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Parkinson’s disease (PD) shows high heterogeneity with regard to the underlying

molecular pathogenesis involving multiple pathways and mechanisms. Diagnosis is still

challenging and rests entirely on clinical features. Thus, there is an urgent need for robust

diagnostic biofluid markers. Untargeted metabolomics allows establishing low-molecular

compound biomarkers in a wide range of complex diseases by the measurement of

various molecular classes in biofluids such as blood plasma, serum, and cerebrospinal

fluid (CSF). Here, we applied untargeted high-resolution mass spectrometry to determine

plasma and CSF metabolite profiles. We semiquantitatively determined small-molecule

levels (≤1.5 kDa) in the plasma and CSF from early PD patients (disease duration 0–4

years; n = 80 and 40, respectively), and sex- and age-matched controls (n = 76 and 38,

respectively). We performed statistical analyses utilizing partial least square and random

forest analysis with a 70/30 training and testing split approach, leading to the identification

of 20 promising plasma and 14 CSFmetabolites. Thesemetabolites differentiated the test

set with an AUC of 0.8 (plasma) and 0.9 (CSF). Characteristics of the metabolites indicate

perturbations in the glycerophospholipid, sphingolipid, and amino acid metabolism in

PD, which underscores the high power of metabolomic approaches. Further studies will

enable to develop a potential metabolite-based biomarker panel specific for PD.

Keywords: biomarker, untargeted metabolomics, neurodegeneration, plasma, CSF, machine learning

INTRODUCTION

PD is the second most common neurodegenerative disorder after Alzheimer’s disease (AD) and
the most common form of neurodegenerative movement disorders with about 5 million affected
worldwide (Dorsey et al., 2007). The disease is primarily caused by a progressive degeneration of
dopaminergic neurons, e.g., in the substantia nigra pars compacta (Poewe et al., 2017), leading to
various motor symptoms such as bradykinesia, rigidity, rest tremor, and postural instability (Lang
and Lozano, 1998; Diaz and Waters, 2009; Xia and Mao, 2012). Non-motor symptoms, such as
loss of sense of smell, sleep disturbances, constipation, cognitive deficits, and depression, are also
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regularly observed. Clinical diagnosis is based on the detection
of a combination of cardinal motor symptoms including
bradykinesia and rigidity (Postuma et al., 2015).

As current diagnostic approaches still lead to a high
proportion of misdiagnoses, in particular, at the early disease
stages (Poewe et al., 2017), biochemical markers that inform on
disease PD pathogenesis are needed. Preferably, these biomarkers
should be accessible in non- or low-invasive samples such as
blood, saliva, cerebrospinal fluid (CSF), or urine (Wang et al.,
2013), and reflect the underlying molecular mechanisms of
the disease. PD pathogenesis involves multiple pathways and
mechanisms, such as alpha-synuclein- (Spillantini et al., 1998),
tau (Lei et al., 2010), and amyloid beta (Gomperts et al.,
2008) misfolding, mitochondrial dysfunction (Schapira, 2008),
oxidative stress (Blesa et al., 2015), calcium dyshomeostasis
(Rivero-Ríos et al., 2014), axonal transport deficits (Lamberts
et al., 2015), and neuroinflammation (Wang et al., 2015). Using
the above-mentioned biofluids, researchers have begun to adapt
non-hypothesis-driven system biology “omics” approaches, such
as metabolomics, to investigate novel biomarkers that provide
fingerprints linked to PD diagnosis and molecular pathogenesis.
Previous studies point to involvement of various pathways, such
as glutathione- (Bogdanov et al., 2008; Lewitt et al., 2013; Trupp
et al., 2014), lipid- (Garcia-Sanz et al., 2017), purine- (Bogdanov
et al., 2008; Johansen et al., 2009; Luan et al., 2015a,b; LeWitt
et al., 2017), energy- (Ahmed et al., 2009; Trupp et al., 2014;
Ohman and Forsgren, 2015), polyamine- (Roede et al., 2013),
tryptophane/kynurenine- (Lewitt et al., 2013; Trupp et al., 2014;
Luan et al., 2015a,b; Hatano et al., 2016; Havelund et al., 2017),
fatty acid- and beta oxidation- (Trupp et al., 2014; Wuolikainen
et al., 2016; Burte et al., 2017; LeWitt et al., 2017; Saiki et al., 2017),
phenylalanine- (Hatano et al., 2016), and histidine (Burte et al.,
2017) metabolisms. Metabolomics based studies on potential
markers for early PD diagnosis could identify increased levels
of fructose, mannose, und threonic acid and decreased levels
of dehydroascorbic acid in PD patients (Trezzi et al., 2017). A
detailed list of the current state of metabolomics research in PD
can be found in Supplementary Table 3.

Metabolomics is a rapidly evolving high-throughput
technology that allows measuring the entire complement of
metabolites, typically in a mass range of 50–1,700 Da, in complex
samples such as biological fluids or tissues (Patti et al., 2012).
High-resolution mass spectrometry (HRMS) in combination
with liquid chromatography (LC) enables simultaneous semi-
quantitative measurements of various molecular species such as
amino acids, nucleotides, carbohydrates, peptides, and various
lipids. Therefore, metabolomics is a suitable technology to
obtain a comprehensive overview of the functional state of
the organism (Zhou et al., 2012; Want et al., 2013; Contrepois
et al., 2015; Ivanisevic and Thomas, 2018) by reflecting the
complex interaction of genes, proteins, and the surroundings.
Metabolome measurement informs about the complex network
of metabolic interactions that collectively define a phenotypic
state (Ravasz et al., 2002; Michell et al., 2008).

By analyzing blood plasma and CSF using HRMS
metabolomics (Hatano et al., 2016; Sanyal et al., 2016), our
study set out to discover metabolic profiles that allow the

differentiation of PD from control state and to gain insight into
the molecular pathogenesis of the disease. Blood plasma and
CSF were used to investigate whether findings can be translated
from one matrix to the other (CSF to plasma) and therefore
increasing the possibility of moving to a prodromal investigation
of PD. By utilizing machine learning algorithms, such as partial
least square (PLS) (Land et al., 2011) and tree-based ensemble
random forest (RF) approaches (Breiman, 2001), we identified a
panel of 20 metabolites in plasma and 14 metabolites in CSF that
enabled us to distinguish PD from controls with high accuracy.

MATERIALS AND METHODS

Patient Recruitment and Diagnosis
PD diagnosis was based on the UK Brain Bank Society’s criteria
for Parkinson’s disease (Hughes et al., 1992). All controls
were thoroughly assessed as having no neurological disease. To
represent a homogeneous as possible cohort with very early
disease state (biomaterial withdrawal 0–4 years after disease
diagnosis), only patients with akinetic-rigid and equivalent
subtype were included. All participants underwent a clinical
assessment and provided plasma and a subcohort provided
CSF samples in the course of clinical routine assessment and
prospective studies. These samples were stored in the local
biobank of the Neurological Department of the University
Medical Center Tübingen (see below). All participants provided
written informed consent and the study was approved by the local
ethical board. The main demographic and clinical features of the
cohorts are summarized in Table 1. Note that the cohorts were
well balanced with regard to age and gender frequency. All PD
patients included in this study were tested negative for the most
frequent known pathogenic mutations involved in PD (LRRK2
G2019S, GBA L444P, and N370S) and none of the patients were
dyskinetic (early disease stage).

TABLE 1 | Demographic and clinical features of patients with Parkinson’s disease

and controls.

Plasma CSF

PD Controls PD Controls

Males/Females [N] 54/26 48/28 24/16 25/12

Age [y], median (IQR) 66 (12) 65 (17) 67 (14) 66 (14)

Disease duration [y],

median

3 (2) / 3 (1) /

LEDD, median (IQR) 208 (317) / 160 (353) /

HY, median (range) 2 (1–4) / 2 (1–4) /

MMSE, median (IQR) 29 (2) 30 (1) 29 (3) 30 (1)

MoCA, median (IQR) 27 (4) 28 (3) 27 (4) 28 (3)

UPDRS (3), median (IQR) 21 (13) 0 (2) 23 (15) 0 (1)

BDI, median (IQR) 8 (9) 2 (4) 7 (5) 2 (4)

PD, Parkinson’s disease; IQR, interquartile range (Q3–Q1); LEDD, L-Dopa equivalent daily

dose; HY, Hoehn and Yahr scale; MMSE, Mini Mental State Examination; MoCA, Montreal

Cognitive Assessment; UPDRS, Unified Parkinson’s Disease Rating Scale; BDI, Beck

Depression Inventory.
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Sample Collection, Storage, and
Preparation
For this study, we obtained plasma samples from 80 PD
patients and 76 sex- and gender-matched controls, and CSF
samples from 40 PD patients and 37 sex- and gender-matched
controls. The biobank of the Neurological Department of
the University Medical Center Tübingen fulfills the highest
international standards regarding sample collection, processing
and storage (Maetzler et al., 2011; Reijs et al., 2015). Briefly,
samples were collected after overnight fasting between 8:00 and
11:00 am. Peripheral blood was collected in S-Monovette R© 9ml,
K3 EDTA, 92 × 16mm test tubes (Sarstedt, 02.1066.001) and
centrifuged for 10min at 2,000× g at 4◦C. CSF was collected and
centrifuged for 10min at 2,000 × g at room temperature. The
supernatants were aliquoted and stored at −80◦C until further
analysis. The complete processing from sample withdrawal to
storage did not exceed 90min. All samples were thawed for the
first time at the site of investigation and directly processed on ice
within 2 h. Metabolites were extracted using 90%MeOH and10%
water spiked with internal standards with constant shaking for
15min at 37◦C (1000 rpm) followed by centrifugation to remove
the precipitate and the supernatant transferred into LC/MS
vials.

LC/MS and MS/MS Analysis
Modified hydrophilic interaction chromatography (pHILIC)
was employed in combination with HRMS. Samples were
pseudonymised twice and third party concealment of the origin
of respective specimens (controls or PD) was achieved by using
uniquely coded vials. Samples were randomized on an Agilent
1290 UHPLC system (Agilent, Santa Clara, USA) with a ZIC-
pHILIC column (10 cm × 2.1mm, 3µm, Sequant, Merck)
coupled to a high-resolution 6540 QTOF/MS detector (Agilent,
Santa Clara, USA) operated in positive ESI mode in a detection
range of 50–1700 m/z at 2 GHz in extended dynamic range. The
LC solvent consisted of (A) 95% 20mM ammonium carbonate
with 5% acentonitrile pH 9 and (B) 95% acetonitrile with 5%
20mM ammonium carbonate with a multi-step gradient with
5% B from 0–1min, then to 35% B at 8.5min, to 95% B at
9.5min kept constant until 12min, to 5% B at 12.01min and
washing until 15min with 5% B. The flow rate was kept constant
at 300 µl/min. The total run time was 15min, 1 µl of plasma
sample, and 2 µl of CSF sample were injected and the column
heated to 30◦C. The DualAJS ESI source was set to the following
parameters: gas temperature 200◦C, drying gas 8 l/min, nebulizer
35 psi, sheath gas temp: 350◦C, sheath gas flow 11 l/min, VCAp
3.5 kV and nozzle voltage of 0V. Online calibration of the
instrument was performed throughout the data acquisition using
the Agilent ESI-TOF Reference Mass Solution Kit. We acquired
MS/MS spectra in positive and negative ionization modes.
Analyte stability, signal reproducibly, and chromatographic
peaks were monitored by biological quality controls, which were
analyzed periodically throughout the sample batches.

Metabolomics Data Analysis
Raw data were converted to mzXML and chromatogram peaks
extracted with XCMS (Smith et al., 2006), which were optimized

by using the IPO R-package (Libiseller et al., 2015). Mzmatch.R
was used for peak filtering based on minimum detectable
intensity (2000), peak shape filtering (codadw > 0.9) and
for the annotation of related peaks (Scheltema et al., 2011).
Missing peaks ≤10% were computed using Bayesian PCA based
estimation measures (Oba et al., 2003). Additional filtering was
performed by excluding peaks with lowermedian peak intensities
per group in biological samples compared to blanks (extraction
solvent only). The remaining data was normalized based on
multiple internal standards applying NOMIS (Sysi-Aho et al.,
2007) and CCMN (Redestig et al., 2009) normalization followed
by mean total ion chromatogram (TIC) normalization. IDEOM
software was used (http://mzmatch.sourceforge.net/ideom.php)
(Creek et al., 2012) to eliminate noise and artifacts and for
putative peak annotation by exact mass within± 10 ppm against
the Metabolomic Discoveries in-house metabolite library in
positive ESI mode. Retention time prediction was applied (Creek
et al., 2011) to aidmetabolite annotation and identities confirmed
by available authentic standards (validation level 1). MS/MS
spectra werematched against online databases such asMetlin and
MassBank (validation level 2) or against in silico fragmentation
spectra (validation level 3) retrieved from Metfrag (Ruttkies
et al., 2016), CFM-ID (Allen et al., 2014) and/or CSI:FingerID
(Dührkop et al., 2015) with precursor mass accuracy of 20 ppm
and fragment accuracy of 0.01 Da. Semi-quantitative metabolite
intensities were calculated using the raw peak height.

Statistical Analysis
From the initial sample set of 80 plasma and 40 PD CSFs,
and 76 plasma and 37 control CSF samples, outlier samples
were identified using ROBPCA (Hubert et al., 2005) by
defining the sample distances within the orthogonal to the
projection plane. As a consequence, in plasma, 10 outliers
(6.4% of all plasma samples; seven controls, five males, two
females; three male PD patients) were removed from the
initial dataset (Supplementary Figure 1). In CSF, one female
control and one male PD patient were removed (2.6% of all
CSF samples). Of note, study participants from whom samples
have been drawn, did not show any other specific diseases
and were not differently treated than the remaining cohorts.
A potential L-Dopa medication bias was addressed by linear
regression of L-Dopa dose/response relationships and measured
metabolite levels. Age correction was performed using linear
age/metabolite level normalization including PD and controls.
In detail, linear regression based on the dependency of age and
metabolite level was applied. Metabolites showing a significant
correlation, e.g., slope (p ≤ 0.05), were normalized to slope
= 0. Potential gender bias was corrected by normalizing to
equal mean metabolite levels in males and females including
all PD and control samples. Interactions between age, gender,
metabolite level and L-Dopa dosage were found not to be
significant (ANOVA, p > 0.05). PLSs, as used in this study,
reduces the set of metabolites to a smaller set of uncorrelated
components with maximal co-variance to the target variable(s)
and performs least squares regression on these (minimization of
the sum of squared errors). This supervised approach combines
features of principal component analysis and multiple linear
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regressions to determine the most discriminatory metabolites
between different classes, here PD and control subjects. The
second approach used in this study, Random Forest (RF), is
a tree-based approach, which trains multiple decision trees
on bootstrap sample derived from the original dataset with
subsequent performance evaluation on the left out samples.
The predictions of all trees are then combined via majority
vote. In RF, the frequency at which individual variables
(metabolites) are used in the individual trees can be interpreted
as their relevance in the decision process. Ten times 10-fold
cross validated PLS and RF models were built using caret R
package (Kuhn, 2008). First, the full data set was randomly
split into 70% of samples for model training and 30% of
samples for model testing for the plasma and CSF cohort,
respectively.

For this sample selection, the RF model was tuned (mtry
tuning, with lowest out of bag error) by building 1,000 trees
using the random forest R package (Liaw and Wiener, 2002).
Initial PLS models were built using a maximum number of 20
components to determine the maximum number of components
needed to achieve the largest Area Under the ROC Curve
(AUC-ROC). To compare the performance (based on model
training AUC-ROC) of the cross-validated PLS and RF models,
the 70/30 training and testing split was repeated 200 times,
allowing also the assessment of model robustness. For the final
feature selection, ranked scaled variables in the projection (VIP)
scores of the top 100 metabolites were plotted and a selection
threshold was established based on the point in the resulting
curve where the slope flattens. These metabolites were used
to train the final cross-validated PLS and RF models, which
were tested with the remaining (single split) 30% of blinded
samples in plasma and CSF, respectively. Extracted informative
metabolites from the best-performing model (either PLS or RF)
were considered for further analysis. To test, whether all of
the selected metabolites were needed to achieve the highest
AUC and accuracy, PLS Monte-Carlo cross validation using
balanced subsampling was performed on the selected metabolites
in plasma and CSF. In each cross-validation, two third of the
samples were used to evaluate the metabolite importance, the top
metabolites were then used to build a classification model, which
is validated on one third of the samples that were left out. These
calculations were carried out utilizing MetaboAnalyst (Xia et al.,
2015).

Normal distribution of the selected metabolites was tested
utilizing the Shapiro-Wilks test (α = 0.05) (Royston, 1995) and
metabolites compared between cases (PD vs. controls) using a
two-sided Welch’s t-test or Wilcoxon-Cox test. P-values were
corrected for multiple testing using Benjamini and Hochberg
(BH) false discovery rate (FDR) adjustment (Benjamini and
Hochberg, 1995). Univariate AUC measures and 95% confidence
intervals (CI) were calculated for the selected metabolites
using 500 bootstrappings via MetaboAnalyst (Xia et al., 2015).
Significant levels in MetaboAnalyst pathway analysis were
based on hypergeometric tests and the pathway impact values
determined by relative-betweeness centrality (Xia et al., 2015).
For a detailed illustration of the workflow of this study see
Figure 1A.

RESULTS

Plasma and CSF Metabolites Distinguish
PD Patients From Controls
Overall, 2,130 and 1,798 peaks were present in the plasma
and CSF sample sets, respectively. Successive noise filtering
and putative peak annotation resulted in the nomination
of 334 metabolites in plasma and 302 in CSF, with most
metabolites (171) detected in both compartments (Figure 1B,
Supplementary Table 1) from various metabolite classes
(Figure 1C). The within experiment technical and analytical
variations were monitored by periodic analysis of biological
quality controls. These showed a median relative standard
deviation (RSD) of <15%, which is well within acceptable limits
for metabolomics (Kirwan et al., 2014).

PLS Model Separates Controls From PD
Based on Metabolites in Both Plasma and
CSF With High Sensitivity
For both the plasma and CSF training sets, only two components
were necessary to build PLS models with an AUC of 0.67 and
0.73, respectively (Figure 2A). Based on our random selection
of training and test sets for plasma and CSF, results show that
the initial random selection is well within the quantile range
of other random selections (Figure 2B). This allowed us to
reproducibly discriminate controls from PD samples in both the
plasma and CSF training cohorts using a two-component PLS
model, indicating strong metabolite signals in the plasma and
CSF cohorts as also indicated by a clear separation of controls
from PD in the PLS score plots obtained for the plasma and
CSF samples, respectively (Figures 2A,C,D). Overall, the best
PLS model generated for plasma samples yielded a mean AUC
of 0.68 (95% CI = 0.67–0.68), mean sensitivity of 0.50 (95% CI
= 0.49–0.51) and mean specificity of 0.66 (95% CI = 0.66–0.67).
The PLS model obtained for CSF samples showed a mean AUC
performance with a value of 0.74 (95% CI = 0.73–0.74), mean
sensitivity of 0.44 (95% CI = 0.42–0.45) and mean specificity of
0.54 (95% CI = 0.53–0.55). In both plasma and CSF sets, PLS
models performed similarly as RF [mean AUC for plasma= 0.68
(95% CI = 0.67–0.68), mean AUC for CSF = 0.73 (95% CI =
0.72–0.73)].

Specific Plasma- and CSF Metabolites
Distinguish Effectively PD Patients From
Controls
Based on our PLS and RF models used for the differentiation
of respective plasma and CSF samples, we extracted metabolites
which contributed significantly to the differentiation between
PD and controls. We selected 20 metabolites using the plasma
PLS model (Figure 3A, Supplementary Figures 2, 3), of which
10 also ranked high in the RF model (22 important metabolites
in the RF model overall, Table 2 and Supplementary Figure 4).
From the CSF data, we selected 14 metabolites based on the PLS
model (Figure 3B, Supplementary Figures 5, 6). Five of these
metabolites were also considered important in the RF model
(seven important metabolites in the RF model overall, Table 3
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FIGURE 1 | General workflow for investigating metabolic profiles of PD patients and controls and respective distribution of metabolites in plasma and CSF.

(A) General workflow of data analysis for samples from controls and PD patients. (B) Venn diagram of metabolites detected in respective plasma and CSF sets.

(C) Bar chart illustrating the relative count of putatively identified metabolites from each metabolite class, classified according to KEGG, Lipidmaps, and HMDB. In

total, 334 metabolites were analyzed in plasma and 302 metabolites analyzed in CSF (for a full list of extracted metabolites, see Supplementary Table 1). The

identified metabolite classes (relative count > 5%) included (di-, tri-, tetra-) peptides (18% plasma, 25% CSF), glycerophospholipids (plasma 17%, CSF 12%),

sphingolipids (plasma 14%, CSF 7%), amino acids and derivatives (plasma 9%, CSF 10%), fatty acyls (plasma 6%, CSF 10%), and unknowns (8% plasma, 9% CSF;

no match to our metabolite database).

and Supplementary Figure 7). Interestingly, the CSF feature
annotated as leu-trp-trp (C28H33N5O4) consistently ranked first
in the PLS and second in the RF model. The metabolites
annotated as sarcosine (C3H7NO2) and alpha-N-phenylacetyl-L-
glutamine (C13H16N2O4) were found to be different between PD
patients and controls in both compartments, plasma and CSF. Of
note, sarcosine (C3H7NO2) showed a different trend in plasma
(lower in PD compared to controls) than in CSF (higher in PD
compared to controls).

By using the 20 top-ranked plasma metabolites, we
determined an AUC of 0.77 [95% CI = 0.51–0.80, positive
predictive value (PPV) = 0.68, negative predictive value (NPV)
= 0.65] for the final PLS model and an AUC of 0.66 (95% CI =
0.49–0.78, PPV =0.63, NPV = 0.65) for the final RF model in

the plasma data (Figure 4). The use of 14 CSF metabolites led
to an AUC of 0.90 (95% CI = 0.58–0.93, PPV = 0.77, NVP =

0.82) for the tested PLS model and an AUC value of 0.81 (95%
CI = 0.49–0.87, PPV = 0.77, NPV = 0.67) for the tested RF
model.

Overall, these results indicate superior performance of
PLS compared to RF. In addition, the obtained PLS-CSF
model showed a higher sensitivity of 0.83 and specificity of
0.75 compared to the PLS-plasma model (sensitivity = 0.62,
specificity = 0.71), which indicates a stronger discriminative
power of CSF samples compared to plasma samples with
a trend toward increased PPV for correct PD classification.
A detailed list of model training and test cohort results in
plasma and CSF can be found in Supplementary Table 2.
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FIGURE 2 | Partial least square (PLS) component plots and the associated separation of Parkinson’s disease (PD) and control status based on plasma and

cerebrospinal fluid (CSF) samples. (A) Components and their corresponding area under the curve (AUC; gray: plasma, light blue: CSF). Dashed red line represents the

maximum of two components used for model training in both cohorts. (B) Boxplots represent the training AUC of 200 randomly split samples (70% of the entire

dataset) using PLS and random forest (RF) analyses. Red dot: Performance of samples selected for model training. (C) PLS score plot of all 334 metabolites identified

in the plasma training set. (D) PLS score plot of all 302 metabolites identified in the CSF training cohort.

FIGURE 3 | Log2 fold differences for top-ranked plasma and cerebrospinal (CSF) metabolites to differentiate early Parkinson’s disease (PD) from controls, determined

by the partial least square (PLS) model. Log2 fold differences (PD vs. controls) between values of metabolites retrieved from the plasma (A) and the CSF PLS model

(B). Red columns indicate higher values in PD. *P < 0.05 and ** < 0.01 according to univariate Welch’s t- or Wilcoxon test (p < 0.05) after false discovery rate (FDR)

correction by Benjamini and Hochberg (BH). Error bars indicate the standard error of the metabolite measure intensities.

Moreover, Monte-Carlo cross validation of the PLS models
revealed, that all metabolites were needed to achieve the
highest AUC and accuracy in plasma and CSF, respectively
(Supplementary Figure 8).

Pathway Analysis Reveals Multiple Altered
Pathways in PD Patients
Overall, our untargeted metabolic profiling revealed several
perturbations, which allowed identification of multiple altered
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TABLE 2 | Detailed information on significantly changed metabolites between controls and PD patients in plasma retrieved from the PLS model.

Proposed Metabolite p

Mean Mean RSD Log2 FD Value Rank Rank RF Validation

Co PD [%] PD/Co FDR PLS RF Selected AUC 95% CI level

73.08939 @ 7.5 3.56E+03 3.33E+03 18.22 −0.10 0.045 12 56 No 0.62 0.53–0.71 /

Ethanolamine 1.26E+04 1.15E+04 20.22 −0.13 0.019 10 35 No 0.63 0.54–0.73 1

475.22627 @ 6.76 3.27E+03 3.44E+03 15.23 0.07 0.079 13 66 No 0.58 0.48–0.68 /

N-Lauroylglycine 2.59E+03 2.45E+03 9.55 −0.08 0.012 3 47 No 0.66 0.56–0.75 3

Alpha-N-Phenylacetyl-L-glutamine 2.11E+04 2.98E+04 85.53 0.50 0.014 14 33 No 0.65 0.56–0.73 3

PC(35:6) 1.98E+04 1.52E+04 57.06 −0.38 0.012 20 118 No 0.64 0.55–0.74 2

Sarcosine 8.01E+05 8.36E+05 17.06 0.06 0.174 16 121 No 0.55 0.45–0.64 1

SM(d30:1) 6.69E+03 6.40E+03 28.79 −0.0624 0.397 17 40 No 0.56 0.46–0.65 2

SM(d32:1) 1.94E+05 1.86E+05 22.44 −0.0574 0.29 18 27 No 0.56 0.47–0.65 2

SM(d39:1) 2.25E+04 2.09E+04 29.20 −0.1101 0.128 11 25 No 0.59 0.48–0.68 2

Glu-Ile 5.45E+03 5.07E+03 20.73 −0.1038 0.059 7 1 Yes 0.6 0.51–0.69 2

535.24187 @ 5.4 4.13E+03 3.89E+03 12.67 −0.0853 0.014 5 8 Yes 0.64 0.55–0.74 /

186.11894 @ 0.95 2.38E+04 1.98E+04 66.10 −0.2669 0.104 15 18 Yes 0.59 0.49–0.69 /

1,3-Dimethyluracil 4.08E+03 5.42E+03 62.62 0.40917 0.014 6 9 Yes 0.63 0.52–0.72 3

PC(44:5) 1.15E+04 1.35E+04 36.99 0.23385 0.014 8 11 Yes 0.64 0.54–0.73 3

PC(44:6) 7.41E+03 8.84E+03 33.55 0.25355 0.012 1 6 Yes 0.66 0.58–0.74 2

PE(34:1) 3.52E+03 2.82E+03 41.11 −0.3214 0.014 2 10 Yes 0.64 0.54–0.72 3

Arg-Ala 1.00E+04 1.29E+04 69.02 0.35912 0.045 4 2 Yes 0.62 0.54–0.71 2

Lyso-PAF C-16 2.53E+04 2.79E+04 19.11 0.14038 0.012 9 3 Yes 0.65 0.57–0.73 2

354.92649 @ 0.11 4.37E+04 4.24E+04 6.58 −0.0435 0.04 19 4 Yes 0.63 0.53–0.72 /

Significant ions detected between controls and Parkinson’s disease (PD) patients. Proposed metabolite: proposed metabolite for each ion. If no formula could be calculated the proton

corrected masses are reported with their corresponding retention time separated by a “@”. Log2 Fold difference (FD): relative abundance of mean of corresponding ion in PD compared

to the mean of controls patients (Co). P value: value for unpaired Welch’s t-test or Wilcoxon test FDR adjusted. AUC, Area under the curve; CI, 95% confidence interval; RSD, relative

standard deviation.

TABLE 3 | Detailed information on significantly changed metabolites between controls and PD patients in CSF retrieved from the PLS model.

Proposed Metabolite P

Mean Mean RSD Log2 FD Value Rank Rank RF Validation

Co PD [%] PD/Co FDR PLS RF Selected AUC 95% CI level

Prolyl-Tyrosine 6.99E+03 9.46E+03 53.98 0.44 0.045 9 30 No 0.66 0.55–0.79 3

Sarcosine 2.14E+04 1.96E+04 19.72 −0.13 0.111 12 51 No 0.62 0.49–0.75 1

Ser-Glu 7.46E+03 8.97E+03 39.14 0.26 0.062 10 26 Yes 0.62 0.49–0.74 2

432.31975 @ 6.13 6.45E+03 5.95E+03 16.59 −0.12 0.059 4 18 No 0.65 0.52–0.77 /

Leu-Trp-Trp 6.16E+03 5.51E+03 14.66 −0.16 0.026 1 2 Yes 0.7 0.59–0.82 2

Alpha-N-Phenylacetyl-L-glutamine 2.56E+04 3.55E+04 56.61 0.47 0.010 3 3 Yes 0.74 0.61–0.85 2

Betaine 4.95E+05 4.54E+05 15.93 −0.13 0.045 8 7 Yes 0.67 0.55–0.79 1

517.24582 @ 6.8 7.03E+03 7.42E+03 10.32 0.08 0.062 5 17 No 0.65 0.52–0.77 /

S-(2-Methylpropionyl)-

dihydrolipoamide-E

7.35E+03 5.98E+03 37.10 −0.30 0.045 7 4 Yes 0.68 0.54–0.80 3

3-ketosphingosine 6.40E+03 6.87E+03 17.37 0.10 0.111 11 12 No 0.62 0.48–0.76 2

972.90985 @ 12.31 5.21E+03 4.91E+03 12.33 −0.09 0.075 2 5 No 0.63 0.50–0.76 /

(+)-gamma-Hydroxy-L-homoarginine 6.30E+04 6.49E+04 5.43 0.04 0.045 6 11 No 0.67 0.54–0.80 2

O-Adipoylcarnitine 5.96E+03 5.46E+03 25.71 −0.12 0.059 13 9 No 0.65 0.53–0.76 3

Dimethylglycine 8.06E+04 7.29E+04 17.91 −0.15 0.034 14 16 No 0.67 0.54–0.78 1

Significant ions detected between controls and Parkinson’s disease (PD) patients. Proposed metabolite: proposed metabolite for each ion. If no formula could be calculated the proton

corrected masses are reported with their corresponding retention time separated by a “@”. Log2 Fold difference (FD): relative abundance of mean of corresponding ion in PD compared

to the mean of controls patients (Co). P value: value for unpaired Welch’s t-test or Wilcoxon test FDR adjusted. AUC, Area under the curve; CI, 95% confidence interval; RSD, relative

standard deviation.
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biochemical pathways. The most obvious alterations in
plasma were identified in the glycerophospholipid metabolism
(p = 0.002, FDR-corrected p = 0.20, Figure 5A). In CSF,
we could identify a perturbed glycine, serine and threonine
metabolism (p = 7.4 × 105, FDR-corrected p = 0.006,
Figure 5B).

DISCUSSION

PD, one of the most common neurodegenerative diseases,
shows high clinical variability, making clinical diagnosis
often challenging, particularly at the early disease stages
when neuromodulatory treatment may be most effective

FIGURE 4 | Representative areas under the curve (AUC) for differentiation of

Parkinson’s disease from controls by use of plasma and cerebrospinal fluid

(CSF), and the partial least square (PLS) and random forest (RF) statistical

models The PLS model shows superiority over the RF model for the

differentiation of states in both compartments.

(Davie, 2008). Currently, no reliable molecular biomarker-
based diagnosis is available and molecular mechanisms of
the disease are still poorly understood. Therefore, molecular
biomarkers (or biomarker panels) for PD diagnosis and a
better understanding of disease pathogenesis are urgently
needed.

Metabolomics, in principle, allows for the measuring and
quantification of the entire complement of metabolites in
biological fluids, which, therefore, is a suitable technology to
capture the functional state of the organism at a given time
point. Actually, the breadth of metabolite detection is limited
by the ability to annotate measurement spectra, which often
results in sets typically comprising a few 100 metabolites.
Nonetheless, in combination with machine learning algorithms,
such as PLS and RF, differential levels of metabolites between
healthy and diseased states can be identified. These metabolites
may serve as biomarkers (Gerlach et al., 2012) and lead to
a better understanding of novel pathways involved in disease
pathogenesis.

Our untargeted metabolomics approach led to the
identification of 334 blood plasma and 302 CSF metabolites in
controls and early PD patients. The generated representative
PLS models in the plasma and CSF cohort showed a high
discriminative power between PD patients and controls. Overall,
the PLS models outperformed the RF models in both plasma
and CSF with higher overall AUC measures. A subset of 20
plasma metabolites and 14 CSF metabolites were defined in a
training set of PD patients and controls, and retrieved models
differentiated the remaining and independent test set of PD
patients and controls with an AUC of 0.77 in plasma and 0.90 in
CSF. Interestingly, most of these metabolites were also contained
amongst the highest ranked metabolites in the RF models, which
underlines the robustness of our findings. Although CSF is less
accessible than plasma it is seemingly a more reliable source for
promising PD biomarkers, most likely due to its closer proximity
to the brain and to the local neurodegenerative process (Botas
et al., 2015).

FIGURE 5 | Pathway analysis of altered metabolites in the plasma and cerebrospinal fluid (CSF) of Parkinson’s disease (PD) using MetaboAnalyst. The significantly

dysregulated metabolites in PD, identified in plasma samples (N metabolites = 20, A) and CSF (N metabolites = 14, B) were subjected to MetaboAnalyst (http://www.

metaboanalyst.ca/) (Xia et al., 2015), to assess associations of respective metabolites to defined pathways. *P < 0.05 after FDR correction. Circle extent (larger)

correlates to p-value (lower).
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Glycerophospholipid and Sphingolipid
Metabolism
Our metabolite-based biomarker analysis in combination with
PLS machine learning and RF algorithms for PD diagnosis
informs on aspects of the pathophysiology of the disease by the
identification of alterations in distinct metabolite pathways. In
plasma samples, we identified alterations in several lipid classes,
including two increased phosphatidylcholines (PC) annotated
as PC(44:6) and PC(44:5) and decreased levels of PC(35:6) in
PD, phosphatidylethanolamines as indicated by depleted levels
of PE(34:1) in PD patients, platelet activating factors (PAF) as
indicated by elevated levels of Lyso-PAF-C-16 in PD patients
and several sphingolipids, e.g., sphingomyelins (SM), as found by
decreased levels of SM(d39:1), SM(d30:1) and SM(d32:1) in PD.

PC lipids and a wide range of phospholipids such as PEs
and sphingolipids compromise themajority of eukaryotic cellular
neuronal membranes such as the myelin sheath (DeVries et al.,
1981; Farooqui et al., 2000; van Meer et al., 2008; Witte et al.,
2010). Enzymatic modifications of glycerophospholipids and
sphingolipids by phospholipases and nonenzymatic oxidative
stress produces a wide range of secondary messengers including
PAF and PAF-like lipids (Farooqui et al., 2000, 2007). PAF
is known for its contribution to inflammatory responses in
the brain (Bazan, 2006) and elevated levels are associated
with the central nervous system pathophysiology (McGeer and
McGeer, 1995). In addition, sphingomyelins are highly enriched
in neuronal cells, exert important biological functions, and are
essential for the functionality of the nervous system (Piccinini
et al., 2010). Relative changes of glycerophospholipid subclasses
have been shown to be associated with neuronal death in PD
(Farooqui et al., 2006). Perturbations in sphingolipid metabolism
have been found responsible for misfolding events causing the
formation of disease-specific protein isoforms such as alpha-
synuclein in PD (Jazvinscak Jembrek et al., 2015), amyloid-beta
in AD (Mielke et al., 2014) and huntingtin in Huntington’s
disease (Piccinini et al., 2010). Altered structures of sphingolipids
have been described to directly interact with alpha-synuclein
in PD (Piccinini et al., 2010) and AD (Mielke et al., 2014).
Catabolism of glycerophospholipids generates ceramides and
other metabolites that modulate phospholipase activity, which,
in turn, produces lipids that can modulate e.g., sphingomyelinase
activity (Farooqui et al., 2007). Our findings of elevated levels
of Lyso-PAF C-16, PC(44:6), PC(44:5) and depleted levels of
PE(34:1), PC(35:6), ethanolamine, which also appears to be
depleted in AD (Ellison et al., 1987) and three sphingomyelins
in the plasma of our PD cohort support previous results about
a perturbed glycerophospholipid and sphingolipid metabolism
in PD (Ahmed et al., 2009; Kori et al., 2016) and underlines
the potential of these parameters to serve as components of a
biomarker panel in PD and to add to a better understanding of
disease pathogenesis. Of note, since plasma phospholipids have
also been identified in antecedent memory impairment in older
adults (Mapstone et al., 2014) their specificity toward PD should
be addressed in future studies. Even though, PD has been found
to be closely linked to Gaucher’s disease (GD), a disease of the
lipid metabolism, being involved in Lewy body pathology, the

latter pathology is the hallmark of PD. The underlying mutation
of the GBA gene causes enhanced phospholipid metabolism and
therefore, mutation of the GBA gene could lead to the increased
levels of glycerophospholipids in plasma (Brockmann and Berg,
2014). However, all PD patients analyzed in this study were tested
negative for this mutation.

In line with the above-mentioned results, we could
detect increased levels of 3-ketosphingosine in PD CSF. 3-
Ketosphingosine is part of the ceramide metabolism and
is formed by the conjunction of serine and palmitoyl-CoA
by serine-palmitoyltransferase; the latter is a key enzyme of
sphingolipid- and ceramide metabolism and has been reported
to be up-regulated in AD (Cutler and Mattson, 2001; Hanada,
2003; Wood, 2012) and in association with altered ceramide
metabolism in PD such as caused by GBA mutations (Mielke
et al., 2013) and in other Lewy body diseases (Bras et al., 2008).

Fatty Acid Oxidation
Moreover, we detected elevated levels of the acylcarnitine
annotated as o-adipoylcarnitine in CSF. Brain acylcarnitines
support lipid biosynthesis and activity of antioxidants; they
also enhance cholinergic neurotransmission (Jones et al., 2010).
Increased levels of o-adipoylcarnitine in CSF could be associated
with increased activity against oxidative stress perturbed lipid
biosynthesis in PD, which needs further investigation. In
addition, reduced levels of N-laroylglycine were found in plasma
in our PD cohort. This metabolite of the class acylglycine is
a minor metabolite of fatty acids and is produced through
the action of glycine N-acyltransferase. This fits well with the
assumption of relevant perturbations in fatty acid oxidation
processes that are associated with this disease (Wilcox et al., 1999;
Suhre et al., 2010; Dias et al., 2013; Hwang, 2013; Saiki et al., 2017)
and in other neurodegenerative diseases such as amyotrophic
lateral sclerosis (ALS) (Pollari et al., 2014) and AD (Selley et al.,
2002).

Glycine, Serine, and, Threonine
Metabolism and Branched Chain Fatty
Acids
Of note, depleted levels of sarcosine, betaine, and dimethylglycine
(DMG) in CSF indicate dysregulated glycine, serine, and
threonine metabolism in PD, which has previously been
reported in PD and ALS (Sertbaş et al., 2014). Interestingly,
increased levels of glycine were also found in animal models
of PD, such as 6-OHDA-treated mice (Solis et al., 2016).
DMG is produced by metabolizing choline into glycine, and
is a by-product of homocysteine metabolism where betaine is
converted to methionine and DMG by betaine-homocysteine
methyltransferase. Studies have shown that DMG decreases
oxidative stress (Takahashi et al., 2016), improves immune
response (Graber et al., 1981) and acts as anticonvulsant
(Freed, 1985). Of note, the major portion of glycine and
serine synthesis occurs in hepatic tissue via the “phosphorylated
pathway,” therefore corresponding changes in brain may not
be detectable in plasma. In addition, depleted levels of S-(2-
methylpropionyl)-dihydrolipoamide-E, as observed in our PD
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CSF samples, have not yet been reported by other groups.
This observation suggests perturbations in valine, leucine,
and isoleucine degradation pathways to be associated with
PD as this metabolite is found in the second to last step
in the synthesis of these branched chain fatty acids via the
enzyme 2-oxoisovalerate dehydrogenase. It is then converted to
isobutyryl-CoA via the enzyme dihydrolipoyllysine-residue (2-
methylpropanoyl)transferase. However, none of these enzymes
have yet been reported to be associated with PD or other
neurodegenerative diseases. An association was found with
progressive neurodegeneration in maple syrup urine disease
(Chuang et al., 1994).

Phenylalanine and Arginine Proline
Metabolism and Glycine Biosynthesis and
Degradation
We identified increased levels of sarcosine, the N-methyl
derivative of glycine, in the plasma of our PD cohort. Our
result is consistent with previous findings in plasma (Antonio
Molina et al., 2017). Sarcosine is associated to the phenylalanine
and arginine proline metabolisms, and it is involved in glycine
biosynthesis and degradation. Interestingly, this metabolite was
decreased in our PD CSF samples. To the best of our knowledge,
decreased levels of sarcosine in the CSF of PD patients have not
been described previously and underlying mechanisms in the
neurodegenerative process remain unclear.

Gut Microbiota and Neurodegeneration
The potential marker annotated as alpha-N-phenylacetyl-L-
glutamine (phenylacetylglutamine) was highly elevated in the
plasma and CSF of PD patients. This metabolite most probably
originates from the putrefaction of phenylalanine and tyrosine
by the gut microbiota (Swann et al., 2013). Interestingly, the
involvement of the gut microbiota has been suggested as one of
the key factors of neurodegeneration in PD (Houser and Tansey,
2017; Marizzoni et al., 2017).

Other Metabolites
Our untargeted metabolomics approach revealed some
additional, statistically significant changes in metabolite
concentrations between PD patients and controls in both plasma
and CSF, which need further investigation. First, the urinary
metabolite annotated as 1,3-dimethyluracil was increased in
PD plasma. 1,3-dimethyluracil is a methyl derivative of urate,
and previous studies have reported lowered levels of urate
in PD serum (Andreadou et al., 2009). Although high urate
levels in the blood have been associated with lower risks of
developing PD (Cipriani et al., 2010) and urate may protect
from fast clinical progression in PD (Ascherio et al., 2009),
AD and ALS (Paganoni and Schwarzschild, 2017), the specific
role of 1,3-dimethyluracil in PD remains to be investigated.
Second, we identified several significantly altered levels of
di-peptides as, e.g., arg-ala (increased in PD plasma), ser-glu and
prolyl-tyrosine (increased in PD CSF). Altered levels were also
observed for the tri-peptide depleted leu-lrp-trp (depleted in PD
CSF). At this point of time, it is unclear whether these changes
are caused by altered protein degradation or altered amino

acid metabolism, and if these peptides have neurotransmitter
functions, which could then possibly explain clinical features
of the disease. Finally, we observed increased CSF levels of
(+)-gamma-hydroxy-l-homoarginine, which have again not yet
been reported in PD or any other neurodegenerative disease and
need further investigation.

The study presented here informs about previously
unreported marker candidates [e.g., various sphingo- and
glycerophospholipids, N-laroylglycine, 1,3-dimethyluracil,
phenylacetylglutamine, 3-ketosphingosine, O-adipoylcarnitine,
S-(2-methylpropionyl)-dihydrolipoamide-E, (+)-gamma-
hydroxy-l-homoarginine and several short chain peptides], and
did not confirm all significant results reported in the previous
studies (e.g., increased levels of fructose, mannose und threonic
acid and decreased levels of dehydroascorbic acid in early stage
PD patients Trezzi et al., 2017).

The main aim of this study is to provide additional original
data from a highly specific and well-defined cohort of early PD,
using also a high-quality approach of metabolomics analyses,
but not to provide an exhaustive and systematic meta-analysis
of all metabolomics data currently available for PD diagnosis.
Still, heterogeneity across previous studies and this study may be
due to, e.g., differencing cohorts including distinct recruitment
strategies, different analytical platforms (which to most extent
rely on reversed phase chromatography), and differences in
targeted assays and GC/MS profiling (Supplementary Table 3).
In addition, different protocols for metabolite extraction,
differing biological matrices, data exploration and statistical
analysis will bias the results [for similar problems in AD see
(Gonzalez-Dominguez et al., 2017)] and should be considered
when comparing such results.

As the current study aimed at differentiating PD from age-
matched controls, further studies are needed to investigate
whether observed changes are PD-specific. Replication in an
independent larger cohort, and differentiation to other disorders,
specifically progressive supranuclear palsy (PSP), corticobasal
degeneration (CBD), and multiple system atrophy (MSA) in the
very early stages of the diseases are needed.

CONCLUSION

In conclusion, (i) metabolic profiling of plasma and CSF samples
in combination with machine learning analysis was found to be
a promising approach for a limitedly-invasive diagnosis of PD,
(ii) our pilot study corroborates previous studies seeing altered
glycerophospholipid, sphingolipid, and amino acid metabolisms
as relevant mechanisms of PD pathogenesis, and (iii) specifically
the identification of novel and partly unknown metabolites
require further investigation in independent cohorts using also
longitudinal approaches.
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Supplementary Figure 1 | Score distance and orthogonal distance matrix used

for outlier detection. Samples in the highlighted area were considered outliers in

(A) plasma and (B) CSF. C, controls; PD, Parkinson’s disease.

Supplementary Figure 2 | Intensity levels for potential PD plasma marker panel

determined by our PLS model showing relative differences in abundance in each

patient analyzed. Red, controls; gray, Parkinson’s disease (PD) patient.
∗Statistically significant change according to Welch’s t-test statistics or Wilcoxon

test (p-value < 0.05) after FDR correction.

Supplementary Figure 3 | Top 100 proposed metabolites in the plasma PLS

model. Each individual scaled VIP score plotted from the highest to the lowest

value. Dashed line: cut-off used to determine most influential metabolites in the

model based on the point where the slope flattens (threshold = 68).

Supplementary Figure 4 | Top 100 proposed metabolites in the plasma RF

model. Each individual scaled importance score plotted from the highest to lowest

value. Dashed line: cut-off used to determine most influential metabolites in the

model based on the point where the slope flattens (threshold = 59).

Supplementary Figure 5 | Intensity levels for potential PD CSF marker panel

determined by our PLS model showing relative differences in abundance in each

patient analyzed. Red: controls, light blue: Parkinson’s disease (PD) patient.
∗Statistically significant change according to Welch’s t-test statistics or Wilcoxon

test (p-value < 0.05) after FDR correction. ∗∗Statistically significant change

according to Welch’s t-test statistics or Wilcoxon test (p-value < 0.01) after FDR

correction.

Supplementary Figure 6 | Top 100 proposed metabolites in the CSF PLS

model. Each individual scaled VIP score plotted from the highest to lowest value.

Dashed line: cut-off used to determine most influential metabolites in the model

based on the point where the slope flattens (threshold = 69).

Supplementary Figure 7 | Top 100 proposed metabolites in the CSF RF model.

Each individual scaled importance score plotted from the highest to lowest value.

Dashed line: cut off used to determine most influential metabolites in the model

based on the point where the slope flattens (threshold = 55).

Supplementary Figure 8 | Two component PLS Monte Carlo cross validation

models for plasma and CSF. Corresponding ROC curves of different metabolite

sets (2, 3, 5, 7, 10, 20) in (A) plasma and (2, 3, 5, 7, 10, 14) (B) CSF. Predicted

accuracy with different number of metabolites in (C) plasma and (D) CSF.

Abbreviations: Var., variable e.g., metabolite, AUC, area under the curve; CI, 95%

confidence interval.

Supplementary Table 1 | PD_Metabolome. List of identified putative metabolites

from untargeted profiling in PD plasma (Sheet plasma) and PD CSF (Sheet CSF)

(∗.xlsx file).

Supplementary Table 2 | Model parameters obtained for the PLS and RF

models in plasma and CSF.

Supplementary Table 3 | Current state of metabolomics research in Parkinson’s

disease.
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