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Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder that destroys
cognitive functions. Recently, a number of high-profile clinical trials based on the amyloid
cascade hypothesis have encountered disappointing results. The failure of these trials
indicates the necessity for novel therapeutic strategies and disease models. In this
review, we will describe how recent advances in stem cell technology have shed
light on a novel treatment strategy and revolutionized the mechanistic investigation
of AD pathogenesis. Current advances in promoting endogenous neurogenesis and
transplanting exogenous stem cells from both bench research and clinical translation
perspectives will be thoroughly summarized. In addition, reprogramming technology-
based disease modeling, which has shown improved efficacy in recapitulating
pathological features in human patients, will be discussed.

Keywords: Alzheimer’s disease, neurogenesis, stem cell transplantation, induced pluripotent stem cell, disease
modeling

INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder characterized by progressive
cognitive decline. AD affects 5–7% of older adults globally (Prince et al., 2013), and the
expected number of affected patients is expected to grow continuously as the population ages
in most countries. Currently, however, there is no cure for this condition. The Food and Drug
Administration approved and actively marketed drugs for AD, including cholinesterase inhibitors
and N-Methyl-D-Aspartate antagonists, whose effects improve daily functions to a certain degree
(Rogers and Friedhoff, 1996; Tariot et al., 2004), yet they are not capable of altering disease
progression. Tremendous efforts have been made to develop novel therapeutics to potentially
reverse disease progression. Among the ongoing clinical trials designed to modify AD, a majority
of them are intended to ameliorate Aβ, including β-secretase inhibitors, immunotherapies, and
anti-aggregation agents (Cummings et al., 2017). Recently, several pioneering spotlighted trials
targeting Aβ have met with dissatisfying results in terms of improved cognitive function (Doody
et al., 2013; Salloway et al., 2014). One cannot jump to the conclusion that these negative clinical
outcomes refute the prevailing amyloid cascade hypothesis, yet lessons should be learned from
these dissatisfying results. Interestingly, successful elimination of amyloid in animal models, which
typically overexpress APP or presenilin (PS1, PS2) genes, does not guarantee successful cognitive
restoration in human patients. On the one hand, AD is a complex disease involving multiple cell
types and cellular processes; therefore, targets other than amyloid should be considered and tested.

Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease; ApoE, apolipoprotein E; APP, amyloid precursor protein; BDNF,
brain-derived neurotrophic factor; CNS, central nervous system; DG, dentate gyrus; fAD, familial Alzheimer’s Disease;
iNs, induced neurons; iPSC, induced pluripotent stem cell; MSC, mesenchymal stem cell; NFTs, neurofibrillary tangles;
NSC, neural stem cell; PS1, presenilin 1; PS2, presenilin 2; SVZ, subventricular zone.
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On the other hand, developing solid models that better mimic
disease pathologies in terms of NFTs, neuronal loss, and
cellular interactions will undoubtedly benefit drug screening and
mechanistic investigations. In this review, we will discuss how
current advances in stem cell technology might address these
unmet needs.

EFFORTS TO PROMOTE ENDOGENOUS
NEUROGENESIS

Substantial neuronal loss is observed even in mild AD patients
(Gómez-Isla et al., 1996). Intuitively, increasing the number
of neurons or replacing lost neurons are potential therapeutic
strategies for AD. Stem cells are capable of renewing themselves
continuously and differentiating into specialized cells, including
neurons. The human CNS was long considered as incapable of
neural regeneration. Approximately two decades ago, the fact that
neurons regenerate continuously throughout life was recognized
and gradually became widely accepted (Eriksson et al., 1998).
The process of generating new fate-specified, functional neurons
from neural progenitor cells, which are functionally incorporated
into a neural circuit, is defined as neurogenesis (Ming and Song,
2005). Across different species, neural regeneration mainly takes
place at the DG of the hippocampus and the SVZ along the
lateral ventricle (Kuhn et al., 1996; Alvarez-Buylla and Garcia-
Verdugo, 2002). Notably, the DG, which plays a crucial role in
memory formation processes [e.g., pattern separation (Leutgeb
et al., 2007)], is related to early memory loss in AD (Ohm, 2007).

Neurogenesis decline accompanies normal aging (Klempin
and Kempermann, 2007). Patients with neurodegenerative
disorders continuously lose neurons while neurogenesis is
insufficient. For AD, accumulating evidence suggests that
impaired neurogenesis plays a role in its pathogenesis (Hollands
et al., 2016). Multiple molecules involved in AD pathogenesis
[such as ApoE (Yang et al., 2011), PS1 (Gadadhar et al.,
2011), and APP (Ghosal et al., 2010)] were recognized to
take part in neurogenesis modulation. Conversely, inhibition
of NSCs results in deterioration of cognitive processes, such
as hippocampal-dependent memory (Imayoshi et al., 2008).
Therefore, understanding the mechanism of neurogenesis
dysfunction and intervening with neurogenesis represents
an alternative AD therapeutic strategy. Neurotrophic factors
and transcription factors involved in signaling pathways,
the vascular and immune systems, metabolic factors, and
epigenetic regulation are recognized to participate in regulating
neurogenesis (Horgusluoglu et al., 2017).

Generally, neurogenesis can be modulated by multiple factors
that are related to lifestyle, including learning (Gould et al., 1999),
exercise (van Praag et al., 1999), social interaction (Stranahan
et al., 2006), caloric restriction (Bondolfi et al., 2004), blood
oxygen level (Lange et al., 2016), and even microbial colonization
(Ogbonnaya et al., 2015). In this regard, advocating a healthy
lifestyle exerts at least a mild effect on preventing or controlling
AD in the long run. Future animal and epidemiological studies
need to elucidate the best feasible individualized strategy for
lifestyle modification combination that takes a patient’s genetic

background into account. Apart from lifestyle modification,
which exerts mild effects, several pioneering studies identified
key molecules or drugs that rescue or reverse NSC dysfunction
in elderly animal models.

Proneurogenic Effects of Medications
Available in the Clinic
Several drugs that are extensively used in the clinic have
demonstrated robust proneurogenic effects in animals.
Erythropoietin (EPO) is a cytokine that promotes hematopoiesis.
Clinically, recombinant EPO is indicated for anemia. Its
non-hematopoietic functions are being explored. During
midgestation, EPO receptors are localized to regions of the
neural tube that are responsible for neurogenesis (Alnaeeli et al.,
2012). In the adult mouse brain, EPO receptors were detected
primarily in the hippocampus, capsula interna, cortex, and
midbrain (Digicaylioglu et al., 1995). Therefore, enhancing EPO
receptor expression in the brain and increasing EPO is a potential
strategy to enhance neurogenesis. In healthy young mice, 3 weeks
of EPO administration significantly elevated the number of
pyramidal neurons and oligodendrocytes (Hassouna et al., 2016).
Furthermore, in an intracerebroventricular-streptozotocin
rat model of sporadic AD, 2 weeks of EPO administration
successfully prevented the memory deficit and the hippocampal
neuronal loss induced by streptozotocin (Cevik et al., 2017).

Similarly, granulocyte colony-stimulating factor, a
hematopoietic growth factor that stimulates proliferation
and differentiation of neutrophil precursors, has been linked to
enhanced neurogenesis (Schneider et al., 2005; Jung et al., 2006).
In animal models of AD, restored memory was also observed
(Tsai et al., 2007). If proven to be effective and safe in patients
with AD, administration of these hematopoietic growth factors
might be alternative options to modify symptoms.

Additionally, antidepressant drugs (primarily selective 5-HT
reuptake inhibitors) have been established to play a crucial
role in upregulating neurogenesis and achieving satisfying
treatment response in patients with depression (Taupin, 2006;
Hanson et al., 2011). Future studies need to determine whether
antidepressants are efficacious for symptom reduction in patients
with AD without comorbid depression. Further, additional
research is needed to understand the relative contribution of
enhanced neurogenesis and serotonin signaling, because previous
studies have attributed reduced Aβ level and plaque formation
in an aged APP/PS1 mouse model after EPO treatment to
serotonin signaling regulation (Cirrito et al., 2011; Sheline et al.,
2014).

Correcting Aberrant Metabolism to
Modulate Neurogenesis
Lipids are a major component of the brain. Aberrant lipid
metabolism is highly associated with AD (Di Paolo and
Kim, 2011), yet the exact mechanism remains to be fully
uncovered. Recent evidence indicates its role in neurogenesis
defect. Lipid droplets selectively accumulated in the SVZ were
found to distort NSCs and their daughter neuroblasts before
amyloid accumulation in a 2-month-old 3xTg AD mouse model
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(Hamilton et al., 2015). Using an imaging mass spectrometry-
based lipidomics strategy to identify the lipid responsible, oleic
acid accumulation within the SVZ was observed (Hamilton
et al., 2015). Microanalysis of microdissected SVZs demonstrated
local aberrant lipid metabolism in the 3xTg brain, including
increased expression of stearoyl-CoA-desaturase, the rate-
limiting enzyme of oleic acid synthesis. Strikingly, when oleic acid
synthesis was inhibited by intracerebroventricular infusion with
a stearoyl-CoA-desaturase inhibitor, NSC proliferation reduction
in the DG and SVZ was rescued in 2-month-old 3xTg mice
(Hamilton et al., 2015). Current knowledge on the interaction
between lipid metabolism and NSCs in both physiological
and pathological conditions is inadequate. With advances in
cutting-edge technology to trace lipid metabolism in the brain,
future research needs to unravel the roles played by diverse
lipid metabolites and metabolic processes in NSC dysfunction
and AD.

Mature neurons are highly dependent on the mitochondrial
electron transport chain and oxidative phosphorylation to
meet the high energy demand. Using pharmacological and
genetic approaches, the metabolic switch from glycolysis
to mitochondrial electron transport chain and oxidative
phosphorylation was reported to be required for NSCs to give
rise to intermediate progenitor cells in adult neurogenesis
(Beckervordersandforth et al., 2017). Moreover, eliminating
the function of mitochondrial transcription factor A (Tfam)
replicated age-related neurogenesis decline in young mice. The
most exciting part of this study is that short-term treatment
with piracetam, a drug that improves mitochondrial function
through a number of pathways, was sufficient to double
the number of proliferating cells in an aged animal model.
Numerous lines of evidence have indicated the involvement
of mitochondrial dysfunction in the pathogenesis of AD
(Swerdlow et al., 2014); therefore, additional studies are
needed to analyze the role of NSC’s metabolic switch in AD
pathogenesis.

Recent studies revealed that NSC behavior is regulated
by multiple metabolism-related processes, such as oxygen
consumption, ATP production, and reactive oxygen species
signaling (Almeida and Vieira, 2017). The metabolic drug
metformin (Wang et al., 2012; Fatt et al., 2015) was recognized
to take part in neurogenesis modulation, suggesting that the
complex nature of metabolism and neurogenesis remains to be
fully investigated.

Young Blood: ‘Resetting the Aging Clock’
Heterochronic parabiosis is an experimental method whereby
the circulatory systems of young and elderly animals are
joined and shared. Though controversial, there have been
studies on the relationship between heterochronic parabiosis
and rejuvenation for over a century (Conboy et al., 2013). The
rationale behind these attempts is that there are signals from
both the CNS itself and the body system outside the CNS
that instruct neurogenesis in an age-related pattern. As NSCs
in the CNS are exposed to blood vessels and cerebrospinal
fluid, it is believed that by interfering with the blood carrying
these signals, age-related neurodegeneration might be rescued.

Administration of young plasma improves synaptic plasticity in
the DG and elevated the cognitive function in elderly mice with
the involvement of the cyclic AMP response element binding
protein (Creb) signaling pathway (Villeda et al., 2014). Hunting
for youth-promoting factors has attracted much research interest.
Growth and differentiation factor 11 (GDF11) is one of the
candidates that have shown promising potential regarding
skeletal muscle, heart, and CNS rejuvenation (Jamaiyar et al.,
2017). After systematic GDF11 administration, NSC proliferation
in the SVZ was significantly elevated (Katsimpardi et al.,
2014).

Conversely, chemokine CCL11, major histocompatibility
complex component β2-microglobulin (β2-M), and transforming
growth factor β (TGF-β) have been recognized as aging-
promoting factors, which are elevated in the blood of the elderly
and contribute to decreased neurogenesis and learning and
memory (Villeda et al., 2011; Smith et al., 2015; Yousef et al.,
2015). Furthermore, neurogenesis and cognitive functions can
be mitigated in aged mice by reducing β2-M expression (Smith
et al., 2015). In addition, inhibition of TGF-β1 signaling enhanced
neurogenesis, as well as normalizing the β2-M level (Yousef et al.,
2015).

It should be noted that enhancing neurogenesis does not
equate to rejuvenating the brain. Rather than neurogenesis,
elevated synaptic plasticity and hippocampal-dependent
cognition were observed after intravenous administration of
human cord plasma in aged mice (Castellano et al., 2017).
Stem cell dysfunction is only one of the nine hallmarks of
aging (López-Otín et al., 2013); therefore, future studies need to
decipher the relative contribution of various modulators.

Shared mechanisms [e.g., synaptic plasticity (Hatanpää et al.,
1999)] do exist between healthy aging and AD conditions;
however, whether the interventions described above can
sufficiently rescue cognitive decline in AD animal models and
patients remains to be explored. The first clinical trial on
transfusion of plasma from young donors to aged patients with
AD is ongoing (identifier NCT02256306 on ClinicalTrials.gov).
As previous studies have attributed better cognitive test results
after plasma exchange to enhanced peripheral clearance of Aβ

(Boada et al., 2009; Liu et al., 2015), plasma exchange studies
need to use multiple outcome measures to evaluate neurogenesis
elevation and increased amyloid clearance. Extra caution
must be taken in clinical practice because of complications
of plasma exchange (e.g., anaphylactic reaction). As more
youth-promoting and aging-promoting factors are likely to
be identified, it might be a prudent strategy to administer
cocktail therapy comprising key modulators with known side
effects.

Looking Forward
A large number of current neurogenesis studies based on animal
models are not fully applicable to humans. However, postmortem
studies are limited by their retrospective study design, tissue
damage after death, and incomplete patient history information.
Although attempts have been made to identify key metabolic
biomarkers (Manganas et al., 2007; Spalding et al., 2013),
current non-invasive macroscopic neuroimaging measures in
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the brain, such as magnetic resonance imaging and positron
emission tomography are not sufficiently specific, precise, or
sensitive to detect neurogenesis (for a review, see Ho et al.,
2013). Collaboration between different academic domains is
urgently needed to develop precise in vivo neurogenesis detection
techniques.

Limited by the available research techniques, current
understanding of neurogenesis dysfunction in AD is lacking.
Numerous studies have pointed out that neurogenesis alterations
start relatively early in the course of AD progression (Mu
and Gage, 2011; Unger et al., 2016), making it a promising
target for early intervention or prophylaxis. Therefore, a
mechanistic insight into when and how early neurogenesis
alteration is triggered is required. Furthermore, with advances in
neurogenesis detection techniques in adult humans, neurogenesis
alteration might be an early marker of AD. By contrast, during
AD progression, how the classic pathology (e.g., amyloid plaques)
interacts with neurogenesis is not well understood. Interventions
that promote the function of newly generated neurons in the
context of AD pathology remains to be investigated.

To summarize, accumulating evidence suggests the promising
potential of intervening with endogenous NSC dysfunction
and deteriorated neurogenesis to improve AD-related cognitive
decline. More molecules involved in neurogenesis are likely
to exist, and identifying these molecules and their underlying
mechanisms might pave the way for novel AD therapeutics.

TRANSPLANTING STEM CELLS TO
SUPPORT NEURONS

Transplanting exogenous stem cells into CNS is an alternative
strategy that has attracted much research interest. Significant
effort has been made to engraft stem cells into degenerated neural
tissue. However, the number of stem cells transplanted into brain
decreased over time (Khoo et al., 2011). The efficacy of stem
cell transdifferentiation into grafted tissue is low (Phinney and
Prockop, 2007).

Accumulating evidence suggests that stem cells exert
neurotrophic effects after transplantation (Lu et al., 2003;
Martino and Pluchino, 2006). Transplanted stem cells elevate
the levels of various factors, including BDNF (Blurton-Jones
et al., 2009), glial cell line-derived neurotrophic factor (GDNF)
(Kim S. et al., 2012), insulin-like growth factor 1 (IGF-1),
Glucagon-like peptide-1 (GLP-1) (Klinge et al., 2011), vascular
endothelial growth factor (VEGF) (Garcia et al., 2014), to exert
a paracrine effect. Recent research comprising transplanting
stem cells in animal models are listed in Table 1. Stem cells
have been recognized to improve various cellular functions in
animal models of AD, including synaptic strength (Blurton-Jones
et al., 2009), neurogenesis (Kim S. et al., 2012; Kim D.H. et al.,
2015), microglial activity (Lee et al., 2009a; Yang et al., 2013),
angiogenesis (Garcia et al., 2014), mitochondrial function
(Zhang et al., 2015), autophagy (Shin et al., 2014), and apoptosis
(Lee et al., 2010). Stem cell transplantation influences AD via
multiple mechanisms; therefore, it is promising compared with
conventional treatments that target a single pathology.

Transplanting Genetically Altered Neural
Stem Cells
Most NSC transplantation studies successfully rescued cognitive
dysfunction in animal models of AD, yet failed to ameliorate
Aβ deposition (Blurton-Jones et al., 2009; Zhang et al., 2014;
Ager et al., 2015). To maximize the efficacy of transplantation, a
strategy that harnesses NSCs to deliver key disease-modulating
proteins has been proposed. Overexpression of neprilysin, the
key Aβ degrading enzyme, in transplanted MSCs significantly
reduces synaptic loss and the Aβ level (Blurton-Jones et al.,
2014). Other cellular functions that are of significant importance
to AD are modulated by transfecting NSCs with other factors.
BDNF-overexpressing NSCs induced a better recovery of
the hippocampal BDNF level, synaptic density and stronger
cognitive function (Wu et al., 2016). IGF-1 is another trophic
factor that promotes differentiation toward neuronal cells
and is essential for neural proliferation and survival (Russo
et al., 2005). An in vitro study overexpressing of IGF-1 in
cortical neurons demonstrated increased GABAergic neuron
differentiation, increased VEGF production, and elevated
survival of the transplanted cells (McGinley et al., 2016).
Despite showing promising potential, this strategy faces
major challenges. The safety and efficacy of transplanting
genetically altered cells in humans has not yet been validated.
Furthermore, this strategy requires stem cell genome alteration,
which could face stricter regulatory restrictions in clinical
translation.

Inflammatory Responses Modulated by
Mesenchymal Stem Cell Transplantation
Apart from NSCs, the most widely used source of stem cells
for transplantation are MSCs. MSCs are cells that reside around
blood vessels in bone marrow, supporting hematopoiesis and
cartilage regeneration, and complementing the differentiated
osteoblasts and adipocytes (Bianco et al., 2013). Not only
do they differentiate into adipocytes, myocytes, osteoblasts,
chondrocytes, and cardiovascular, and neurogenic cell types, but
also tend to reside at sites of injury and inflammation (Karp
and Leng Teo, 2009). Studies have confirmed modulation of
inflammation after MSC transplantation.

Inflammation plays a critical role in AD pathogenesis
(Heppner et al., 2015). Inflammatory responses in the CNS reflect
endogenous efforts to clear pathological deposits. Microglia are
the resident immune cells in the brain, which are involved
in both neural protection and death. A number of studies
have confirmed that MSC transplantation modulates microglial
activity in the CNS to ameliorate Aβ (Lee et al., 2009a; Lee
H.J. et al., 2012). Moreover, there are two opposite microglial
phenotypes in the CNS: M1 and M2. M1 microglia releases
pro-inflammatory cytokines such as TNF-α, IL-1β, and reactive
oxygen species. M2 microglia, however, are anti-inflammatory.
M2 microglia are induced by IL-4, IL-13, apoptotic cells, or
other anti-inflammatory cytokines (Tang and Le, 2016). Several
previous trials on mice confirmed that M2 microglia are involved
in ameliorating Aβ after transplantation (Lee et al., 2009b; Ma
et al., 2013; Yang et al., 2013). In this regard, targeting the
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M1/M2 microglia balance is a potential strategy to ameliorate
inflammation in AD. CCL5 secreted by transplanted MSCs, for
instance, has been recognized to activate M2 microglia (Lee J.K.
et al., 2012).

The active homing mechanism of MSCs makes their systemic
administration (e.g., intravenous injection) possible, which
would possibly avoid direct invasion of the brain. Besides, they
are convenient to access, lack ethical concerns, and have low
immunogenicity. MSCs hold significant potential in clinical use.
However, our current understanding of the MSC trafficking
mechanism is lacking (Karp and Leng Teo, 2009). One recent
study reported a low efficacy of MSC homing to lesion sites in
an aged AD mouse model (Fabian et al., 2017). With increasing
insights into the homing mechanism, manipulation to enhance
the efficacy of transplanted MSCs that home specifically to the
brain might benefit MSC transplantation.

Extracellular Vesicles Derived From Stem
Cells
Besides secreting soluble molecules such as BDNF (the classic
paracrine effect), recent studies have explored the therapeutic
potential of stem cell-derived extracellular vesicles (Katsuda
et al., 2013a). Exosomes are cell-derived membrane vesicles
containing lipids, proteins, mRNAs, and microRNAs. Recently,
they have been recognized to be one of the key mediators of
cell-to-cell communication. In addition to functional proteins,
they transfer genetic information to recipient cells to regulate
physiological or pathological processes (Valadi et al., 2007;
Record et al., 2011). For instance, one study confirmed that
injection of exosomes secreted by self-derived dendritic cells
achieved 60% mRNA and protein knockdown of β-secretase 1
and 55% Aβ reduction using short interfering RNAs in wild-
type mice (Alvarez-Erviti et al., 2011). From this perspective,
it is likely that stem cells transmit tissue repair or regeneration
signals to lesions via exosomes. Current research has revealed
the potential of stem cell-derived exosomes in the treatment
of stroke (Xin et al., 2013), myocardial ischemia (Lai et al.,
2010), and liver fibrosis (Li et al., 2012). For AD, one
recent study suggested that adipose tissue-derived MSCs secret
exosomes that contain enzymatically active neprilysin when co-
cultured with Aβ (Katsuda et al., 2013b). Looking forward,
harnessing stem cells to either deliver designed drugs or secret
a combination of molecules and RNAs that represent the
body’s response to the pathological microenvironment with
spatial precision is a promising strategy (El Andaloussi et al.,
2013). Furthermore, although there is a long way to go,
administration of exosomes derived from stem cells represents
an alternative therapy for AD to circumvent relatively unsafe cell
transplantation.

Clinical Translation
There has been growing interest in exploring the potential
of treating patients with AD using stem cell transplantation.
Ongoing clinical trials intended to transplant stem cells into
patients with AD are listed in Table 2. Various sources
of MSCs, including human umbilical cord blood, placental

tissue, autologous adipose tissue, and ischemia-tolerant MSCs,
are being tested in clinical trials. Accessibility, invasiveness,
potential tetratomic induction, proliferation rate, cost, and
efficacy should be thoroughly evaluated and compared. The
following paragraphs summarize several concerns and advances
regarding transformation from the bench to the bedside.

First, the efficacious time frame for AD treatment is not
unknown. Multiple studies demonstrated increased synaptic
strength in animal models after NSC transplantation (Bae et al.,
2007; Blurton-Jones et al., 2009; Kim D.H. et al., 2015). Previous
studies have pointed out that synaptic dysfunction occurs before
plaque formation (Selkoe, 2002), and loss of synapses in the
neocortex and hippocampus is the predominant factor that
correlates with cognitive impairment in AD (Terry et al., 1991).
Although not carefully tested in clinical trials, it is intriguing
to think that NSC transplantation might protect patients with
AD at an early stage. By contrast, AD is a progressive
chronic disease that typically lasts several years after initial
diagnosis; therefore, the appropriate time window for stem cell
transplantation in the course of AD progression requires further
exploration. A large number of preclinical studies used mouse
models at a relatively young age or at an early-stage of disease
progression, yet the observation time was not long enough.
One study using the Tg2576 mouse model, which develops
age-related cognitive defects, demonstrated that transplantation
recovered cognition and ameliorated neuropathology in 12-
month-old mouse, while transplantation failed to recover
either cognition or neuropathology in a 15-month-old mouse
(Kim J.A. et al., 2015). Future research needs to elucidate
whether stem cell transplantation is efficacious for patients
with AD in an advanced stage, and whether stem cell
transplantation is efficacious and necessary for prophylactic
purposes.

As transplantation research transforms from the laboratory to
the clinic, large-scale stem cell transplantation requires proper
quality control protocol. Recent preclinical studies on AD (Marsh
et al., 2017) and cervical spinal cord injury (Anderson et al.,
2017) demonstrated that clinical-grade stem cell transplantation
might not be as effective as research-grade cell transplantation.
To prioritize the efficacy and safety of transplantation for human
patients, longer-term observation on multiple animal models
after transplantation and more comparability tests on large-scale
stem cell manufacturing are needed.

Invasion of the brain might be a major concern for elderly and
weak patients with AD. Several studies reported novel methods to
circumvent invasive surgery. Intranasal and intravenous routes
are being explored (Kim S. et al., 2012; Danielyan et al., 2014;
Kanamaru et al., 2015). Recent advances in brain imaging allow
magnetic resonance imaging-guided focused ultrasound to target
specific structures, involving transient disruption of the blood–
brain barrier to deliver therapeutic stem cells from blood to the
parenchyma (Burgess et al., 2011). Novel sources of stem cell
are also being tested. For instance, dental pulp cells are cranial
neural crest-derived multipotent cells that present neurotrophic
properties (Mead et al., 2017). They are being tested as a potential
stem cell source for transplantation in an AD model (Apel et al.,
2009; Ahmed Nel et al., 2016).
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TABLE 2 | Selected clinical trials registered at ClinTrials.gov on stem cell therapy for Alzheimer’s disease as of October, 2017.

NCT number Trial title Interventions in
experimental arm

Sponsor Status

NCT02833792 A Phase IIa Study of Allogeneic Human Mesenchymal Stem
Cells in Subjects With Mild to Moderate Dementia Due to
Alzheimer’s Disease

Human adult ischemia-tolerant
mesenchymal stem cells and
lactated Riunger’s solution via
intravenous administration

Stemedica Cell
Technologies,
Inc.,
United States

Recruiting
starts from
June, 2016

NCT02600130 A Phase I, Prospective, Randomized, Double-Blinded,
Placebo-controlled Trial to Evaluate the Safety and Potential
Efficacy of Longeveron Allogeneic Human Mesenchymal Stem
Cell (LMSCs) Infusion Versus Placebo in Patients With
Alzheimer’s Disease

Longeveron mesenchymal
stem cells (high-dose or
low-dose) via peripheral
intravenous infusion

Longeveron
LLC,
United States

Recruiting
starts from
August, 2016

NCT02054208 A Double-Blind, Single-Center, Phase 1/2a Clinical Trial to
Evaluate the Safety and Exploratory Efficacy of Intraventricular
Administrations of NEUROSTEM Versus Placebo Via an
Ommaya Reservoir in Patients With Alzheimer’s Disease

NEUROSTEM R© (human
umbilical cord blood-derived
mesenchymal stem cells) via
intraventricular administrations

Medipost Co.
Ltd.,
South Korea

Recruiting
starts from
February, 2014

NCT01297218 A Phase 1/2, Randomized, Double-Blind, Placebo-Controlled
Study to Evaluate the Safety and Efficacy of AstroStem,
Autologous Adipose Tissue Derived Mesenchymal Stem Cells,
in Patients With Alzheimer’s Disease

Autologous adipose tissue
derived mesenchymal stem
cells via intravenous injection

Nature Cell Co.
Ltd.,
South Korea

Recruiting
starts from
April, 2017

NCT02899091 A Randomized, Double-Blind, Placebo-Controlled, Phase I/IIa
Clinical Trial for Evaluation of Safety and Potential Therapeutic
Effect After Transplantation of CB-AC-02 in Patients With
Alzheimer’s Disease

CB-AC-02 (placenta-derived
mesenchymal stem cells) via
injection

CHABiotech
CO., Ltd.,
South Korea

Not yet
recruiting

NCT02912169 An Open-label, Non-randomized, Multi-Center Study to Assess
the Safety and Effects of Autologous Adipose-Derived Stromal
Vascular Fraction (AD-SVF) Cells Delivered Intravenous (IV) and
Intranasal in Patients With Alzheimer’s Disease

Autologous Adipose-Derived
Stromal Vascular Fraction
(AD-SVF) Cells Delivered
Intravenous (IV) and Intranasal

Ageless
Regenerative
Institute,
United States

Recruiting
starts from
November,
2015

NCT03297177 Use of Autologous Stem Cell Use in Neurological
Non-neoplastic Disorders and Disease

Autologous stem/stromal cells
derived from subdermal fat
deposit via intravenous
parenteral route

Healeon
Medical Inc.,
United States

Recruiting
starts from
December,
2017

Another concern in current clinical practice is transplantation
rejection. To lower the risk of a serious immune response,
researchers are exploring the potential of either autogenic
stem cells (e.g., adipose tissue-derived MSCs or bone marrow-
derived MSCs) or allogenic cells with hypo-immunogenic
properties [e.g., umbilical cord-derived MSCs (Weiss et al.,
2008)]. Alternatively, to help the engrafted cells avoid possible
immune rejection, cell encapsulation techniques have been
applied in several studies. With a polymeric semi-permeable
membrane that allows the exchange of essential factors for
cell metabolism, the encapsulated cells are protected from
immune attack for long-term stable delivery of therapeutic
agents. Several studies have used encapsulated somatic cells
to deliver various growth factors to treat AD in animal
models (Garcia et al., 2010; Spuch et al., 2010) and humans
(Eriksdotter-Jönhagen et al., 2012; Wahlberg et al., 2012). One
study demonstrated suppression of microglia and astrocytes
using encapsulated MSCs transfected with GLP-1 (Klinge et al.,
2011).

Last but not least, as has been described previously, the
number of transplanted stem cell is prone to decrease over
time. Increasing the survival rate of transplanted stem cells
and lowering negative responses in the body after their death
is crucial for sustaining a long-term therapeutic effect. These
concerns need to be resolved before stem cell transplantation
goes into clinical practice. Regulation and oversight should be

strengthened to ensure that the tremendous potential of stem
cells is fully realized.

INVESTIGATING ALZHEIMER’S DISEASE
BY REPROGRAMMING TECHNIQUES

It is difficult to obtain tissue samples from the human
CNS to model disease; therefore, previous insights into AD
relied heavily on post-mortem autopsy, which represents the
pathology at the end of the disease, or in transgenic mice
expressing or overexpressing APP or PS mutations. These animal
models were developed on the basis of the prevailing amyloid
cascade hypothesis, which holds that it is the deposition of
APP cleavage products that causes the pathological changes.
However, they are not capable of replicating the full spectrum
of AD pathology observed in human patients, such as tau
pathology, mutations in non-coding regions of the genome,
and neurodegeneration. Furthermore, approximately 3–32% of
patients clinically diagnosed with AD are amyloid-negative on
positron emission tomography imaging (Ossenkoppele et al.,
2015). The huge heterogeneity in AD patients requires them to be
divided into subgroups or to be considered as individuals in terms
of mechanistic studies and drug screening. The lack of proper
disease models might be one of the reasons why drugs proven to
efficiently ameliorate Aβ in animal models do not perform well
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in the human brain where much more complex pathologies are
involved.

Induced pluripotent stem cells (iPSCs) are created using
a technique that reprograms somatic cells back to the
pluripotent-state by the overexpression of key transcription
factors (Takahashi et al., 2007). The introduction of iPSCs
has revolutionized neurological disease modeling. In 2011, the
first AD model using iPSCs was reported (Yagi et al., 2011).
Pluripotent stem cells were induced using five transcription
factors (OCT4, SOX2, KLF4, LIN28, and NANOG) from
fibroblasts of patients with familial AD. These iPSCs were then
induced into neurons, which demonstrated typical pathology.
Huge heterogeneity exists in patients with AD; therefore, the
iPSC technique offers unique opportunities to study patients
by subgroups and screen drugs in a patient-specific manner.
The following paragraphs will review the phenotypes and drug
reactions presented in recent iPSC-based AD models generated
from a variety of patients.

Familial Alzheimer’s Disease
Familial AD (fAD) affects about 0.5% of all patients with AD, the
majority of which are autosomal dominant with full penetrance
that typically presents before 65 years old. To generate amyloid-
β peptides, two sequential cleavages of APP occur, cleavage by
β-secretase in the extracellular space, and then by γ-secretase
within the membrane. Mutations in PS1, PS2, and APP genes are
the major causes of fAD.

The presenilin protein is an essential component of
γ-secretase. Gamma-secretase cleaves at multiple sites; therefore,
Aβ varies in amino acid length (36–43 residues). Aβ40 is the
most abundant type and Aβ42 is most prone to self-aggregation
(Haass and Selkoe, 2007). iPSC-based studies observed elevated
Aβ42/Aβ40 (Yagi et al., 2011; Koch et al., 2012; Sproul et al.,
2014). Furthermore, a γ-secretase inhibitor effectively reduced
Aβ secretion (Yagi et al., 2011; Koch et al., 2012). NSCs from
iPSCs with the PS1 L166P mutation were generated (Koch et al.,
2012). That study demonstrated selectively decreased Aβ40
secretion and an elevated Aβ42/Aβ40 ratio. The Aβ42 level did
not differ from the control; therefore, the authors concluded
that partial dysfunction of γ-secretase occurs in the PS1 L166P
mutation, while other γ-secretase functions remain intact. Sproul
et al. (2014) studied neural progenitor cells derived from iPSCs
carrying the PS1 A246E or M146L mutations. Compared with
the control, molecular profiling identified 14 genes with altered
expression in the PS1 mutation lines. Among them, five genes
were differentially expressed in late-onset AD. This study shed
light on identifying genetic expression alterations, which will
facilitate further studies on fAD pathogenesis.

Dissatisfying clinical outcomes cast doubt on the amyloid
cascade hypothesis; therefore, its validity should be thoroughly
tested using various models. Cells from patients with fAD
carrying APP mutations provide models to study the relationship
between Aβ and tau. Israel et al. (2012) studied two iPSC lines
generated from patients with fAD who carried a duplication of
the APP gene. Elevated Aβ40, active GSK3β (the kinase that
phosphorylates tau at Thr231), phosphorylated tau at Thr231
and total tau was observed. To test if there was a direct

causative relationship between the APP processing product
and phosphorylated tau and active GSK3β, β-secretase and
γ-secretase inhibitors were added. Notably, only the β-secretase
inhibitor treatment partially reduced phosphorylated tau and
active GSK3β levels, indicating that APP processing (products
other than Aβ) is responsible for tau Thr231 phosphorylation.
This study also confirmed the assumption that early endosomes
are present in iPSC-iNs, implying that these early endosomes take
part in modulating APP processing.

Muratore et al. (2014) explored the relationship between APP
processing and tau in the APP V717I mutation. The APP V717I
mutation alters the initial cleavage site of γ-secretase, causing
altered APP cleavage by both β-secretase and γ-secretase. The
iNs demonstrated increased levels of both Aβ42 and Aβ38,
and increased total and phosphorylated tau. Early Aβ antibody
treatment reverses tau, suggesting a partially causal relationship
between altered APP processing (Aβ) and tau formation.

Moore et al. (2015) studied the relationship between APP
processing and tau in different patients with AD of different
genetic backgrounds. iPSC lines which altered the APP dosage
(APP duplication) or ε-cleavage site (APP V717I) demonstrated
elevated total or phosphorylated tau levels, while PS1 mutants
(Y115C and intron 4), which elevated the Aβ42/Aβ40 ratio,
did not. Furthermore, a β-secretase inhibitor, which prevents
the β-C-terminal fragment (CTF) from forming, reduced the
intracellular tau level. Meanwhile, a γ-secretase inhibitor that
promotes β-CTF aggregation elevated the intracellular tau level.
Therefore, Moore et al. (2015) proposed an intriguing hypothesis
that the APP cleavage product (β-CTF) is involved in regulating
tau pathology. Whether or not β-CTF is related to advanced
tau/NFT pathology remains to be investigated.

Kondo et al. (2013) studied the phenotype of the APP-
E6931 mutation, a rare autosomal recessive mutation, using
iPSCs. Intriguingly, rather than extracellular Aβ aggregation,
intracellular accumulation of Aβ oligomers was observed in this
APP-E6931 line. In addition, intracellular Aβ aggregation leads
to a cellular stress response causing endoplasmic reticulum and
oxidative stress. One of two sporadic patient lines demonstrated
the same phenotype as APP-E6931 mutation, while the
APP-V717L mutation did not. Furthermore, only the lines
with intracellular Aβ are responsive to Docosahexaenoic acid
treatment. The authors proposed dividing patients with AD into
the intracellular Aβ type and extracellular Aβ type to achieve
personalized treatment.

Sporadic Alzheimer’s Disease
The majority of patients with AD suffer from sporadic AD
(sAD). As revealed by several iPSC studies, large heterogeneity
exists among the phenotypes and drug responsiveness of patients
with sAD (Israel et al., 2012; Kondo et al., 2013). Large-
scale genome-wide association studies have identified numerous
susceptible genetic variations in patients with late-onset sAD
(Lambert et al., 2013), demonstrating the complex genetic nature
of sAD. However, the biological functions of those key genes
associated with the pathogenesis of AD have not been well
studied. Furthermore, altered levels of Aβ were not observed in
a large proportion of patients with sAD (Toledo et al., 2013),
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and tau predicts dementia symptoms better than Aβ (Brier
et al., 2016). Thus, conventional animal models, which do not
involve tau pathology, are not appropriate to study sAD. Several
recent studies using iPSC-based modeling gained insights into
the function of these genes and provided examples of how to
study sporadic diseases.

Apolipoprotein E (APOE), the gene encoding the key protein
for lipid catabolism has been recognized to play a key role in
the pathogenesis of sAD. Sortilin-related receptor, L [DLR class]
(SORL1) is a neuronal APOE receptor that is predominantly
expressed in the CNS. Young et al. (2015) reported the
function of SORL1 single nucleotide polymorphisms in non-
coding regions in an iPSC-based model. When treated with
BDNF, protective phenotypes (carrying one or two protective
alleles) responded with significantly higher SORL1 expression
and Aβ reduction compared with those of the risk phenotypes
(carrying two risk alleles). Furthermore, SORL1 knockdown
confirmed that BDNF-induced Aβ reduction is dependent on
SORL1 expression. This study indicated that neurotrophic factors
such as BDNF are potentially regulated by disease risk-related
genetic mutations. Furthermore, this study implied the necessity
of detailed stratification of patients with sAD to tackle the
pathogenetic mechanisms.

Hossini et al. (2015) studied genetic expression by
transcriptome analysis and demonstrated the first protein
interaction network from one patient with sAD. By analyzing
the transcriptome, the authors reported the upregulation
and downregulation of several genes that differed from
fAD-associated genes. Moreover, the authors observed ubiquitin-
proteasome system dysfunction in this patient with sAD
compared with an age-matched control. Protein interaction
network analysis revealed the involvement of APP and GSK3β.

Three-Dimensional Modeling and
Chimeric Modeling
In humans, hyperphosphorylated tau aggregates in dendrites
and axons to form dystrophic neurites, and aggregates in
cell bodies to form NFTs. As shown in Table 3, conventional
iPSC-based modeling did not demonstrate robust NFTs.
Choi et al. (2014) developed a three-dimensional human
NSC-derived in vitro model of AD. Matrigel containing
extracellular matrix proteins was used as the support.
By limiting Aβ diffusion, this three-dimensional culture
promoted Aβ aggregation and its downstream cascade. In
addition, it closely mimics the real cell environment with
regard to vertical cell growth, the synaptic distance between
cells, and cell maturation (D’Avanzo et al., 2015). In Choi
et al.’s study, iPSC lines carrying APP and PS1 mutations
in three-dimensional culture successfully demonstrated
robust extracellular Aβ plaques and NFTs. Furthermore,
β-secretase and γ-secretase inhibitors reduced the Aβ level
as well as the tau level, supporting the amyloid cascade
hypothesis.

Another type of three-dimensional culture system, termed
organoids or spheroids, is a scaffold-free self-organizing
structure (Lancaster et al., 2013). Raja et al. (2016) developed
brain organoids from iPSCs derived from patients with fAD.

The organoid successfully recapitulated Aβ aggregation,
hyperphosphorylated tau, and endosome abnormalities.
Treatment with β-secretase and γ-secretase inhibitors reduced
the Aβ and tau pathology. Lee et al. (2016) generated a three-
dimensional neuro-spheroid culture from blood cell-derived
iPSCs from patients with sAD. Similar to Raja et al.’s findings,
the three-dimensional neuro-spheroids demonstrated Aβ

aggregation, and hyperphosphorylated tau. Notably, the authors
reported reduced Aβ-ameliorating efficacy of the β-secretase and
γ-secretase inhibitors in three-dimensional model compared
with a two-dimensional model. More research is needed to
determine the cause of the diminished drug efficacy in the
three-dimensional model. This type of three-dimensional
modeling offers a great opportunity to study the role of cellular
interactions (e.g., astrocytes and microglia involvement and
neural cytoskeletal malfunction) in AD progression.

Chimeric modeling is another strategy to mimic the complex
nature of multiple cellular interactions in the human brain.
Espuny-Camacho et al. (2017) reported grafting healthy human
neural precursor cells derived from iPSCs into the frontal
cortices of immunodeficient newborn transgenic APP/PS1-21
mice. When exposed to Aβ, microglia, and astrocytes, the
engrafted healthy human neurons developed significant
degeneration, as observed by decreased synaptic density and
dystrophic neurites, which has not been fully recapitulated in
previous animal models. In comparison, the transplanted mouse
cells did not develop striking neurodegeneration, indicating
that it is crucial to use human neurons rather than murine
neurons. Six months after transplantation, there was substantial
human cell loss. Furthermore, the transplanted human cells
demonstrated necrosis, 3R to 4R tau expression switching,
and hyperphosphorylated tau accumulation. Intriguingly, the
transplanted neurons died in the absence of NFT, leaving
future studies to understand mechanism that generates NFTs
and the cause of neuronal death. This novel chimeric model
demonstrated promising potential to study human-specific AD
pathogenesis.

Mimicking Aging in Reprogramming
Interestingly, aging is a major risk factor for AD (Lindsay et al.,
2002). However, the iPSC technique resets age-associated traits
(e.g., cellular senescence, telomere shortening, and mitochondrial
dysfunction) back to a fetal stage (Mahmoudi and Brunet, 2012),
which potentially contribute to AD pathogenesis (Moreira et al.,
2010). This might lower the validity of iPSC modeling. Stress
exposure (e.g., free radicals, hypoxemia), triggering progeria
syndrome pathways has been suggested to accelerate aging in
iPSCs (Vera and Studer, 2015; Soria-Valles and López-Otín,
2016).

Apart from resetting somatic cells to a primitive pluripotent
state, the reprogramming technique allows iNs to be directly
generated from somatic cells, without an embryonic state.
Activating the transcription factor combination BAM (Brn2,
Asc11, and Myt11) using exogenous ectopic expression of
a transgene has been proven to be sufficient to generate
functional iNs from mouse fibroblasts (Vierbuchen et al., 2010).
With the addition of factor NeuroD1, human fibroblasts can
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FIGURE 1 | Three aspects that stem cell technology might benefit Alzheimer’s disease research and therapeutics.

be transdifferentiated into functional mature neurons (Pang
et al., 2011). The combination of a micro-RNA (miR-124)
and two transcription factors (Myt11 and Brn2) achieved
successful conversion of human fibroblasts into functional iNs
(Ambasudhan et al., 2011). Non-viral reprogramming methods,
which are less invasive to the genome, are being explored.
Black et al. (2016) reported that endogenous BAM transcription
factors expression could be engineered using the CRISPR/Cas9
system to convert fibroblasts into neuronal cells. Small molecule
cocktails have also been reported to directly induce neurons.
By adding a cocktail of seven small chemicals that regulate
neuronal transcription factor expression, Hu et al. (2015)
converted fibroblasts from patients with fAD carrying APP
or PS1 mutations into neuronal cells, and observed amyloid
and tau phenotypes, showing the promising potential of using
iNs to model AD. A large percentage of iNs induced by this
cocktail are glutamatergic cells. Although iNs are considered
to retain aging-related genetic and epigenetic characteristics
that better mimic AD, the fate of iNs is not under precise
control. Further work is needed to decipher the molecular
mechanisms that govern the differentiation toward a specific
neuronal subtype, for example, in AD, cholinergic neurons in the
basal forebrain.

The paragraph above summarized several methods
to convert fibroblasts into functional iNs in vitro,
which might shed light on AD modeling and disease
mechanism. Several studies have explored the therapeutic

potential of converting glial cells to neural cells in
injured brain tissue (Guo et al., 2014; Su et al., 2014).
Guo et al. (2014) reported the successful reprogramming of
reactive glial cells into functional neurons in an AD model.
Overexpression of one transcription factor, NeuroD1, turned
astrocytes into glutamatergic neurons, whereas it turned NG2
cells (oligodendrocyte precursor cells) into glutamatergic and
GABAergic neurons. This study exploited the pathological gliosis
that inhibits neural regeneration and survival in the AD brain
as a source of direct reprogramming. Further work is needed
to explore whether these neurons induced under pathological
conditions are beneficial to improve pathological responses.

Looking Forward
Tremendous variations in the genetic background and life
experience (epigenetic change) exist in patient-derived
iPSC lines. Current advances in genome editing techniques
(e.g., CRISPR/Cas9, zinc finger nuclease, helper-dependent
adenovirus) allow us to observe different phenotypes caused
by mutations of interest, while keeping the genetic background
constant (Liu et al., 2011; Soldner et al., 2011; Kwart et al.,
2017). For instance, Fong et al. (2013) exploited genetically
engineered iPSCs to study the tauopathy phenotype. Using a zinc
finger nuclease, the authors created isogenic iPSC lines carry
wild-type TAU, and heterozygous or homozygous TAU-A152T
mutation. Mutation dose-dependent neurodegeneration and
axonal degeneration were observed.
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Efforts have been made to transplant cells derived from iPSCs.
Apart from the human-mice chimeric model (Espuny-Camacho
et al., 2017), human iPSC-derived dopaminergic neurons were
transplanted into a primate Parkinson’s disease model (Kikuchi
et al., 2017). In Kikuchi et al.’s study, high grafted cell survival
rate and no tumor were observed in 2 years, demonstrating
the bright future of transplanting iPSC-based cells in terms
of low tumorigenicity and high survival rate. Mandai et al.
(2017) reported the first case of transplanting a retina derived
from autologous iPSCs into a patient with age-related macular
degeneration. Creating iPSCs for each patient is time-consuming,
laborious, and expensive; therefore, efforts have been made
to establish iPSC banks that are presumed to be sufficient to
find at least partial HLA matched donor cells in Japan, the
United States, and Europe. The first clinical trial of allogenic
iPSC transplantation has been initiated by the same group in
Japan to transplant retinas into patients with age-related macular
degeneration. AD typically occurs in the elderly, and autologous
cells are prone to contain accumulated genetic abnormalities
that are potentially harmful; therefore, transplanting cells derived
from HLA-matched iPSCs is a strategy worthy of further
exploration.

CONCLUSION

Alzheimer’s disease is a complex neurodegenerative disorder
that involves multiple cell types and a large variety of cellular
activities. Identifying key molecules involved in the modulation
of endogenous neurogenesis and intervening with them might be
a preliminary, but promising, strategy to prevent or even reverse
AD. Although several pioneering studies have demonstrated
elevated neurogenesis in terms of metabolism and plasma
exchange in animal models, future studies need to test the efficacy
of these manipulations in human patients.

Transplanting stem cells to substitute for lost neurons is
another intuitively feasible strategy. However, studies have
confirmed that the main benefit of stem cell transplantation is
a neurosecretory effect. Various neurotrophic factors involved
in modulating multiple cellular functions that promote
the amelioration of pathological features and cognition
in animal models have been recognized. There has been
increasing commercial interest to transform current advances in
transplantation into clinical practice on human patients. Various
stem cell sources and transplantation routes are being studied to

promote the efficacy and safety of transplantation. Regulatory
rules from governments should catch up with the growing
enthusiasm for stem cell transplantation (see the summaries in
Figure 1).

One of the major hurdles in developing therapeutics for
AD and studying its pathogenesis is the lack of animal models
that fully recapitulate the pathological features observed in
humans. iPSCs have revolutionized AD modeling because they
make it possible to generate neuronal cells directly from
patients. A substantial amount of research has proven their
potency in modeling diseases and screening drugs. Long-term
controversies over the disease mechanism (e.g., the challenged
amyloid hypothesis) can be tested in iPSC-based models.
Three-dimensional modeling and chimeric modeling have been
proposed because they aggregate amyloid potency or/and better
mimic various cellular interactions that take place in the
patient’s brain. Direct reprogramming techniques circumvent
the intermediate embryonic state; thus, aging-related features
that potentially contribute to AD pathogenesis are maintained.
Genome editing techniques allow isogenic comparison of various
mutations while keeping the genetic background constant.
The phenotypes and drug reactions of different iPSC lines
from various patients have been accumulating; therefore, future
research might develop detailed patient stratification rules to
provide patients with personalized drug regimens. Combined
with high-throughput drug screening, future translational studies
will be easier.
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