusion to the neuronal cell membrane, which results in
increased neuronal action potential firing rates and elevated
intracellular calcium levels (Kramer and Enquist, 2012).
HSV-1 infection of Vero cells depletes mitochondrial DNA
and mRNA through the action of viral protein UL12.5,
which suggests a direct connection between HSV-1 infection
and mitochondrial dysfunction and damage (Saffran et al.,
2007).

HSV-1 Infection Leads to Synaptic
Dysfunction
Synaptic dysfunction appears to be an early event in AD
pathogenesis (Masliah et al., 2001). Decreased levels of
synaptophysin and other synaptic proteins have been reported
(Lassmann et al., 1992; Masliah et al., 2001; Reddy et al.,
2005). In vitro studies demonstrate that elevated Aβ and
phosphorylated tau levels within and outside of the synaptic
cleft trigger diverse molecular mechanisms, leading to synaptic
protein reduction, synaptic damage, and synaptic loss (Rajmohan
and Reddy, 2017). Cyclic AMP-response element-binding
protein (CREB) is a multifunctional transcription factor which
plays a key role in synaptic plasticity, learning and memory
(Liang et al., 2007; Sakamoto et al., 2011). CREB also
regulates molecular processes related to neurodevelopment,
upregulation of antioxidant genes, and neuronal survival
(Sakamoto et al., 2011). Reduced CREB activity has been found
in AD postmortem brain samples and AD related animal models
(Yamamoto-Sasaki et al., 1999; Matsuzaki et al., 2006; Liang et al.,
2007). Aβ1–42 interferes with activation of CREB in cultured rat
cortical neurons (Tong et al., 2001), cultured rat hippocampal
neurons (Vitolo et al., 2002), and long term potentiation in a
mouse hippocampus model of synaptic plasticity (Puzzo et al.,
2005).
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HSV-1 infection affects the synapse through mechanisms
which parallel AD-related pathophysiology. Cultured mouse
cortical neurons infected by HSV-1 have shown decreased
synaptic transmission and reduced levels of presynaptic proteins
synapsin-1 and synaptophysin. Synaptic dysfunction and lower
levels and/or activity of synaptic proteins were mediated
through HSV-1-related activation of GSK3β and intraneuronal
Aβ accumulation. HSV-1-induced calcium-dependent GSK3β
activation resulted in phosphorylation of amyloid precursor
protein and subsequent accumulation of Aβ within neuronal
cells. The activity of CREB was inhibited during viral infection
and was dependent on HSV-1-induced Aβ accumulation and
GSK3β activation (Piacentini et al., 2015).

HSV-1 Affects Neuronal Apoptosis
HSV-1 is able to block or induce neuronal apoptosis at
various stages of infection (Galvan and Roizman, 1998).
HSV-1 protein ICP 34.5 dephosphorylates eIF2α, which blocks
the shutdown of host cell protein synthesis and prevents
apoptosis (Chou et al., 1995; Itzhaki et al., 2008). HSV-1
also inhibits host cell apoptosis through mechanisms utilizing
viral proteins including LAT, gJ, gD, Us3, ICP 4, ICP 24,
ICP 27 and UL14 (Yu and He, 2016). On the other hand,
HSV-1 infection causes neuronal apoptosis in cultured murine
neuronal cells (Zambrano et al., 2008) and a murine model
for HSE (Armien et al., 2010). Neuronal apoptosis has also
been demonstrated in human HSE brain tissue and cultured
human glioblastoma cells infected by HSV-1 (Athmanathan
et al., 2001).

HSV-1 INTERACTIONS WITH AD-RELATED
GENES

AD Susceptibility Genes Are Involved in the
HSV Lifecycle
AD susceptibility genes are characterized by single nucleotide
polymorphisms (SNPs), which are associated with increased risk
for AD. Susceptibility genes for AD identified in genome-wide
association studies (GWAS) include APOE, complement
receptor 1 (CR1), clusterin (CLU) and phosphatidylinositol
binding clathrin assembly protein (PICALM; Lambert et al.,
2009, 2011). These genes are associated with the HSV lifecycle,
with involvement in viral entry and transport within the
host cell (PICALM, CLU), viral infectivity (APOE4), viral
exit from the nucleus (PICALM), and complement system
interactions and immune defense (CLU, CR1; Carter, 2010).
The AD susceptibility gene Nectin-2 (NC-2), also known
as poliovirus receptor-related-2 (PVRL-2), expresses the
adhesion molecule known as herpes virus entrance-B (HveB;
Porcellini et al., 2010). HveB is a human plasma membrane
glycoprotein, which functions as a viral entry receptor. HSV-1
viral envelope glycoprotein D (gD) interacts with HveB during
fusion of the viral envelope to the host cell membrane (Spear,
2004). An AD-related gene signature has been hypothesized
whereby interactions among a network of AD susceptibility
genes influence infectivity and brain immune response,

which contributes to an individual’s predisposition to HSV-1-
induced AD pathology (Porcellini et al., 2010; Licastro et al.,
2011).

APOE Polymorphisms Affect Susceptibility
to Viral Infections, Cerebral HSV-1 Viral
Load and Immune Response
Possession of the APOE-ε4 allele, also known as APOE4, is a
major genetic risk factor for sporadic AD (Castellano et al.,
2011). APOE codes for APOE, which is a 299 amino acid
glycoprotein component of lipoproteins (Mahley and Rall, 2000).
In the brain, apoE is produced by microglial cells and astrocytes.
Apolipoproteins perform multiple functions within the brain
related to lipid transport, regulation of lipidmetabolism, synaptic
plasticity, cell signaling, and neuroinflammation (Holtzman
et al., 2012). The apolipoprotein isoforms apoE4, apoE3,
apoE2 are products of three predominant APOE alleles known
as APOE-ε4, ε3 and ε2 respectively (Kuhlmann et al., 2010).
Possession of human apoe4 results in the greatest amyloid
accumulation in APP transgenic mouse models. Amyloid
deposition, aggregation, and fibrillization in the brain is age and
apoe isoform-dependent in animal studies, with the highest Aβ

burden found in apoE4> apoE3> apoE2 transgenic mice (Bales
et al., 2002).

Apolipoprotein isoforms differentially influence the
susceptibility to and outcome of several viral infectious
diseases (Kuhlmann et al., 2010). Possession of APOE-ε4 is
a risk factor for recurrent herpes labialis (Itzhaki et al., 1997).
HSV-1 seropositive patients possessing the APOE-ε4 allele
developed symptomatic oral herpetic lesions at higher rates
compared to non-APOE-ε4 carriers with a relative risk of 4.64
(Koelle et al., 2010). HIV patients who possess the apoE4 isoform
have a higher incidence of dementia and peripheral neuropathy
than HIV patients who are apoE4 negative (Corder et al., 1998).
HIV patients homozygous for APOE-ε4 had more rapid disease
progression and mortality than those homozygous for APOE-ε3
(Burt et al., 2008). Interestingly, possession of APOE-ε4 is
protective against chronic hepatitis C, and lowers the risk of
developing severe liver disease from the virus compared to
APOE-ε3 (Wozniak et al., 2002; Price et al., 2006; Kuhlmann
et al., 2010).

HSV-1 interacts with APOE dosage and APOE4 genotype
resulting in increased HSV-1 concentration in mouse brain.
Wild-type apoE +/+ mice infected peripherally with HSV-1 were
found to have HSV-1 DNA brain concentrations 13.7 times
higher than HSV-1 infected apoE−/− knockout mice. APOE4
transgenic mice infected with the virus developed HSV-1 DNA
brain levels 13.6 times greater than infectedAPOE3mice (Burgos
et al., 2006). Another study demonstrated that age, female
gender, and apoE dosage increased HSV-1 viral load in brains of
infected mice (Guzman-Sanchez et al., 2012). One hypothesized
mechanism for these results suggests that apoE4 competes with
HSV-1 less effectively than apoE3 and apoE2 for attachment to
the viral entry receptor HSPG. ApoE4 would then allow more
HSV-1 virions to infect the target cell than apoE3 or apoE2
(Itzhaki and Wozniak, 2006).
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Possession of the APOE-ε4 allele is associated with an
increased innate immune response in human subjects exposed
to pathogen-associated ligands. Whole blood samples from
APOE-ε4/APOE-ε3 carriers exposed ex vivo to TLR2 or
TLR4 ligands produced significantly higher levels of IL-1β,
IL-6, IFN-γ and TNF-α than whole blood samples from
APOE-ε3/APOE-ε3 carriers. Enhanced immune response by
APOE-ε4/APOE-ε3 carriers was also seen after intravenous
exposure to bacterial LPS (Gale et al., 2014). Heightened
proinflammatory responses by APOE-ε4 carriers to brain
infections could conceivably contribute to AD-related
neuroinflammation.

The AD Susceptibility Gene CH25H Is
Involved in the Antiviral Immune Response
The gene cholesterol 25-hydroxylase (CH25H) regulates
lipid metabolism and has been shown to be a susceptibility
gene for sporadic AD. Specific CH25H haplotypes
characterized by single nucleotide polymorphisms (SNPs)
are associated with increased risk for sporadic AD in
four ethnically-independent populations. Expression of
CH25H is upregulated in specific AD-affected brain regions
including the temporal cortex and hippocampus. Specific
CH25H haplotypes are associated with different levels of
Aβ deposition in the brain. Elderly non-demented subjects
carrying CH25Hχ4 had high levels of Aβ deposits from
postmortem medial temporal lobe brain samples, whereas
CH25Hχ2 carriers lacked Aβ deposits (Papassotiropoulos et al.,
2005).

CH25H is an interferon-stimulated gene involved in the host
immune response against HSV-1 and other enveloped viruses.
CH25H encodes the enzyme CH25H which oxidizes cholesterol
to 25-hydroxycholesterol (25OHC). The multifunctional
oxysterol 25OHC inhibits entry of enveloped viruses including
HSV-1 by blocking viral fusion to the host cell (Liu et al.,
2013). 25OHC functions as part of the innate immune system,
with macrophage 25OHC expression induced by TLR agonists
and PAMPs including LPS, poly (I:C), and lipoteichoic acid
(Lathe et al., 2014). 25OHC is upregulated within mouse
macrophages in response to viral infection or stimulation
by interferons. 25OHC has been shown to have potent
broad-spectrum antiviral activity against enveloped viruses
in various host cell systems (Blanc et al., 2013; Lathe et al.,
2014).

Lathe et al. (2014) reviews evidence supporting the hypothesis
whereby chronic production of 25OHC by macrophages in
response to viral pathogens results in elevated levels of
insoluble cholesteryl esters in the brain. As proposed, excessive
production of cholesteryl esters leads to fat deposition in
macrophages, formation of functionally impaired foam cells,
and atherosclerosis of cerebral vessels with vascular occlusion,
which contributes to AD pathology. In addition, Itzhaki et al.
(2016) points out that polymorphisms in CH25H influence
both susceptibility to AD and deposition of Aβ, suggesting that
Aβ induction by 25OHC may be a potential mechanistic link
between host immune response to viral infection and production
of Aβ in the AD brain.

HSV-1 Interacts with Neprilysin and GSK3β

Genes via APP Intracellular Domain
The enzyme neprilysin degrades Aβ in the brain and has
been implicated in AD pathophysiology, with lower levels of
neprilysin found in AD brains (Yasojima et al., 2001; Marr
et al., 2004; Iwata et al., 2005). The enzyme GSK3β is involved
in hyperphosphorylation of tau protein and overproduction
of Aβ and in the AD brain (Hooper et al., 2008). Wozniak
et al. (2009a) found that HSV-1 infection of neuronal cells
resulted in phosphorylation of tau proteins at AD-specific
sites. The virus induced increased levels of GSK3β and
PKA, enzymes which phosphorylate tau proteins at these
sites.

Human neuroblastoma cells and rat cortical neurons infected
by HSV-1 in vitro were shown to activate the amyoidogenic
pathway with resultant elevated levels of AICD, which localized
in the nucleus of infected cells. AICD modulated neprilysin
transcription by binding to the promoter region of the neprilysin
genes NEPprom1 and NEPprom2, resulting in a transient
increase in mRNA levels with subsequent reduction of nep
mRNA, protein and enzymatic activity. AICD also bound to
the promotor region of the gsk3β gene, which encodes for
GSK3β. GSK3β protein levels did not change significantly;
however, enzyme activity appeared to be modulated by HSV-1
infection, which continued until phosphorylation inactivated
GSK3β in the later stages of infection. Thus, HSV-1 infection
alters the expression of neprilysin and modulates the activity
of neprilysin and GSK3β—enzymes involved in Aβ production,
Aβ clearance, and hyperphosphorylation of tau protein (Civitelli
et al., 2015).

HSV-1 Alters CREB, Glutamate and
Voltage-Gated Ion Channel Gene
Expression in Stem Cell-Derived Neuronal
Cells
Abnormalities in cognition-related pathways including CREB
(Teich et al., 2015), glutamate (Thomas, 1995; Lewerenz
and Maher, 2015), and voltage-gated ion channels (Shah
and Aizenman, 2014; Kumar P. et al., 2016) have been
associated with AD-related cognitive impairment. Microarray
analysis during the lytic phase of HSV-1-infected human
induced pluripotent stem cell-derived glutamatergic neurons
demonstrated significant changes in neuronal gene expression
involving CREB and glutamate signaling. After treatment
with antiviral drugs, during the quiescent phase of infection,
persistent changes in voltage-gated ion channel and glutamate
receptor gene expression were also noted (D’Aiuto et al.,
2015).

HSV-1 CO-LOCALIZES WITH Aβ WITHIN
AMYLOID PLAQUES

Wozniak et al. (2009b) found that HSV-1 DNA co-localizes
with Aβ within amyloid plaques from AD and elderly normal
postmortem brains. AD brains had a higher frequency of amyloid
plaques and significantly more plaque-associated viral DNA
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FIGURE 6 | HSV-1 DNA co-localizes with amyloid plaques. In situ PCR was
used to detect HSV-1 DNA in specimens from AD and elderly normal brains
(brown staining, A,C, respectively). In the same tissue specimens, amyloid
plaques were localized using thioflavin S (green staining, B,D). Note the strong
co-localization of HSV-1 DNA (brown staining) and amyloid plaques stained for
Aβ1–42 using immunohistochemistry (blue staining) (E). Scale bar = 50 µm.
Figure from Wozniak et al. (2009b). Reprinted with permission from John Wiley
and Sons.

compared to elderly normal brains. Thioflavin-S or Aβ1–42
labeled by immunohistochemistry identified amyloid plaques.
In the same tissue specimens, in situ PCR localized HSV-1
DNA within these plaques (Figure 6; Wozniak et al., 2009b).
This remarkable discovery may relate to findings by Cribbs
et al. (2000), demonstrating 67% peptide homology between
the HSV-1 envelope glycoprotein B (gB) and the carboxyl-
terminal region of Aβ1–42. In addition, synthetic HSV-1 gB
peptide fragments self-assemble into thioflavin-positive fibrils,
form β-pleated sheets with identical appearance to Aβ by
ultrastructural analysis, and accelerate in vitro formation of
Aβ fibrils, which were neurotoxic at doses similar to Aβ. The
authors describe the in vitro biophysical behavior of the HSV-1
gB fragment as ‘‘amyoidogenic’’, and suggest that interactions
between HSV-1 and Aβ may lead to gB seeding and Aβ plaque
formation (Cribbs et al., 2000). Proteomic studies indicate that
AD amyloid plaques and NFTs contain significant levels of
HSV-1 and immune-related proteins (Carter, 2011). In addition,
complement membrane attack complex is found in dystrophic
neurites and NFTs in the AD brain (McGeer et al., 1989).
Carter (2011) suggests that amyloid plaques are the end result
of immunologic warfare between host and HSV-1. Resultant
destruction of the virus is achieved at the cost of significant

complement-mediated neuronal loss. The above findings are
especially significant due to recent publications supporting
Aβ as an antimicrobial peptide (AMP) with antiviral activity
against HSV-1 as discussed below (Bourgade et al., 2015,
2016).

Aβ FUNCTIONS AS AN ANTIMICROBIAL
PEPTIDE (AMP)

AMPs are proteins that demonstrate potent antimicrobial
effects against pathogens including viruses, bacteria and
fungi (Izadpanah and Gallo, 2005). As part of the innate
immune system, they can kill microbes through various
mechanisms. The AMP known as eosinophil cationic protein
(ECP) can self-aggregate to entrap and kill Gram-negative
bacteria by agglutination (Torrent et al., 2012). Amyloid
proteins and several AMPs have comparable biophysical
characteristics including similar β-sheet structures and similar
abilities to form fibrils, insert into cell membranes, and form
channels toxic to cells (Kagan et al., 2012). Human LL-37
is a member of the cathelicidin group of AMPs, which
form linear α-helix structures with hydrophobic and cationic
domains. LL-37 has broad spectrum antimicrobial activity,
induces angiogenesis, and is a chemoattractant of neutrophils,
monocytes, and T cells (Izadpanah and Gallo, 2005). The
AMP human β-defensin-1 (hBD-1) peptide localizes to areas of
granulovacuolar degeneration within AD hippocampal neurons.
Increased expression of hBD-1 has been demonstrated in choroid
plexus brain samples fromAD subjects compared to age matched
controls (Williams et al., 2013).

Aβ Demonstrates Antimicrobial Activity
Against HSV-1 and Influenza A Virus
Aβ1–42 added to human neuronal-glial cell cultures inhibited
HSV-1–induced upregulation of host cell micro-RNA-146a
(miRNA-146a) levels, which are normally produced as an
immune response to the virus. Aβ also decreased HSV-1
infectivity and reduced HSV-1-related pathological morphology
in neuronal cells (Lukiw et al., 2010). Aβ1–42 and Aβ1–40
inhibit HSV-1 replication in fibroblasts, epithelial cells, and
neuronal cells when added simultaneously or 2 h prior to
HSV-1 infection. This Aβ-mediated anti-viral effect was not seen
when Aβ was added to the non-enveloped human adenovirus.
Experiments using a cell-free system with fluorescence detection
assays indicate that Aβ peptide interacts with the HSV-1
envelope extracellularly and interferes with viral attachment
and/or fusion to host cell membranes (Bourgade et al., 2015).
The authors suggest that these findings, along with the
shared peptide homology between Aβ and HSV-1 envelope
glycoprotein B (gB) (Cribbs et al., 2000), indicate that the
Aβ effect on HSV-1 replication may involve the insertion
of Aβ into the viral envelope, which prevents entry of
the virus into the host cell (Bourgade et al., 2015). In
co-culture experiments using neuroglioma and glioblastoma
cells, Aβ1–42 was produced by neuroglioma cells in response
to infection by HSV-1. Conditioned medium containing the
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Aβ1–42 provided protection against HSV-1 replication in
de novo neuronal cells exposed to the virus. Glioblastoma
cells in co-culture were seen to internalize Aβ1–42 and
produce cytokines IL-1β, TNF-α and IFN-α in response
to combined HSV-1 and Aβ exposure (Bourgade et al.,
2016).

Aβ also demonstrates AMP activity against H3N2 and
H1N1 strains of influenza A virus. Aβ interfered with viral
infectivity of epithelial cells and reduced viral replication, which
was demonstrated by quantitative PCR. Light transmission assays
and electron and confocal microscopy revealed Aβ-induced
aggregation of influenza viral particles. Aβ increased monocyte
phagocytosis and neutrophil uptake of the virus. There was
reduction in viral protein synthesis and production of IL-6 within
monocytes. Aβ1–42 demonstrated greater antiviral activity than
Aβ1–40 (White et al., 2014).

Aβ Antimicrobial Activity Against Bacteria
and Yeast
Aβ has been shown to be an AMP in vitro against eight
pathogens, including bacteria such as Escherichia coli,
Streptococcus pneumonia and Staphylococcus aureus, and
the fungus Candida albicans. Aβ demonstrates AMP activity
greater than or equal to that of LL-37 against most of these
pathogens. Whole brain homogenates from AD brains have
significantly higher antimicrobial activity compared to samples
from age-matched non-AD controls, an effect that correlates
with Aβ tissue levels (Soscia et al., 2010). Aβx−42 peptides of
different lengths agglutinated the bacterium Escherichia coli,
Enterococcus fecalis, Listeria monocytogenes, and Staphylococcus
aureus and the yeast C. albicans. Aβ1–42 exhibited AMP activity
against all microbes tested and killed up to 80% of pathogens
within 6 h of exposure (Spitzer et al., 2016).

Aβ expressed in 5XFAD transgenic mouse, nematode
Caenorhabditis elegans and cultured mammalian host cell
monolayer ADmodels demonstrates protection against infection
by Salmonella typhimurium compared to non-transgenic
controls. Reduced infection by Candida albicans was also seen in
transgenic nematode and transformed host cell models, which
overexpress Aβ. Cell culture experiments implicate soluble Aβ

oligomer binding to carbohydrates of the pathogen cell wall
mediated by an Aβ heparin-binding motif. Aβ reduced microbial
adhesion to host cells and entrapped microbes by Aβ fibril
formation and agglutination. Brain infection of transgenic mice
by Salmonella typhimurium resulted in Aβ deposition with
bacteria embedded in deposits of Aβ. Transgenic Aβ-expressing
mice had significantly improved clinical outcomes and survival
compared to non-transgenic mice after brain infection by
S. typhimurium. Aβ-expressing nematodes and cultured
transformed Aβ-expressing mammalian cells showed improved
survival after infection by S. typhimurium and Candida albicans
(Kumar D. K. et al., 2016).

Bourgade et al. (2016) hypothesize that Aβ peptides are
produced by neuronal cells under homeostatic conditions
to perform normal physiologic functions such as synaptic
plasticity and baseline antimicrobial defense. Overproduction
of Aβ occurs in response to episodes of HSV-1 reactivation

in the brain, as well as other CNS infections and pathological
insults. This leads to fibrillization of Aβ and formation of
amyloid plaques. CNS infection and Aβ deposition activate
microglia, resulting in cytokine overproduction and a
vicious cycle of neuronal damage and neurodegeneration
(Bourgade et al., 2016). The concept that Aβ functions as
an AMP is further substantiated by the presence of amyloid
plaques in other neurodegenerative diseases associated with
pathogens.

CEREBRAL AMYLOID PLAQUES IN
OTHER BRAIN INFECTIONS AND
INFECTION-RELATED DEMENTIAS

HIV patients dying between ages 30–69 have a significantly
increased prevalence of diffuse largely non-neuritic amyloid
plaques in brain samples from the frontal and temporal cortices
than age matched, non-HIV-infected controls (Esiri et al., 1998).
Another postmortem study has shown significantly increased
extracellular and intraneuronal cerebral Aβ plaques in AIDS
patients previously treated with highly active anti-retroviral
therapy (HART) compared to age and sex-matched controls who
did not have access to antiviral treatment. Plaques increased
with age in both groups. Nearly 50% of the AIDS brains in
the study were found to have Aβ deposition in the frontal
cortex. Mechanisms proposed by the authors to explain these
findings include the persistence of HIV in brain despite
treatment with HART, possible HART-related inhibition of
insulin degrading enzyme, and HART-related inhibition of
APP axonal transport (Green et al., 2005). Diffuse cerebral
Aβ plaques (Figure 7) are associated with HAND in subjects
who possess the APOE-ε4 allele (adjusted OR = 30.0), but
not in APOE-ε4-negative subjects (Soontornniyomkij et al.,
2012).

Cerebral amyloid plaques are seen in dementia patients
with chronic bacterial infections. C. pneumoniae-infected cells
identified in four AD postmortem brains co-localized with
senile amyloid plaques and NFTs identified by immunostaining

FIGURE 7 | Cerebral amyloid plaques containing Aβ in middle frontal cortex
samples from HIV-infected patients. Immunohistochemical staining with
anti-Aβ antibody demonstrates scattered focal plaques (A, arrows) and
widespread plaques (B) in the cortex. Scale bars = 500 µm. Figure from
Soontornniyomkij et al. (2012). Color version of figure from HHS Public Access
PMCID: PMC3576852. Reprinted with permission from Wolters Kluwer
Health, Inc.
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FIGURE 8 | Amyloid deposits containing Aβ in brain samples from neurosyphilis patients. (A) Cortical amyloid deposits from patients diagnosed with dementia due
to neurosyphilis showing positive immunoreaction with anti-Aβ 8–17 (6F/3D, DakoCytomation) antibody. (B) Aβ deposition resembling immature and mature plaques.
(C) Aβ deposits seen in the arterial wall of leptomeningeal vessels in the same patient as (A). Immunohistochemical analysis of Aβ was performed using the
avidin-biotine-peroxidase technique. Bar = 50 µm. Panels (A) and (C) were reproduced from Figure 2 of Miklossy et al. (2006b). Figure from Miklossy (2015).
Reprinted under the terms of the Creative Commons Attribution License (CC BY).

with monoclonal antibodies (Gérard et al., 2006). Evaluation
of postmortem brain samples from syphilis patients with the
confirmed diagnosis of general paresis caused by T. pallidum
revealed Aβ deposition with similar appearance to immature
and mature amyloid plaques found in AD (Figure 8; Miklossy
et al., 2006b; Miklossy, 2015). NFTs have also been found in
brains of syphilitic dementia patients (Miklossy et al., 2006b;
Miklossy, 2011b). Borrelia antigens and genes co-localized
with senile plaques and with NFTs in AD brains from
which B. burgdorferi was cultured. In addition, Borrelia
antigens were found to specifically immunolocalize with Aβ

(Miklossy et al., 2004). Bacterial peptidoglycan has been
found to co-localize with Aβ, senile plaques, and NFTs
using immunohistochemistry techniques in AD postmortem
brain specimens (Miklossy et al., 1996, 2004; Miklossy, 1998).
Studies indicate that spirochetes induce formation of amyloid
plaques and AD-like pathology. Infection of mammalian
neurons, astrocytes, microglial cells, and brain organotypic
cell aggregates in vitro by the spirochete Borrelia burgdorferi
sensu strictu results in the formation of amyloid plaques
with β-pleated sheet structure, tangle-like formations, and
AD-like cellular changes. Increases in levels of AβPP and
hyperphosphorylated tau proteins were detected by western blot
(Miklossy et al., 2006a). The synthetic peptide BH (9–10), which
corresponds to the β-hairpin segment of the B. burgdorferi
OspA protein, forms amyloid-like fibrils in vitro (Ohnishi et al.,
2000).

Prion protein (PrP) amyloid plaques are found in
postmortem brain samples from subjects diagnosed with
prion-related transmissible spongiform encephalopathies
(TSEs), including Creutzfeldt-Jakob disease (CJD), hereditary
Gerstmann-Straussler-Scheinker syndrome, kuru, and the
animal prion disease scrapie (Liberski, 1994). Aβ-containing
plaques have been identified in CJD (Barcikowska et al.,
1995; Debatin et al., 2008), with mixed CJD/AD found
in 2%–15% of studies involving brain bank cases. This
is particularly relevant because the wall-less bacterium
spiroplasma has been implicated in the pathogenesis of
CJD (Bastian, 2017). In addition, prion amyloid protein has
been separated from infectivity suggesting PrP aggregation may

be an innate immune response to infection (Miyazawa et al.,
2012).

EPIDEMIOLOGIC STUDIES ASSOCIATING
HSV-1 INFECTION WITH AD AND
COGNITIVE IMPAIRMENT

Studies of infectious burden (IB) use a composite measure
of serum antibody levels to assess prior exposure to several
pathogens. HSV-1 infection as part of IB contributes to the
associated increased risk for development of MCI and AD in
many of these studies. Serum IgG antibody titers toHerpesviridae
HSV-1, HSV-2, CMV, as well as Chlamydia pneumoniae and
Mycoplasma pneumoniae bacteria were measured in 383 elderly
patients with cardiovascular disease. Subjects having three
positive viral titers were found to have a 2.3 times higher risk
for cognitive impairment after 12 months. Bacterial IB did not
associate with cognitive impairment (Strandberg et al., 2003).
Katan et al. (2013) studied 1625 subjects with seropositive
evidence for exposure to HSV-1, HSV-2, CMV, Chlamydia
pneumoniae and Helicobacter pylori, and found that IB was
associated with cognitive impairment. The findings appeared
to be determined primarily by viral IB (Katan et al., 2013;
Strandberg and Aiello, 2013). Gale et al. (2016) studied
5662 young to middle-aged adults, and found that subjects
with IgG seropositivity to HSV-1, CMV, and hepatitis A had
the most significant cognitive decline compared to subjects
seropositive to HSV-2, hepatitis B, hepatitis C, toxoplasmosis and
toxocariasis. Bu et al. (2015) demonstrated that higher viral IB
(HSV-1 and CMV), bacterial IB (B. burgdorferi, C. pneumoniae
and H. pylori), and total IB independently associated with AD
after adjusting for APOE genotype, age, gender, education and
other comorbidities. Subjects with higher IB had higher levels of
serum Aβ and higher levels of serum proinflammatory cytokines
including IFN-γ, TNF-α, IL-1β and IL-6. AD patients with
higher IB also demonstrated higher serum Aβ and cytokine
levels.

HSV-1 reactivation as measured by the presence of baseline
anti-HSV-1 immunoglobulin M (IgM) antibodies is associated
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with increased risk of developing AD. In one study, 512 elderly
subjects initially without dementia were followed for 14 years.
Baseline positive HSV-1 IgM seropositivity increased the risk of
developing AD by a factor of 2.55 (Letenneur et al., 2008). Similar
results were obtained in study by Lövheim et al. (2015a) who
followed 3422 subjects for average follow up time of 11.3 years.
Baseline HSV-1 IgM seropositivity increased AD risk by a factor
of 1.95. Kobayashi et al. (2013) used anti-HSV-1 IgG antibody
avidity index, a measure of the strength to which IgG attaches
to viral antigen, as an indicator of HSV-1 reactivation in a study
involving patients with amnestic MCI (aMCI) and AD. Patients
with aMCI had higher HSV-1 IgG antibody avidity index levels
than AD patients and healthy controls. The results indicate that
HSV-1 reactivation occurs more often in the aMCI group and
suggest that HSV-1 reactivation contributes to development of
aMCI (Kobayashi et al., 2013).

Lifelong infection with HSV-1, as measured by the presence
of anti-HSV IgG antibodies, is associated with increased risk for
developing AD. A longitudinal study involving 360 patients with
average age at baseline 61.2 years followed for 6.6 years or longer
demonstrated that baseline positive HSV-1 IgG antibody levels
increased the risk for developing AD by a factor of 2.25 (Lövheim
et al., 2015b). Mancuso et al. (2014) found that a strong humoral
response in AD patients, as indicated by higher HSV-1 IgG titers,
was associated with preservation of orbitofrontal and bilateral
temporal cortical gray matter volumes measured on brain MRI.
Agostini et al. (2016) corroborated the protective nature of a
higher HSV-1 humoral response by finding significantly higher
baseline HSV-1 IgG antibody titers and antibody avidity in
aMCI-non-converters compared to aMCI-converters. Higher
HSV-1 antibody levels were also associated with better-preserved
left hippocampus and amygdala cortical volumes as measured by
brain MRI.

HSV-1 IgG seropositivity is also associated with increased
risk of cognitive impairment in younger healthy subjects ages
17–21 (Fruchter et al., 2015) and across all age groups (Tarter
et al., 2014) when compared to HSV-1 IgG seronegative
controls. Various measures of cognition are impaired in several
studies involving middle-aged HSV-1 IgG positive schizophrenic
patients compared to schizophrenic HSV-1 IgG negative controls
(Dickerson et al., 2003, 2012; Shirts et al., 2008; Schretlen
et al., 2010; Yolken et al., 2011; Prasad et al., 2012). HSV-1
infection does not associate with increased risk for schizophrenia;
however, exposure to the virus does associate with impaired
cognition in this cohort of neuropsychiatric patients (Schretlen
et al., 2010; Prasad et al., 2012). HSV-1 seropositivity also
associates with decreased gray matter volume on MRI in
the prefrontal cortex, anterior cingulate cortex, and areas of
cerebellum in these patients (Prasad et al., 2007; Schretlen et al.,
2010).

A recent meta-analysis of research publications involving
Herpesviridae and AD evaluated eighteen HSV-1 related studies.
Combined results from studies measuring HSV-1 antibody
serology or HSV-1 DNA from brain showed that infection with
HSV-1 alone (OR = 1.38) and in combination with the APOE-ε4
allele (OR = 2.25) significantly increased the risk of AD (Steel and
Eslick, 2015).

EVIDENCE FOR HSV-1 REACTIVATION IN
THE BRAIN

Methodology is lacking to directly detect the hypothesized
periodic limited subclinical reactivation of latent HSV-1
in the AD brain (Itzhaki, 2014, 2017). However, several
studies indirectly support the hypothesis. HSV-1 reactivation
as measured by the presence of baseline anti-HSV-1 IgM
antibodies is associated with increased risk of developing AD
(Letenneur et al., 2008; Lövheim et al., 2015a). Saldanha et al.
(1986) found HSV-1 DNA sequences at levels detectable by
in situ hybridization—evidence for reactivation—in postmortem
brain samples from immunosuppressed leukemic patients with
serological evidence of past HSV-1 infection. HSV-1 DNA was
not found in brains from non-immunosuppressed and HSV-1
seronegative patients. HSV-1 DNA and antigens were identified
in the cytoplasm of cortical neurons from three patients with
familial AD indicating viral replication likely due to reactivation
of the virus (Mori et al., 2004). Klapper et al. (1984) suggests an
underdiagnosed subacute form of HSE. Mild forms of HSE have
been described with less severe symptoms and better prognosis
(Klapper et al., 1984; Marton et al., 1995).

HSV-1 reactivation from latency in brains of immune
deficient mice has been demonstrated in vivo (Ramakrishna
et al., 2015). HSV-1 latently infected neuronal cells from mouse
brains were shown to reactivate by modified ex-vivo culture
methods (Chen et al., 2006; Yao et al., 2014). Reactivation of
the virus was also demonstrated in latently infected brain tissue
from tree shrews using similar explant culture techniques (Li
et al., 2016). Neuronal ICP4 viral antigen expression—indicating
HSV-1 reactivation from latency—was associated with molecular
indicators of neuroinflammation and early neurodegeneration
in the cerebral cortices of asymptomatic HSV-1 infected mice
(Martin et al., 2014).

HSV-1 REACTIVATION IN THE
PERIPHERAL NERVOUS SYSTEM

Reactivation of HSV-1 does occur in the peripheral nervous
system, with studies suggesting that not all virions within
groups of neurons are quiescent during latency. Asymptomatic
HSV-1 reactivation and shedding in human tears and saliva
occurred at a high rate (98%) in HSV seropositive adults
without signs of ocular herpetic disease during a 30-day
study (Kaufman et al., 2005). Elevated levels of cytokines
and chemokines are found within latently infected human
and mouse TG (Cantin et al., 1995; Halford et al., 1996;
Held and Derfuss, 2011). Analysis by in situ hybridization
within HSV-1-infected mouse TG during latency revealed viral
DNA, viral transcripts, and viral proteins within rare neurons
without detection of infectious virions. This process occurred
in one neuron per 10 latently infected mouse trigeminal
ganglia, which is equivalent to about one neuron expressing
high-level productive cycle viral genes in each ganglion every
10 days. The authors suggest that the resulting continuous
antigenic stimulus promotes an immune response characterized
by focal white cell infiltrates commonly seen surrounding
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latently infected TG (Feldman et al., 2002). Margolis et al.
(2007) found viral protein expression, positive HSV-1 antigen
staining, and infectious virus in 6% of ‘‘latently’’ infected murine
trigeminal ganglia. Immunohistochemical staining revealed
associated neuronal loss and viral spreading to adjacent cells.
Thus, in a mouse TG model, HSV-1 continuously reactivates
as a ‘‘localized incomplete or low level lytic infection’’. Active
infection in a small percentage of neurons at any given
time results in a persistent immune response (Conrady et al.,
2010).

RATIONALE FOR AN ANTIVIRAL AD
CLINICAL TRIAL

The antiviral medication acyclovir is a nucleoside analog, which
is activated through phosphorylation by viral thymidine kinase
and cellular kinases. The resultant acyclo-guanosine triphosphate
interferes with HSV-1 DNA replication by incorporating
into viral DNA and inducing premature chain termination
(Elion, 1982). Treatment with acyclovir significantly reduced
T cell expression of IFN-γ mRNA and TNF-α mRNA in
TG from mice latently infected with HSV-1 compared to
untreated latently infected controls. The authors suggest that
this is likely due to decreased viral replication and antigen
production (Halford et al., 1997). Sawtell et al. (1999) used
a murine hyperthermic stress (HS) model of in vivo HSV-1
reactivation to show that acyclovir treatment blocked the
production of infectious virus within latently infected mouse
ganglia by >90%. Thus, acyclovir inhibits viral replication
during reactivation with the potential for decrease in viral
spreading.

Treatment of HSV-1-infected Vero cells with acyclovir
resulted in reductions in HSV-1-induced Aβ accumulation
by 70% and inhibition of abnormal tau phosphorylation by
nearly 100%, with results statistically significant compared to
infected untreated cells. Acyclovir inhibited viral replication
as shown by significant reductions in viral protein levels
(Figures 9–11; Wozniak et al., 2011). Acyclovir reduced Aβ

production by decreasing viral spreading, while phosphorylated
tau reduction was attributable to antiviral inhibition of HSV-1
DNA replication. The antiviral medications penciclovir and
foscarnet also reduced Aβ and phosphorylated tau accumulation
in infected cell cultures. Antiviral medications were seen
to reduce HSV-1-induced increases in β-secretase, nicastrin
(a component of the γ-secretase complex), PKA, and GSK3β,
which are enzymes or enzyme components involved in the
production of Aβ and/or phosphorylation of tau proteins
(Wozniak et al., 2011).

Acyclovir and valacyclovir, the better-absorbed prodrug
of acyclovir, are commonly prescribed for the treatment of
HSV infections (Smith et al., 2010). After oral administration,
valacyclovir is rapidly hydrolyzed to acyclovir by first pass
metabolism in the intestine and liver. Subsequently, acyclovir
crosses the BBB attaining CSF levels required to treat HSV
infections in the CNS (Lycke et al., 2003; Smith et al., 2010).
Herpes simplex encephalitis has been successfully treated with
valacyclovir (Pouplin et al., 2011). Chronic treatment with

FIGURE 9 | Acyclovir reduces Aβ accumulation in HSV-1-infected Vero cells.
Vero cells were infected with HSV-1 SC16 at a MOI of 1 for 16 h. Cells were
treated with 0 µM, 50 µM, 100 µM or 200 µM acyclovir. After fixation,
immunocytochemistry was used to test the slides for Aβ accumulation.
Acyclovir significantly reduced HSV-1-induced Aβ accumulation. Scale
bar = 50 µm. Figure from Wozniak et al. (2011). Reprinted under the terms of
the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0).

acyclovir and valacyclovir reduces the number of HSV outbreaks
in patients with recurrent genital herpes (Goldberg et al., 1993;
Tyring et al., 2002). Studies have shown that prophylactic
acyclovir administration can decrease asymptomatic viral
shedding in humans (Sawtell et al., 1999). Valacyclovir is also
used for HSV suppression in immunocompromised patients.
Sensitivity studies indicate a low rate of HSV resistance to
acyclovir (<0.5%) when used in immunocompetent patients.
These medications have demonstrated safety during long-term
use with a mild side effect profile (Tyring et al., 2002). Reversible
neuropsychiatric symptoms have been reported infrequently
during treatment and are usually associated with pre-existing
renal insufficiency (Smith et al., 2010). Patients with abnormal
renal function require dose adjustments with these medications
(Martinez-Diaz and Hsia, 2011). Twenty-nine multiple sclerosis
patients treated with valacyclovir at a dose of 3 grams per day
for 2 years had no discontinuation of the medication due to side
effects in a clinical trial by Friedman et al. (2005).
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FIGURE 10 | Acyclovir reduces abnormal tau phosphorylation in
HSV-1-infected Vero cells. Vero cells were infected with HSV-1 SC16 at a MOI
of 1 for 16 h. Cells were treated with 0 µM, 50 µM, 100 µM or 200 µM
acyclovir. After fixation, immunocytochemistry was used to test the slides for
abnormal tau phosphorylation. Acyclovir significantly reduced AT100 staining,
indicating inhibition of HSV-1-induced abnormal tau phosphorylation. Scale
bar = 50 µm. Figure from Wozniak et al. (2011). Reprinted under the terms of
the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0).

Interestingly, a randomized controlled clinical trial involving
24 HSV-1 IgG seropositive schizophrenia patients treated with
valacyclovir for 18 weeks showed significant improvement in
verbal memory, working memory, and visual object learning
when compared to a non-treated HSV-1 IgG seropositive
schizophrenia control group. Both groups were taking
anti-psychotic medication. While psychotic symptoms did
not improve, this study did demonstrate improved cognition in
HSV-1-infected neuropsychiatric patients treated with antiviral
medication (Prasad et al., 2013).

CONCLUSION

Animal and in vitro studies reveal numerous mechanisms
whereby HSV-1 is able to induce cellular processes involved
in AD pathogenesis, including neuronal production of Aβ,
hyperphosphorylation of tau protein, dysregulation of calcium

FIGURE 11 | Quantification of HSV-1 proteins, β-amyloid and phosphorylated
tau proteins in HSV-1-infected Vero cells following treatment with acyclovir.
Vero cells were infected with HSV-1 SC16 at a MOI of 1 for 16 h. Cells were
treated with 0 µM, 50 µM, 100 µM or 200 µM acyclovir. After fixation,
immunocytochemistry was used to test the slides for HSV-1 proteins, Aβ

accumulation, and abnormal tau phosphorylation. Values are presented as the
percentage of staining detected when no acyclovir is used. Statistically
significant decreases in staining for HSV-1 proteins (A) and abnormal tau
phosphorylation (C) are seen with all acyclovir concentrations tested
compared to cells infected but not treated with acyclovir (p < 0.0001 in both
cases). Statistically significant decreases in Aβ staining (B) are seen with
acyclovir concentrations of 100 µM and 200 µM (p < 0.0001). Figure from
Wozniak et al. (2011). Reprinted under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0).

homeostasis, and impaired autophagy. In addition, the virus
causes neuroinflammation, oxidative stress, mitochondrial
damage, synaptic dysfunction and neuronal apoptosis.
Pathogenic effects by HSV-1 replicate key aspects of AD
pathophysiology.

HSV-1 interacts with AD-related genes and proteins to
induce AD pathogenesis. Carriage of APOE-ε4 increases HSV-1
viral load in the brain (Burgos et al., 2006) and increases the
innate immune response (Gale et al., 2014). Additional AD
susceptibility genes, including CR1, CLU, PICALM and NC-2,
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are involved in the HSV-1 lifecycle. Polymorphisms in these
genes may affect susceptibility to brain infection by herpes
viruses, triggering AD-related pathology (Porcellini et al., 2010;
Licastro et al., 2011). Infection by HSV-1 alters neuronal gene
expression for neprilysin and modulates enzyme activity for
neprilysin and GSK3β—key enzymes involved in Aβ deposition
and hyperphosphorylation of tau protein (Civitelli et al., 2015).
HSV-1 infection of neuronal cells also alters expression of genes
affecting cognition-related pathways, including CREB, glutamate
receptor signaling, and voltage-gated ion channels (D’Aiuto
et al., 2015). Host immune response to HSV-1 by CH25H
may promote Aβ deposition (Itzhaki et al., 2016) as well as
AD-related atherosclerosis and vascular occlusion (Lathe et al.,
2014).

Evidence supporting Aβ as an AMP against viral, bacterial
and fungal pathogens (Lukiw et al., 2010; Soscia et al., 2010;
Bourgade et al., 2015) may change the paradigm regarding AD
pathophysiology. In the case of HSV-1, research data suggests
that Aβ interferes with viral attachment or fusion to neuronal
cells, which inhibits viral replication (Bourgade et al., 2015).
Increased neuronal production of Aβ in response to HSV-1 and
other infections and insults in the brain could tip the balance
from lower, homeostatic Aβ levels towards Aβ accumulation and
plaque formation in individuals genetically susceptible to AD
(Bourgade et al., 2016).

Human and animal studies support the hypothesized
reactivation of latent HSV-1 in the AD brain. Localized
subacute reactivation of HSV-1 in the brain is consistent
with the slowly progressive course in sporadic AD. The
resultant damage from low level viral spread, antigenic

stimulation, and innate immune response provides the
necessary stimulus to initiate and perpetuate uncontrolled
neuroinflammation and neurodegeneration, as proposed by
Gao and Hong (2008). Peripheral HSV-1 reactivation and
immune response may also contribute to adaptive immune
system involvement in AD pathogenesis as proposed by Lynch
(2014).

An antiviral clinical trial using valacyclovir in HSV-1
IgG seropositive patients with MCI or AD, especially
APOE-ε4 carriers, has been proposed as part of a comprehensive
antimicrobial AD research strategy (Itzhaki et al., 2016). The
medication acts on HSV-1-infected cells only (Wozniak et al.,
2011), exhibits a low side effect profile, and demonstrates safety
with chronic use (Tyring et al., 2002). By halting the direct
and indirect toxic effects of HSV-1 on neuronal cells, antiviral
medication may play a role in the prevention and treatment
of AD. Furthermore, a mixed glycoprotein HSV-1 vaccine has
been shown to be effective in reducing HSV-1 in mouse brain
after peripheral infection (Lin et al., 2001). Although not yet
developed, a human HSV-1 vaccine may prove beneficial in the
prevention of AD by reducing primary infection and reactivation
of the virus.
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