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The accumulation of amyloid plaques is one of the earliest pathological changes in
Alzheimer’s disease (AD) and may occur 20 years before the onset of symptoms.
Examining associations between amyloid pathology and other early brain changes
is critical for understanding the pathophysiological underpinnings of AD. Alterations
in gray matter networks might already start at early preclinical stages of AD. In this
study, we examined the regional relationship between amyloid aggregation measured
with positron emission tomography (PET) and gray matter network measures in elderly
subjects with subjective memory complaints. Single-subject gray matter networks were
extracted from T1-weigthed structural MRI in cognitively normal subjects (n = 318,
mean age 76.1 ± 3.5, 64% female, 28% amyloid positive). Degree, clustering, path
length and small world properties were computed. Global and regional amyloid load
was determined using [18F]-Florbetapir PET. Associations between standardized uptake
value ratio (SUVr) values and network measures were examined using linear regression
models. We found that higher global SUVr was associated with lower clustering
(β = −0.12, p < 0.05), and small world values (β = −0.16, p < 0.01). Associations were
most prominent in orbito- and dorsolateral frontal and parieto-occipital regions. Local
SUVr values showed less anatomical variability and did not convey additional information
beyond global amyloid burden. In conclusion, we found that in cognitively normal
elderly subjects, increased global amyloid pathology is associated with alterations in
gray matter networks that are indicative of incipient network breakdown towards AD
dementia.
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INTRODUCTION

Amyloid pathology is hypothesized to be one of the earliest
events in the pathological cascade of Alzheimer’s disease (AD;
Jack et al., 2013; Villemagne et al., 2013), and has been associated
with future cognitive decline in cognitively normal subjects
(Donohue et al., 2017). Understanding associations between
amyloid pathology and other early pathological processes is
critical as secondary prevention trials are shifting towards the
earliest disease stages. AD can be considered as a disconnectivity
disease (Delbeuck et al., 2003). In this study, we examined the
relation between amyloid depositions measured with positron
emission tomography (PET) and disruptions of gray matter
networks in elderly subjects.

Brain areas involved in similar cognitive functions tend to
develop in a coordinated way (Andrews et al., 1997; Alexander-
Bloch et al., 2013b; Váša et al., 2018). Such co-variation of gray
matter structure can be measured using structural T1-weighted
MRI images and represented as a network (Lerch et al., 2006;
Bassett et al., 2008; Tijms et al., 2012; Alexander-Bloch et al.,
2013a). In cognitively normal subjects, brain networks tend to
have a ‘‘small-world’’ organization, and it has been proposed
that such a network organization provides an optimal balance
of specialized information processing and integration (Sporns
et al., 2004; Humphries andGurney, 2008; Alexander-Bloch et al.,
2013a). Using group level approaches (i.e., one network per
diagnostic group), several studies have shown that gray matter
network measures are disrupted in AD dementia compared to
controls (He et al., 2008; Yao et al., 2010; Pereira et al., 2016).
Using our method to extract gray matter networks on a single-
subject level (Tijms et al., 2012), we have shown that worse
gray matter network disruptions in AD dementia are associated
with more severe symptoms, and worse functioning in specific
cognitive domains (Tijms et al., 2013a, 2014).

In cognitively normal older adults, lower cerebrospinal fluid
(CSF) amyloid beta 1–42 levels, indicative of abnormal amyloid
aggregation in the brain, already show disrupted gray matter
network measures (Tijms et al., 2016), suggesting that at very
early stages of the disease networks are starting to disorganize
into the direction often observed in dementia stages of AD (Tijms
et al., 2013a; Pereira et al., 2016). This suggests that gray matter
networks are sensitive to detect very early brain changes related
to abnormal amyloid metabolism. However, as CSF is an indirect
measure of amyloid plaques it remains unclear whether gray
matter network disruptions are linked to local amyloid deposits
or to a global effect of amyloid pathology.

In the present study, we examined the regional relationship
between amyloid depositions measured with PET and gray
matter network disruptions in a large cohort of cognitively
normal elderly subjects with subjective memory complaints.
Since the Apolipoprotein E (APOE) ε4 allele, a genetic risk factor
for sporadic AD (Bertram et al., 2010), is associated with amyloid
pathology (Jansen et al., 2015) and functional and structural
brain changes (Cherbuin et al., 2007; Trachtenberg et al., 2012)
in cognitively normal subjects we also examined whether APOE
ε4 modified the relationship between amyloid and gray matter
networks.

MATERIALS AND METHODS

Subjects
We analyzed baseline data from the ongoing INSIGHT-preAD
study (Dubois et al., 2018). INSIGHT-preAD is a monocentric
longitudinal cohort study in 318 cognitively normal elderly (age
between 70 and 85 years) with subjective memory complaints
recruited from the community in the wider Paris area, France.
All subjects underwent amyloid PET and MRI scans as well
as an extensive battery of neuropsychological exams. Subjective
memory complaints were defined by an affirmative answer to
both of the following questions: ‘‘are you complaining about
your memory’’; ‘‘is it a regular complaint which lasts more than
6 months?’’, in the absence of any objective memory deficits
(mini-mental state examination (MMSE) ≥ 27, 16-item Free
and Cued Selective Reminding Test (FCSRT) total score ≥ 41).
Exclusion criteria were having a neurological or psychiatric
disorder that could interfere with cognition (e.g., epilepsy,
brain tumor, stroke), or contra-indication for MRI or amyloid
PET scan. APOE genotype was determined as previously
described (Teipel et al., 2017). Subjects were classified as APOE
ε4 carriers if they had one or two APOE ε4 alleles and
non-carrier otherwise. This study was carried out in accordance
with the recommendations of the French national medical
research Ethics Committee with written informed consent from
all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol
was approved by the French national medical research Ethics
Committee.

PET Acquisition and Preprocessing
Amyloid PET images were acquired on a Philips Gemini
GXL CT-PET scanner using [18F]-Florbetapir (AVID
radiopharmaceuticals). Subjects received a single intravenous
dose of approximately 370 MBq (range 333–407 MBq). Fifty
minutes post-injection, three 5-min frames were obtained
(128 × 128 acquisition matrix, 2 × 2 × 2 mm3 voxels). Images
were reconstructed using an iterative LOR-RALMA algorithm
with 10 iterations and a smooth post-reconstruction filter.
Attenuation, scatter and random coincidence corrections
were integrated in the reconstruction. Frames were realigned,
averaged and quality-checked. Image analysis of PET data was
performed by CATI (Centre d’acquisition et traitement des
images1). Structural MRI images were co-registered to the PET
images using Statistical Parametric Mapping software version 8
(SPM8; Wellcome Department of Cognitive Neurology, London,
UK). PET images were corrected for partial volume effects with
the RBV-sGTM method (Thomas et al., 2011) using gray and
white matter tissue maps. Using the normalization parameters
from the spatial normalization of structural MRI images, a set of
cortical regions of interest (ROIs) was mapped to each subjects’
native space PET. This was performed for 12 cortical ROIs
(bilateral precuneus, posterior and anterior cingulate, inferior
parietal, middle temporal gyrus and orbitofrontal cortex) defined
in Clark et al. (2012) and a reference region (a combination of

1cati-neuroimaging.com
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pons and whole cerebellum). For each individual, parametric
PET images were created by dividing each voxel by the mean
activity extracted from the reference region. Global standardized
uptake value ratios (SUVr) were computed by averaging the
mean activity of the 12 cortical ROIs. Regional SUVr from
the 12 cortical regions was used to explore local relationships
between amyloid load and gray matter networks. A global SUVr
threshold for abnormality was determined by performing a
linear regression analyses between the above-described method
and the method used by Besson et al. (2015) which used PET
scans from controls from the IMAP (Multimodal Imaging
of Early-Stage AD) study. This strategy has previously been
used to reliably estimate relationships between different tracers
and processing methods (Landau et al., 2014). A global SUVr
threshold of 0.79 corresponded to the IMAP’s cohort threshold
of 1.005 (Besson et al., 2015). Thus, subjects with a SUVr above
0.79 in the present study were considered amyloid positive.

MRI Acquisition and Preprocessing
Whole-brain scans were obtained using a 3T scanner (Siemens
Magnetom Verio) with a 12-channel head coil. Isotropic
structural three-dimensional T1-weighted images were acquired
using a sagittal MPRAGE sequence (256 × 240 acquisition
matrix, 1 × 1 × 1 mm3 voxels, repetition time = 2300 ms,
echo time = 2.98 ms, inversion time = 900 ms, flip angle = 9◦).
The structural 3D T1 images were segmented using Statistical
Parametric Mapping software version 12 (SPM12; Wellcome
Department of Cognitive Neurology, London, UK) running in
MATLAB 2011a (MathWorks Inc., Natick, MA, USA). Quality
of all gray matter segmentations was visually inspected and
none had to be excluded. After segmentation, all gray matter
segmentations were resliced into 2× 2× 2 mm3 voxels to reduce
the total number of voxels. Total gray matter volume (GMV) and
total intracranial volume (TIV; i.e., GMV + white matter volume
+ CSF) were computed from segmented images in native space.

Single-Subject Gray Matter Networks
Single-subject gray matter networks were computed based on
cortical similarity from native space gray matter segmentations,
using an automated method as previously described (Tijms et al.,
20122). Briefly, nodes in these networks represent brain areas
(regions of 3 × 3 × 3 voxels defined by template free approach
as described in Tijms et al. (2012), and connections are based on
similarity in the spatial structure of gray matter density values as
quantified with a Pearson’s correlation. Networks were binarized
using subject-specific thresholds as determined with a random
permutation method that ensured a similar chance to include at
most 5% spurious correlations in the network (Noble, 2009).

The following network measures were computed based on
the average of all nodes: size of the network (i.e., total number
of nodes in the network), connectivity density (i.e., ratio
of existing connections to maximum possible number of
connections), average degree (i.e., number of edges of a node),
characteristic path length (i.e., shortest distance between two
nodes), clustering coefficient (i.e., level of interconnectedness

2https://github.com/bettytijms/Single_Subject_Grey_Matter_Networks

between the neighbors of a node), and betweenness centrality
(i.e., the proportion of characteristic paths that run through a
node). Next, we also estimated normalized path length λ and
normalized clustering coefficient γ by dividing the averaged
measures across nodes of each network by properties that were
derived from averaging 20 randomized reference networks of
equal size and degree (Maslov and Sneppen, 2002). Last, we
measured the small world network property, which is defined
as having more clustering than a random network while having
the average path length similar to that of a random network
(Watts and Strogatz, 1998). These computations were performed
using scripts from the Brain Connectivity Toolbox adapted
for large sized networks (Rubinov and Sporns, 20103). For
regional network measures, we computed the average network
properties across all nodes within each region of the automated
anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002).
These 90 anatomical areas were defined for each subject in
native space by warping the AAL atlas using the inverted
parameters that were calculated when normalizing subject space
images to standard space. The 12 cortical regions for which
PET data was available were matched to the corresponding AAL
region.

Statistical Analysis
Demographic measures were compared between amyloid
positive and amyloid negative subjects using Student’s t-test
or Mann-Whitney-Wilcoxon test for continuous data and
chi-square test for categorical data.We used two linear regression
models to study the association between global amyloid burden
(continuous) and each whole brain network measure. Model
1 included network measure as the dependent variable and age,
gender and global amyloid SUVr as independent predictors
(model 1). Additional correction for total GMVwas performed in
model 2. Additionally, we tested whether there was an interaction
effect of APOE ε4, on the association between amyloid burden
and network measures in both models.

For those network measures for which we found a global
effect, we examined the regional specificity of amyloid pathology
and gray matter network measures using three analyses. In
the first analysis, we assessed the association between global
amyloid burden and regional network measures. In the second
analysis, we examined the association between regional SUVr
values and network measures of the same region. In the third
analysis, we used the model from the second analysis with
additional correction for global SUVr. The aim of this third
model was to assess whether regional SUVr values provided
additional information above global SUVr. Regional associations
were corrected for age, gender, TIV, local GMV and for
clustering and path length also local degree. Regional associations
were corrected for multiple testing using a false discovery
rate (FDR) procedure (pFDR; Benjamini and Yekutieli, 2001).
Regional associations were visualized using BrainNet viewer
(Xia et al., 2013). All statistical analyses were performed in R
(R version 3.3.14).

3www.brain-connectivity-toolbox.net
4http://www.R-project.org
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RESULTS

Cohort Characteristics
Subject characteristics for the total sample and according to
amyloid status are described in Table 1. We included 318 subjects
with a median age of 76 (range 69–85) and 204 (64%) were
female. All subjects were cognitively normal at the time of
inclusion with an averageMMSE of 29 (range 27–30). All subjects
had a fully connected gray matter network with an average
size of 6744 nodes (SD = 619) and average network density of
15% (SD = 1). There were 88 (28%) subjects with a positive
amyloid PET scan and 58 (18%) of the subjects were APOE
ε4 carriers. Amyloid positive subjects were older, more often
APOE ε4 carrier, had lower total GMV, lower clustering and
normalized clustering γ and lower small world values. Regional
amyloid PET SUVr values in the whole sample and according to
amyloid status are presented in Supplementary Table S1.

Relationship Between Global Amyloid
Burden and Whole Brain Network
Measures
Higher global amyloid SUVr values were associated with lower
total GMV (β = −0.1, standard error 0.05, p = 0.04). Higher
global amyloid SUVr values were associated with whole brain
lower clustering, lower normalized clustering coefficient γ, lower
normalized path length λ, and lower small world property when
correcting for age and gender (Table 2, Figure 1). Normalized
clustering coefficient γ and small world remained significant
after additionally correcting for total GMV. No associations were
found between global amyloid SUVr and whole brain network
size, degree, network density and betweenness centrality. There
was no interaction effect of APOE ε4 on the association between
global amyloid SUVr and any of the network measures.

Relationship Between Global Amyloid
Burden and Regional Network Measures
Next, we examined the relationship between global amyloid
burden and regional network measures to assess whether effects
were localized in specific regions or equally distributed across
the cortex. Higher global amyloid SUVr values were associated
with lower clustering values in right calcarine and left superior
occipital gyrus, and with lower path length in the right superior
occipital cortex (all pFDR < 0.05). Using a more liberal threshold
of an uncorrected p-value < 0.05, effects were more widespread
including orbito- and dorsolateral frontal and parieto-occipital
cortex for clustering, and medial and orbito-frontal, posterior
parieto-occipital and temporal regions for path length (Figure 2).

Relationship Between Regional Amyloid
Burden and Regional Network Measures
Subsequently we examined the relationship between regional
SUVr and network measures of the same region. There were no
significant associations at pFDR < 0.05. Repeating the analysis
with an exploratory uncorrected p-value showed that higher
regional amyloid SUVr in the left precuneus was associated with
lower clustering in the left precuneus (β = −0.06, p = 0.03), and

higher SUVr in the right precuneus was associated with lower
path length in the right precuneus (β = −0.08, p = 0.01). We
also found an association between higher SUVr in right orbito-
frontal cortex and lower path length in right orbito-frontal cortex
(β =−0.06, p = 0.03).

Next, we aimed to assess whether changes in network
measures were driven by regional amyloid plaques, rather
than a global effect of amyloid. However, models in which
we additionally corrected for global SUVr suffered from
multicollinearity issues, as global SUVr was strongly correlated
with regional amyloid burden (all ROIs showed a Pearson’s
r ≥ 0.9 with a p-value below 1 × 10−20; Figure 3B). This
suggests that amyloid was homogenously distributed across
the cortex, which was supported by exploratory analysis that
show associations of lower clustering in left precuneus with
increased PET SUVr values in 10 out of 11 other regions
(Figure 3A). Similarly, lower path length in right precuneus was
also associated with higher amyloid SUVr values in six other
regions.

DISCUSSION

In this study we found that increasing amyloid load measured by
amyloid PET is associated with alterations in graymatter network
measures in an elderly cohort of cognitively normal subjects
with subjective memory complaints. Higher amyloid SUVr was
associated with lower clustering, lower normalized clustering γ,
lower normalized path length λ, and lower small world values.
Our results suggest that gray matter network alterations may be
part of the early pathological changes in AD, which can already be
detected in cognitively normal subjects with subjective memory
complaints in the absence of manifest cognitive impairment.

Previous studies using group level approaches have found
an association between amyloid pathology and gray matter
covariance in cognitively normal subjects (Oh et al., 2014; Teipel
et al., 2017). Using a multivariate analysis, these studies have
found amyloid pathology to be associated with a pattern of
decreased GMV in medial temporal lobe, cingulate gyrus and
prefrontal cortex. Using a single-subject approach to derive gray
matter networks, we extend on these findings by showing within-
individual associations between amyloid load and gray matter
network changes.

Relationship Between Amyloid Burden and
Clustering
Results from the present study are in line with our previous
study in an independent cohort of cognitively normal subjects,
in which we found an association between lower amyloid beta
1–42 in CSF (representative of abnormal amyloid metabolism)
and changes in gray matter network measures (Tijms et al.,
2016). In that study we also found an association between
increased amyloid pathology and whole brain lower clustering
values, indicating that there are fewer connections between
neighboring areas in the brain, suggesting less effective local
integration. Here, using PET to measure amyloid depositions
in the brain we extend those findings by showing that lower
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TABLE 1 | Clinical characteristics in total sample and according to amyloid status.

Characteristic Total sample N = 318 Amyloid negative N = 230 Amyloid positive N = 88

Age years, median (IQR) 76 (74–78) 76 (73–78) 77 (75–79)∗∗

Female, N (%) 204 (64%) 147 (64%) 57 (65%)
Education, median (IQR) 7 (4–8) 7 (5–8) 6 (4–8)
MMSE, median (IQR) 29 (28–29) 29 (28–30) 28 (28–29)∗

FCSRT-TR, median (IQR) 47 (45–48) 47 (45–48) 46 (45–48)
APOE ε4 carrier, N (%) 58 (18%) 25 (11%) 33 (38%)∗

PET SUVr, median (IQR) 0.71 (0.67–0.81) 0.69 (0.65–0.73) 0.97 (0.85–1.15)∗∗

Total GMV, mean ± SD 0.567 ± 0.06 0.571 ± 0.06 0.555 ± 0.06∗

Network size, mean ± SD 6744 ± 619 6759 ± 629 6703 ± 593
Network degree, mean ± SD 1036 ± 112 1040 ± 114 1026 ± 109
Connectivity density, mean ± SD 15 ± 0.8 15 ± 0.8 15 ± 0.8
Clustering, mean ± SD 0.44 ± 0.01 0.44 ± 0.01 0.43 ± 0.01∗

Path length, mean ± SD 1.997 ± 0.03 1.999 ± 0.02 1.995 ± 0.03
Betweenness centrality, mean ± SD 6724 ± 610 6748 ± 626 6662 ± 564
Gamma, mean ± SD 1.54 ± 0.09 1.55 ± 0.08 1.52 ± 0.1∗

Lambda, mean ± SD 1.08 ± 0.01 1.08 ± 0.01 1.08 ± 0.01
Small world, mean ± SD 1.42 ± 0.07 1.43 ± 0.06 1.41 ± 0.08∗

Key: APOE, apolipoprotein E; FCSRT-TR, total recall of the Free and Cued Selective Reminding Test; GMV, gray matter volume; IQR, interquartile range; MMSE, mini-mental
state examination; PET, positron emission tomography; SUVr, standardized uptake value ratio. Cut-point for amyloid positivity SUVr > 0.79. ∗p < 0.05, ∗∗p < 0.01 different
between amyloid positive and amyloid negative subjects.

normalized clustering values γ are also associated with more
severe amyloid burden. Changes in normalized clustering
values γ suggest that the global network organization is also
affected by amyloid deposition. In our previous study we did
not find an association between normalized clustering and
amyloid CSF (Tijms et al., 2016). A potential explanation for
this discrepancy could be the difference in age between both
populations, as subjects in the current study are approximately
20 years older than in our previous CSF study (median age
56 vs. 76 years). As amyloid pathology increases with age,
subjects in the present study had on average more amyloid
pathology (28% being classified as amyloid abnormal vs.
6% in the previous study). The percentage amyloid positive
subjects falls within the expected range for the age group in
both studies (Jansen et al., 2015). Another explanation for
the differences in findings could be the method to measure
amyloid pathology. Some studies have suggested that amyloid
alterations may be detected somewhat earlier in CSF than on
PET (Mattsson et al., 2015; Palmqvist et al., 2016), which is
particularly relevant in cognitively normal subjects. CSF and
PET measure slightly different aspects of amyloid pathology.
In CSF, soluble amyloid beta 1–42 monomeres are measured,

which decrease when amyloid aggregates in the brain. Soluble
CSF amyloid beta 1–42 levels may also be influenced by other
factors such as amyloid beta production and non-fibrillary
aggregation (Mattsson et al., 2015), possibly making CSF more
sensitive for the earliest stages of amyloid aggregation. Amyloid
PET provides a more direct measure of amyloid deposition
with ligands binding to the amyloid beta in fibrillary plaques
(Mathis et al., 2012), leading to floor effects within the normal
range. It is likely that in our previous study in a younger
population that showed mostly normal CSF values, we captured
the earliest signs of incipient network disorganization related
to very early pathological changes. Lower clustering values
associated with increased amyloid load have also been observed
for structural connectivity measured with diffusion tensor
imaging, independent of cognitive status (Prescott et al., 2014).
Lower gray matter clustering values have previously also been
reported in subjects with AD dementia and subjects with mild
cognitive impairment who later convert to dementia (Tijms
et al., 2013a, 2018; Pereira et al., 2016). Taking together, these
studies might suggest that during the progression of Alzheimer
pathology, clustering values gradually worsen starting with
decreased regional connections, and progressively leading to

TABLE 2 | Associations between global amyloid standardized uptake value ratio (SUVr) and whole brain network measures.

Network property Model 1 β (standard error) Model 2 β (standard error)

Gray matter volume −0.1 (0.05)∗ NA
Size −0.03 (0.04) 0.04 (0.03)
Degree −0.03 (0.05) 0.02 (0.04)
Connectivity density −0.03 (0.06) −0.03 (0.06)
Clustering −0.12 (0.06)∗ −0.1 (0.05)
Path length −0.1 (0.05) −0.06 (0.05)
Betweenness centrality −0.05 (0.04) 0.02 (0.02)
Gamma −0.15 (0.05)∗∗

−0.09 (0.04)∗

Lambda −0.13 (0.05)∗ −0.08 (0.05)
Small world −0.16 (0.05)∗∗

−0.09 (0.04)∗

∗p < 0.05, ∗∗p < 0.01. Model 1 is adjusted for age and gender. Model 2 is adjusted for age, gender and total gray matter volume. NA, not applicable.
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FIGURE 1 | Relation between global amyloid standardized uptake value ratio (SUVr) and whole brain network measures. ∗ Indicates significant relationship after
correction for age and gender. Gamma and small world remained significant after additional correction for total gray matter volume (GMV). Dotted vertical line
represents the cut-off for amyloid positivity (SUVr > 0.79).

more extensive changes rendering networks more similar to
randomly organized networks.

Relationship Between Amyloid Burden and
Path Length
The relationship between amyloid pathology and path length
is less straightforward. In this study we found an association
between increased amyloid pathology on PET and lower
normalized path length λ values, although not significant when
correcting for GMV. In our earlier CSF study, we found an
opposite association with lower CSF values being associated with

increased un-normalized path length (Tijms et al., 2016). In
that study, the increased path length values were accompanied
by lower connectivity density values. With decreasing number
of connections, the average path length may increase. In the
present study, we did not find an association between amyloid
pathology and connectivity density. Possibly, this discrepancy
is explained by the age-difference between the populations
studied. Network density may decrease with advancing age,
and the average connectivity density was 15% in the present
study, compared to 20% in our previous younger cohort.
Path length values might also change non-linearly during the
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FIGURE 2 | Surface plot of standardized β values of the relationship between global amyloid SUVr and local clustering and path length. Upper row: higher global
SUVr was associated with lower clustering values in bilateral superior occipital gyri (left∗) and gyrus rectus; left precentral, middle occipital and superior parietal gyri,
precuneus, hippocampus and caudate; right superior medial orbito-frontal, inferior parietal, postcentral, supramarginal, and angular gyri, operculum, triangularis,
calcarine∗, cuneus, paracentral lobule and putamen. Lower row: higher global SUVr was associated with lower path length values in bilateral inferior and
orbito-frontal, middle and superior occipital (right∗), and lingual gyri, putamen and pallidum; left superior and medial frontal gyri, operculum, supplementary motor
area, gyrus rectus, paracentral lobule, caudate, inferior temporal gyrus and middle and superior temporal pole; right precentral, precuneus, inferior occipital, and
supramarginal gyri, insula, calcarine and cuneus. Data are presented for regions significant with an uncorrected p-value < 0.05. ∗ Indicates region significant at
pFDR < 0.05.

progression of Alzheimer pathology. Possibly, path length values
first increase in the earliest stages of amyloid accumulation
due to the loss of connections, and eventually decrease again
when the network breaks down and becomes more randomly
organized. Such an inverted U-shape trajectory of path length
changes has previously been observed in functional networks
during aging (Smit et al., 2012). Decreased path length values
associated with network breakdown might reflect advanced
disease stages when many brain areas show atrophy, and
thus would show spurious similarities. In patients with AD
dementia, both decreased and increased path length values have
been reported across and within different imaging modalities
(Xie and He, 2012; Tijms et al., 2013b; Kim et al., 2016;
Duan et al., 2017). Given these inconsistencies in literature
regarding path length changes in AD, and the influence of
other variables on path length, path length may not be a good
measure to assess and track AD-related gray matter connectivity
changes. Longitudinal studies are needed to further characterize
normal gray matter network changes associated with aging and
pathological changes associated with amyloid pathology and
brain atrophy.

Relationship Between Amyloid Burden and
Small World Values
Finally, we found an association between increased amyloid
SUVr and lower small world values. Small world values indicate
how much a network is locally integrated compared to a
random network while remaining short path length. Small world
values are based on the relation between normalized clustering
coefficient and normalized path length. Hence, changes in small
world values can be caused by a change in either of these
measures. In this study, the decrease in small world values
associated with increasing amyloid load can be explained by a
relatively higher decrease in normalized clustering compared to
normalized path length with increasing amyloid load. Decreases
in small world values have previously also been reported in
subjects with AD dementia compared to cognitively normal
subjects (Tijms et al., 2013a; Kim et al., 2016; Pereira et al., 2016),
and have been associated with future cognitive decline in amyloid
positive non-demented subjects (Tijms et al., 2018). Some studies
have also reported increased small-world values in subjects with
AD dementia for different imaging modalities (Tijms et al.,
2013b; Duan et al., 2017). Differences between studies might
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FIGURE 3 | Regional associations of amyloid positron emission tomography (PET) and gray matter network measures. (A) Association between regional amyloid
PET SUVr (rows) and regional gray matter network measures (columns). Scale indicates β correcting for age, gender, total intracranial volume (TIV) and regional GMV.
Only β with a p < 0.05 (uncorrected) are displayed. (B) Correlation between regional amyloid PET SUVr (rows) and global PET SUVr (column). Scale represents the
correlation coefficient. For both (A,B), the size and color of the circle represent the strength of the association. Ant, anterior; clu, clustering; L, left; lgt, path length;
Post, posterior; R, right.

be due to differences in methods to construct the networks or
non-linear changes with disease progression, possibly reflecting
non-linear changes in path length. Longitudinal studies are
needed to further investigate trajectories of network changes with
advancing disease.

Regional Associations Between Amyloid
PET and Gray Matter Network Measures
At a local level, increased global amyloid PET SUVr values were
associated with decreased clustering in orbito- and dorsolateral
frontal areas as well as parieto-occipital areas. Several of the
regional correlations correspond to our previous results with CSF
amyloid values (Tijms et al., 2016). Increased global amyloid PET
was also associated with decreased path length in various brain
areas. The associations between global amyloid and regional
changes were quite widespread, and some of these areas are
known regions of amyloid depositions (Braak and Braak, 1996).
When examining the relationship between regional amyloid
load and regional network changes, we found an effect in the
precuneus and orbito-frontal cortex. These may be the regions of
earliest amyloid accumulation (Villeneuve et al., 2015). When we
further studied the anatomical specificity of these relationships,
however, we found that much of the observed associations
between local network measures and amyloid pathology were
largely explained by global amyloid SUVr values. Our results are
in line with other studies that did not find a direct relationship
between local amyloid plaque deposits and localized measures of
neuronal injury (Jack et al., 2008; Altmann et al., 2015; Grothe
and Teipel, 2016). Possibly, the poor anatomical correspondence
between localized plaque burden and neuronal injury markers
is explained by the delay in time that these biomarkers become
abnormal. Amyloid pathology may start to accumulate up to

20 years before the onset of symptoms and plateaus at a
relatively early stage (Jack et al., 2013; Villemagne et al., 2013).
Markers of neurodegeneration on the other hand, are more
closely related to the onset of symptoms (Jack et al., 2009; Da
et al., 2014). Gray matter network alterations might be sensitive
to detect very subtle brain structural changes associated with
amyloid pathology, and precede more overt manifestations of
neurodegeneration such as atrophy. Longitudinal studies are
necessary to further examine the temporal relation between
amyloid deposits and gray matter network changes. Possibly,
the observed association between amyloid and gray matter
network measures may reflect the presence of tau in addition
to amyloid pathology. Regional tau deposits may show more
clear associations with regional disruptions of brain structure
and function (Ossenkoppele et al., 2016; Xia et al., 2017). With
the advent of new tau-binding ligands for PET, the anatomical
relation between amyloid plaques, tau deposits and gray matter
network changes can be examined in future studies (Villemagne
et al., 2015).

Effect of APOE
In agreement with previous studies in cognitively normal
subjects, we did not find an effect of APOE ε4 genotype, a
major genetic risk factor for AD, on the association between
amyloid pathology and gray matter network measures (Oh et al.,
2011; Tijms et al., 2016; Teipel et al., 2017). Although APOE
ε4 genotype has been associated with amyloid pathology in
cognitively normal subjects in a largemeta-analysis study (Jansen
et al., 2015), it seems that subsequent structural brain alterations
are not different for APOE ε4 carriers and non-carriers. This
suggests that APOE ε4 most strongly affects (the age of) amyloid
aggregation, but not necessarily the anatomical locations that will
show most pronounced structural brain changes.
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Limitations
A potential limitation of the present study is that we only
had local SUVr values available for a subset of anatomically
relevant cortical regions, for which the regional SUVr were all
highly correlated with global SUVr. As such, the possibility
that other anatomical areas might show more variability in
amyloid depositions cannot be excluded (Villain et al., 2012).
Additionally, amyloid load was assessed using semiquantitative
SUVr values, which do not take into account confounding
variables that may influence tracer uptake, such as flow effects,
and so this might have introduced noise to the data (van Berckel
et al., 2013). We presently studied subjects with subjective
memory complaints, a population that might be enriched for
preclinical AD, because these subjects may have higher chances
of amyloid pathology and be at increased risk of cognitive decline
(Jessen et al., 2014). Although this makes our study clinically
relevant, this limits generalizability to the broader population.
We used a cross-sectional approach to study the relationship
between amyloid PET and gray matter networks. Longitudinal
amyloid PET and structural MRI data might give more insight
into the relationship between amyloid pathology, gray matter
network disruptions and cognitive decline. Finally, it is possible
that the association between amyloid and gray matter network
changes reflects the presence of tau pathology. We were not
able to examine this in the present sample as we did not have
information on tau pathology from CSF or PET. Future studies
may focus on examining the relationship between amyloid, tau
and gray matter network changes.

CONCLUSION

In summary, we found that in cognitively normal subjects,
global amyloid burden is associated with alterations in gray
matter network measures. These results suggest that gray matter
network alterations may occur at a very early stage in the
pathogenesis of AD.
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